6.111 Lecture 13

Today: Arithmetic: Multiplication

1.Simple multiplication
2. Twos complement mult.
3.Speed: CSA \& Pipelining
4.Booth recoding

5. Behavioral transformations:

Fixed-coef. mult., Canonical Signed Digits, Retiming

Acknowledgements:
-R. Katz, "Contemporary Logic Design", Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)

- J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Prentice Hall, 2003.
- Kevin Atkinson, Alice Wang, Rex Min

1. Simple Multiplication
 Unsigned Multiplication

$$
\begin{aligned}
& \begin{array}{llll}
A_{3} & A_{2} & A_{1} & A_{0}
\end{array} \\
& \times \begin{array}{llll}
\mathrm{B}_{3} & \mathrm{~B}_{2} & \mathrm{~B}_{1} & \mathrm{~B}_{0}
\end{array} \\
& A B_{i} \text { called a "partial product" } \longrightarrow A_{3} B_{0} A_{2} B_{0} A_{1} B_{0} A_{0} B_{0} \\
& A_{3} B_{1} \quad A_{2} B_{1} \quad A_{1} B_{1} \quad A_{0} B_{1} \\
& A_{3} B_{2} \quad A_{2} B_{2} \quad A_{1} B_{2} \quad A_{0} B_{2} \\
& +A_{3} B_{3} \quad A_{2} B_{3} \quad A_{1} B_{3} \quad A_{0} B_{3}
\end{aligned}
$$

Multiplying N-bit number by M-bit number gives ($N+M$)-bit result
Easy part: forming partial products
(just an AND gate since B_{I} is either 0 or 1)
Hard part: adding M N-bit partial products

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N-bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:


```
Init: P\leftarrow0, load A and B
Repeat M times {
    P}\leftarrow\textrm{P}+(\mp@subsup{B}{\mathrm{ LSB }}{}==1 ? A : 0
    shift P/B right one bit
}
Done: (N+M)-bit result in P/B
```


Combinational Multiplier

2's Complement Multiplication
 (Baugh-Wooley)

Step 1: two's complement operands so high order bit is $-2^{\mathrm{N}-1}$. Must sign extend partial products and subtract the last one

				$\begin{array}{r} \mathrm{X} 3 \\ \star \quad \mathrm{Y} 3 \end{array}$	$\begin{aligned} & \mathrm{X} 2 \\ & \mathrm{Y} 2 \end{aligned}$	$\begin{aligned} & \mathrm{X} 1 \\ & \mathrm{Y} 1 \end{aligned}$	$\begin{aligned} & \mathrm{XO} \\ & \mathrm{YO} \end{aligned}$
X3Y0	X3Y0	X3Y0	X3Y0	X3Y0	X2Y0	x1Y0	X0Y0
+ X3Y1	X3Y1	x3Y1	x3Y1	X2Y1	X1Y1	X0Y1	
+ X3Y2	X3Y2	X3Y2	x2Y2	X1Y2	x0Y2		
- X3Y3	X3Y3	X2Y3	X1Y3	X0Y3			
z7	Z 6	z5	Z4	z3	z2	z1	z0

Step 2: don't want all those extra additions, so add a carefully chosen constant, remembering to subtract it at the end. Convert subtraction into add of (complement + 1).


```
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+
```

Step 3: add the ones to the partial products and propagate the carries. All the sign extension bits go away!

				$\overline{X 3 Y 0}$	X2Y0 X1Y0 X0Y0
+			$\overline{X 3 Y 1}$	X 2 Y 1	X 1 Y 1
X 0 Y 1					

Step 4: finish computing the constants...

Result: multiplying 2's complement operands takes just about same amount of hardware as multiplying unsigned operands!

2's Complement Multiplication

Multiplication in Verilog

You can use the "*" operator to multiply two numbers:

```
wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!
```

If you want Verilog to treat your operands as signed two's complement numbers, add the keyword signed to your wire or reg declaration:

```
wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!
```

Remember: unlike addition and subtraction, you need different circuitry if your multiplication operands are signed vs. unsigned. Same is true of the \ggg (arithmetic right shift) operator. To get signed operations all operands must be signed.

To make a signed constant: 10'sh37C

Multipliers in the Virtex II

The Virtex FGPA has hardware multiplier circuits:

Combinatorial and Registered Multiplier Primitives
Note that the operands are signed 18-bit numbers.
The ISE tools will often use these hardware multipliers when you use the "*" operator in Verilog. Or can you instantiate them directly yourself:

```
wire signed [17:0] a,b;
wire signed [35:0] result;
MULT18X18 mymult(.A(a),.B(b),.P(result));
```


3. Faster Multipliers: Carry-Save Adder

Good for pipelining: delay through each partial product (except the last) is just tPD, AND + tPD,FA.
No carry propagation time!

Increasing Throughput: Pipelining

Idea: split processing across several clock cycles by dividing circuit into pipeline stages separated by registers that hold values passing from one stage to the next.
$t=$ register

Throughput = 1 result per clock cycle (period is now $4^{\star} t_{P D, F A}$ instead of $8^{\star} t_{P D, F A}$)

Wallace Tree Multiplier

Higher fan-in adders can be used to further reduce delays for large M.

