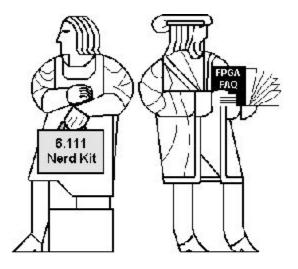
6.111 Lecture 12

Today: Arithmetic: Addition & Subtraction

Binary representation
 Addition and subtraction
 Speed: Ripple-Carry
 Carry-bypass adder
 Carry-lookahead adder



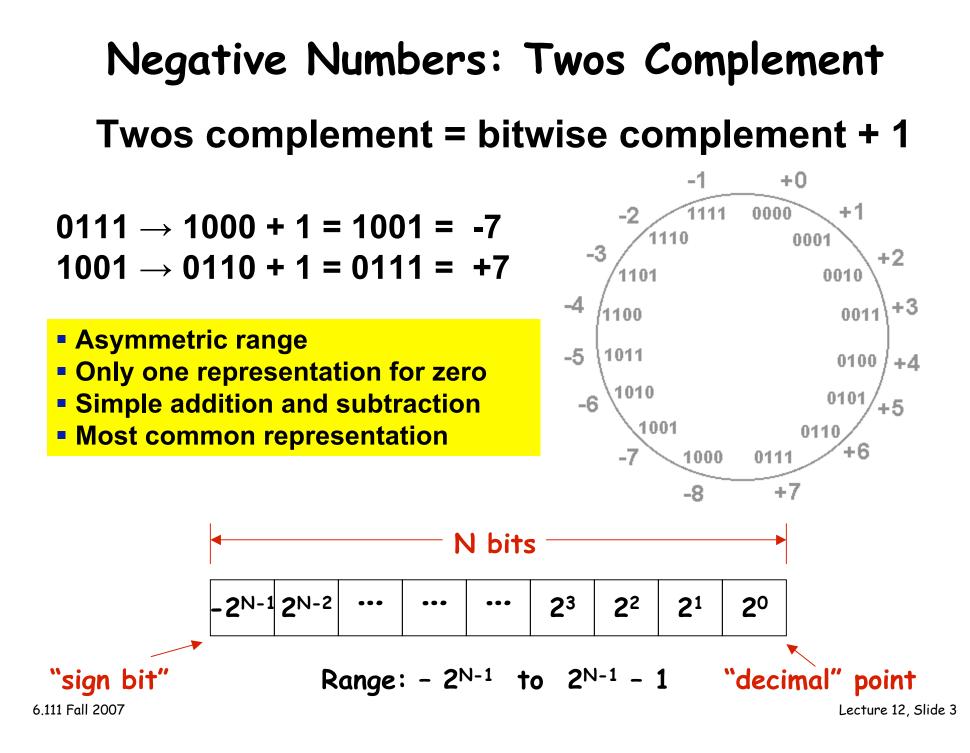
Acknowledgements:

- R. Katz, "Contemporary Logic Design", Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)
- J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Prentice Hall, 2003.
- Kevin Atkinson, Alice Wang, Rex Min

1. Binary Representation of Numbers

How to represent negative numbers?

- Three common schemes:
 - sign-magnitude, ones complement, twos complement
- <u>Sign-magnitude</u>: MSB = 0 for positive, 1 for negative
 - Range: $-(2^{N-1}-1)$ to $+(2^{N-1}-1)$
 - Two representations for zero: 0000... & 1000...
 - Simple multiplication but complicated addition/subtraction
- <u>Ones complement</u>: if N is positive then its negative is N
 - Example: 0111 = 7, 1000 = -7
 - Range: $-(2^{N-1} 1)$ to $+(2^{N-1} 1)$
 - Two representations for zero: 0000... & 1111...
 - Subtraction is addition followed by ones complement



Twos Complement: Examples & Properties

• 4-bit examples:

	4	0100	-4 1100	4 0100	-4	1100
+	3	0011	+ (-3) 1101	- 3 1101	+ 3	0011
	7	0111	-7 11001	1 10001	-1	1111

