
6.111 Fall 2007  Lecture 16, Slide 1

Game Graphics using Sprites
• Sprite = game object occupying a rectangular region of the

screen (it’s bounding box).
– Usually it contains both opaque and transparent pixels.
– Given (H,V), sprite returns pixel (0=transparent) and depth
– Pseudo 3D: look at current pixel from all sprites, display the

opaque one that’s in front (min depth): see sprite pipeline below
– Collision detection: look for opaque pixels from other sprites
– Motion: smoothly change coords of upper left-hand corner

• Pixels can be generated by logic or fetched from a bitmap
(memory holding array of pixels).
– Bitmap may have multiple images that can be displayed in rapid

succession to achieve animation.
– Mirroring and 90º rotation by fooling with bitmap address,

crude scaling by pixel replication, or resizing filter.

spritepixel

depth

sprite sprite sprite

hcount
vcount

collision logic



6.111 Fall 2007  Lecture 16, Slide 2

gman
gman

gman

Demo (Pacman: video)
xvga

hcount
vcount
hsync
vsync
blank

map

pman

gman

Video
Priority
Encoder

(rgb == 0)
Means

transparent

hcount,vcount

r,g,b

16x32x32

16x32x32

2Kx8

Sprite: rectangular region of pixels, position and color set
by game logic.  32x32 pixel mono image from BRAM, up to
16 frames displayed in loop for animation:
sprite(clk,reset,hcount,vcount,xpos,ypos,color,
       next_frame,rgb_out)

4 board maps, each 512x8
each map is 16x24 tiles (376 tiles)
Each tile has 8 bits: 4 for move direction (==0 for a wall), pills

top layer

bottom layer



6.111 Fall 2007  Lecture 16, Slide 3

Retiming is the action of moving delay around in the systems
 Delays have to be moved from ALL inputs to ALL outputs or vice versa

D

D

D

D

D

Retiming: A very useful transform

Cutset retiming: A cutset intersects the edges, such that this would result in
two disjoint partitions of these edges being cut. To retime, delays are moved
from the ingoing to the outgoing edges or vice versa.

Benefits of retiming:
• Modify critical path delay
• Reduce total number of registers

D

D

D



6.111 Fall 2007  Lecture 16, Slide 4

Pipelining, Just Another Transformation
(Pipelining = Adding Delays + Retiming)

D

D

D

D

D

D

D

D

D

How to pipeline:
1. Add extra registers at all

inputs (or, equivalently, all
outputs)

2. Retime

retime

add input
registers

Contrary to retiming,
pipelining adds extra
registers to the system



6.111 Fall 2007  Lecture 16, Slide 5

The Power of Transforms: Lookahead

D

x(n) y(n)

A

2D

x(n) y(n)

D
AAA

D

x(n) y(n)

A2

A DD

loop
unrolling

distributivity

associativity

retiming
2D

x(n) y(n)

D
A2A

precomputed

2D

x(n) y(n)

D A
A

y(n) = x(n) + A[x(n-1) + A y(n-2)]

y(n) = x(n) + A y(n-1)

Try pipelining
this structure 



6.111 Fall 2007  Lecture 16, Slide 6

Retiming Example: FIR Filter

associativity
of addition

D D Dx(n)

h(0) h(1) h(2) h(3)

y(n)

D D Dx(n)

h(0) h(1) h(2) h(3)

y(n)

D D D

x(n)

h(0) h(1) h(2) h(3)

y(n)

retime

Direct
form

Transposed
form

Symbol for multiplication

!
=

"#=$=
K

i

ihinxnxnhny
0

)()()()()(

(10)

(4)

Tclk = 22 ns

Tclk = 14 ns

Note: here we use a first cut analysis that assumes the delay of a chain of
operators is the sum of their individual delays. This is not accurate.



6.111 Fall 2007  Lecture 16, Slide 7

FIR design issues

D D D

x(n)

h(0) h(1) h(2) h(3)

y(n)

N

M bits N+M N+M N+M N+M

N+M+1N+M+2N+M+3 N+M

• Keeping track of required numeric precision

• Scale fractional coefficients to integer values by multiplying
by 2C to get C-bit coefficients.  Remember to divide filter
output by same scale factor (division by 2C doesn’t require
logic, just eliminate the C low order bits).

• Xilinx IP Core has generators for many different FIR types



6.111 Fall 2007  Lecture 16, Slide 8

FFT example

clk_27mhz
ready

1
reset

1

0
from _ac97_data[7:0] xk_re[22:0]

xk_im[22:0]

xk_index[13:0]

// Transform length: 16384
// Implementation options: Pipelined, Streaming I/O
// Transform length options: none
// Input data width: 8
// Phase factor width: 8
// Optional pins: CE
// Scaling options: Unscaled
// Rounding mode: Truncation
// Number of stages using Block Ram: 7
// Output ordering: Bit/Digit Reversed Order
fft16384u fft(.clk(clock_27mhz), .ce(reset | ready),
             .xn_re(from_ac97_data[7:0]), .xn_im(8'b0),
             .start(1'b1), .fwd_inv(1'b1), .fwd_inv_we(reset),
             .xk_re(xk_re[22:0]), .xk_im(xk_im[22:0]), .xk_index(xk_index[13:0]));



6.111 Fall 2007  Lecture 16, Slide 9

FFT of AC97 data
To process AC97 samples:
• use Pipelined mode (input one sample in each cycle, get one

sample out each cycle).
– FFT expects one sample each cycle, so hook READY to CE so

that FFT only cycles once per AC97 frame
• use Unscaled mode, do scaling yourself

– Number of output bits = (input width) + NFFT + 1
 - NFFT is log2(size of FFT)

• let number of FFT points = P, assume 48kHz sample rate
– there are P frequency bins
– positive freqs in bins 0 to (P/2 – 1)
– negative freqs in bins (P/2) to (P-1)
– each bin covers (48k/P)Hz
– Use XK_INDEX to tell which bin’s data you’re getting out
– Typically you want magnitude = sqrt(xk_re^2 + xk_im^2)



6.111 Fall 2007  Lecture 16, Slide 10

Verilog Event Processing
• “Active” events

– Continuous assignments
– Statements within active always blocks

• Blocking assignments (=)
• RHS of non-blocking assignments (<=)

• Active events are evaluated in arbitrary order
– Interleaved execution of statements in different active
always blocks or continuous assignments is possible

– Statements are executed sequentially only with respect to
other statements within the same always block

• Assignments to LHS of non-blocking assignments
happens after all active events have been
processed

• Because of interleaved execution, blocking
assignments can lead to nondeterministic behavior
(this is bad!).



6.111 Fall 2007  Lecture 16, Slide 11

= vs. <= inside always

module main;
  reg a,b,clk;

  initial begin
    clk = 0; a = 0; b = 1;
    #10 clk = 1;
    #10 $display("a=%d b=%d\n",a,b);
    $finish;
  end
endmodule

always @(posedge clk) a = b;
always @(posedge clk) b = a;

always @(posedge clk) begin
  a = b;   // blocking assignment
  b = a;   // execute sequentially
end

always @(posedge clk) begin
  a <= b;  // non-blocking assignment
  b <= a;  // eval all RHSs first
end

always @(posedge clk) a <= b;
always @(posedge clk) b <= a;

always @(posedge clk) begin
  a <= b;
  b = a;   // urk! Be consistent!
end

A

B

C

D

E

Rule: always change state using <= (e.g., inside always @(posedge clk)…)