4:2 compressors and 5:3 counters are popular building blocks.

4. Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!

Booth recoding

current bit pair

B_{K+1}	B_{K}	B_{K-1}	action	
0	0	0	add 0	
0	0	1	add A	
0	1	0	add A	
0	1	1	add 2* A	
1	0	0	sub 2* A	
1	0	1	sub A	$\leftarrow-2^{\star} A+A$
1	1	0	sub A	
1	1	1	add 0	$\leftarrow-A+A$

A "1" in this bit means the previous stage needed to add $4^{*} A$. Since this stage is shifted by 2 bits with respect to the previous stage, adding $4^{*} A$ in the previous stage is like adding A in this stage!

5.Behavioral Transformations

- There are a large number of implementations of the same functionality
- These implementations present a different point in the area-time-power design space
- Behavioral transformations allow exploring the design space a high-level

Optimization metrics:

1. Area of the design
2. Throughput or sample time T_{S}
3. Latency: clock cycles between the input and associated output change
4. Power consumption
5. Energy of executing a task

Fixed-Coefficient Multiplication

Conventional Multiplication

$$
\begin{array}{llll}
\mathrm{X}_{3} & \mathrm{X}_{2} & \mathrm{X}_{1} & \mathbf{X}_{0}
\end{array}
$$

$$
\begin{array}{cccccccc}
\mathbf{Z}=\mathbf{X} \cdot \mathbf{Y} & & & & \mathbf{Y}_{3} & \mathbf{Y}_{2} & \mathbf{Y}_{1} & \mathbf{Y}_{0} \\
\cline { 3 - 7 } & & & & \mathbf{X}_{3} \cdot \mathbf{Y}_{0} & \mathbf{X}_{2} \cdot \mathbf{Y}_{0} & \mathbf{X}_{1} \cdot \mathbf{Y}_{0} & \mathbf{X}_{0} \cdot \mathbf{Y}_{0} \\
& & & \mathbf{X}_{3} \cdot \mathbf{Y}_{1} & \mathbf{X}_{2} \cdot \mathbf{Y}_{1} & \mathbf{X}_{1} \cdot \mathbf{Y}_{1} & \mathbf{X}_{0} \cdot \mathbf{Y}_{1} & \\
& & \mathbf{X}_{3} \cdot \mathbf{Y}_{2} & \mathbf{X}_{2} \cdot \mathbf{Y}_{2} & \mathbf{X}_{1} \cdot \mathbf{Y}_{2} & \mathbf{X}_{0} \cdot \mathbf{Y}_{2} & & \\
& & \mathbf{X}_{3} \cdot \mathbf{Y}_{3} & \mathbf{X}_{2} \cdot \mathbf{Y}_{3} & \mathbf{X}_{1} \cdot \mathbf{Y}_{3} & \mathbf{X}_{0} \cdot \mathbf{Y}_{3} & & \\
\\
& \mathbf{Z}_{7} & \mathbf{Z}_{6} & \mathbf{Z}_{5} & \mathbf{Z}_{4} & \mathbf{Z}_{3} & \mathbf{Z}_{2} & \mathbf{Z}_{1} \\
\hline
\end{array}
$$

Constant multiplication (become hardwired shifts and adds)

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{X} \cdot(\mathbf{1 0 0 1})_{2} \\
& \mathrm{Y}=(\mathbf{1 0 0 1})_{2}=\mathbf{2}^{3}+\mathbf{2}^{\mathbf{0}} \\
& \xrightarrow[\sim]{\text { ses }}
\end{aligned}
$$

Transform: Canonical Signed Digits (CSD)

Canonical signed digit representation is used to increase the number of zeros. It uses digits $\{-1,0,1\}$ instead of only $\{0,1\}$.

Iterative encoding: replace string of consecutive 1's (replace 1 with 2-1)

$$
\left.\begin{array}{|llllll|}
\hline \mathbf{0} & 1 & 1 & \ldots & 1 & 1
\end{array}\right]
$$

Worst case CSD has 50\% non zero bits

Algebraic Transformations

Commutativity

Distributivity

$(A+B) C=A B+B C$
Common sub-expressions

Transforms for Efficient Resource Utilization

distributivity

Time multiplexing: mapped to 3 multipliers and 3 adders

Reduce number of operators to 2 multipliers and 2 adders

Lecture 13, Slide 18

Retiming: A very useful transform

Retiming is the action of moving delay around in the systems

- Delays have to be moved from ALL inputs to ALL outputs or vice versa

Cutset retiming: A cutset intersects the edges, such that this would result in two disjoint partitions of these edges being cut. To retime, delays are moved from the ingoing to the outgoing edges or vice versa.

Benefits of retiming:

- Modify critical path delay

- Reduce total number of registers

Pipelining, Just Another Transformation (Pipelining = Adding Delays + Retiming)

The Power of Transforms: Lookahead

Summary

- Simple multiplication:
- $O(N)$ delay

- Twos complement easily handled (Baugh-Wooley)
- Faster multipliers:
- Wallace Tree O(log N)
- Booth recoding:
- Add using 2 bits at a time
- Behavioral Transformations:
- Faster circuits using pipelining and algebraic properties