[Katz'93, chapter 5]

•8-bit twos complement example:

 $11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1 = -128 + 64 + 16 + 4 + 2 = -42$

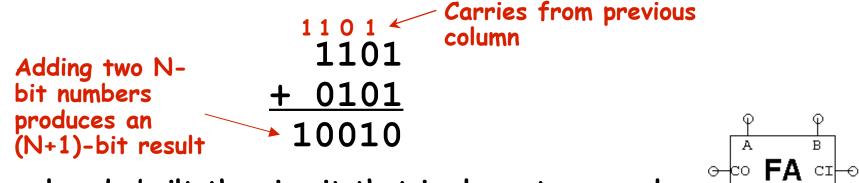
- •With twos complement representation for signed integers, the same binary addition procedure works for adding both signed and unsigned numbers.
- •By moving the implicit location of "decimal" point, we can represent fractions too:

 $1101.0110 = -2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} = -8 + 4 + 1 + 0.25 + 0.125 = -2.25$

2. Binary Addition & Subtraction

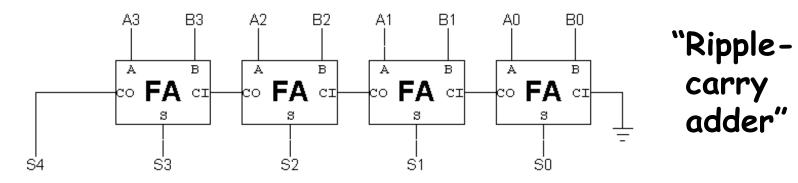
Addition:

Here's an example of binary addition as one might do it by "hand":



We've already built the circuit that implements one column:

So we can quickly build a circuit two add two 4-bit numbers...

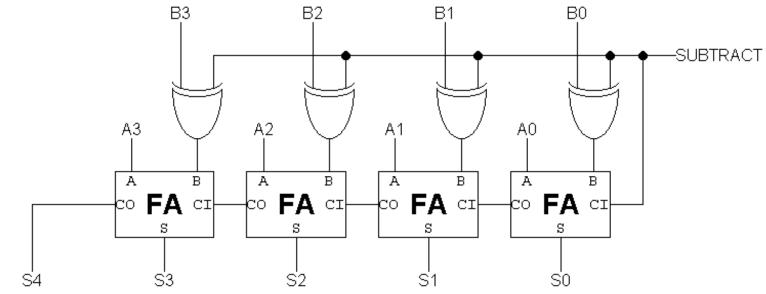


B.

Subtraction: A-B = A + (-B)

Using 2's complement representation: -B = -B + 1

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by *control input*:



6.111 Fall 2007

~B

bit-wise complement

Ð

Condition Codes

 S_{N-1}

Besides the sum, one often wants four other bits of information from an arithmetic unit:

```
Z (zero): result is = 0 big NOR gate
```

N (negative): result is < 0

C (carry): indicates an add in the most significant position produced a carry, e.g., 1111 + 0001

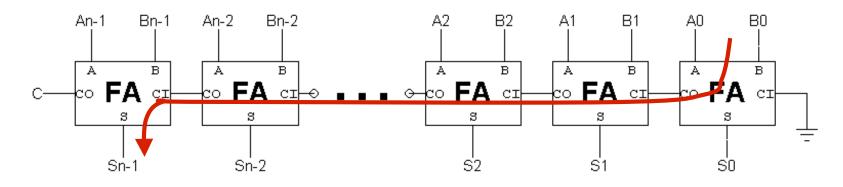
from last FA

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111

$$V = A_{N-1}B_{N-1}\overline{S_{N-1}} + \overline{A_{N-1}}B_{N-1}S_{N-1}$$
$$V = COUT_{N-1} \oplus CIN_{N-1}$$

To compare A and B, perform A-B and use condition codes: Signed comparison: NHV LT LE Z+ (N⊕V) EQ Z ~Z NE ~ (N⊕V) GE ~(Z+(N⊕V)) GT Unsigned comparison: LTU С LEU C+Z GEU ~C ~ (C+Z) GTU

3. Speed: t_{PD} of Ripple-carry Adder



Worse-case path: carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001.

$$t_{PD} = (N-1)^{*}(t_{PD,OR} + t_{PD,AND}) + t_{PD,XOR} \approx \Theta(N)$$

$$CI \text{ to } CO \qquad CI_{N-1} \text{ to } S_{N-1}$$

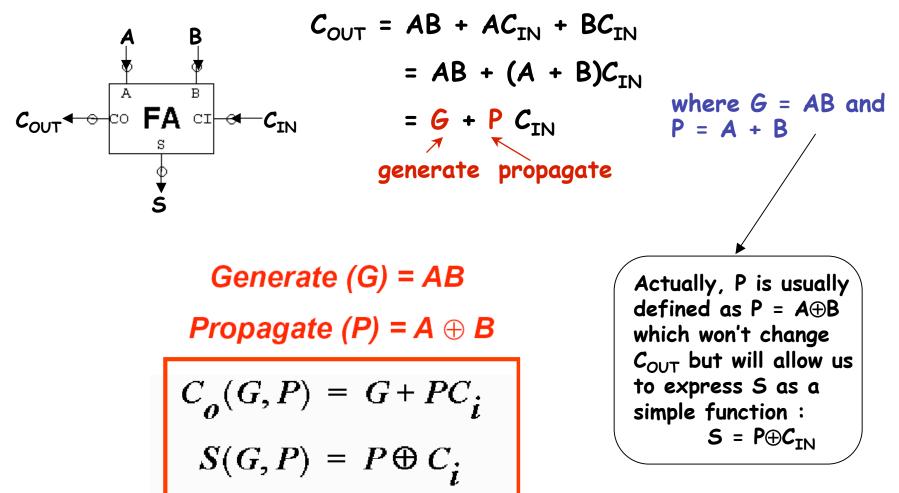
$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Θ(N) is read "order N" : means that the latency of our adder grows at worst in proportion to the number of bits in the operands.

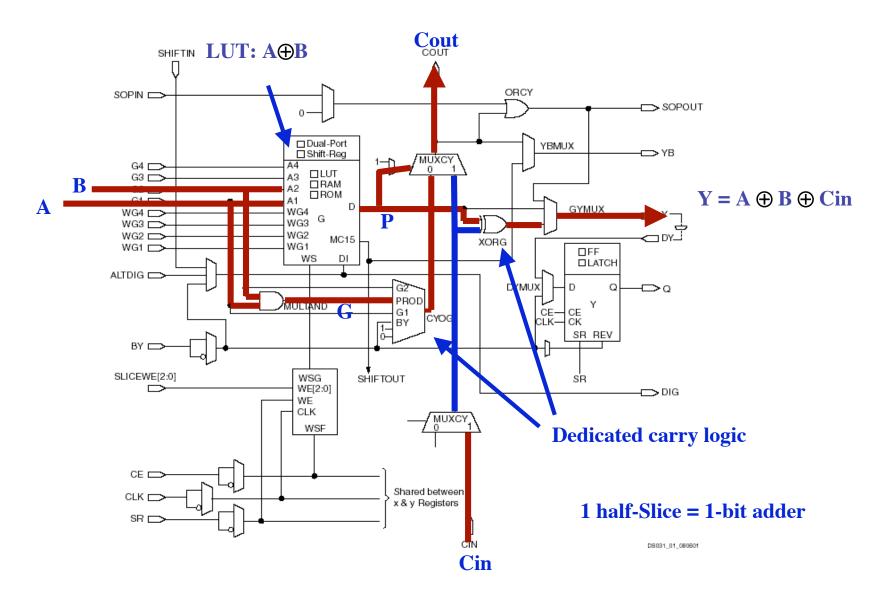
6.111 Fall 2007

Faster carry logic

Let's see if we can improve the speed by rewriting the equations for C_{OUT} :

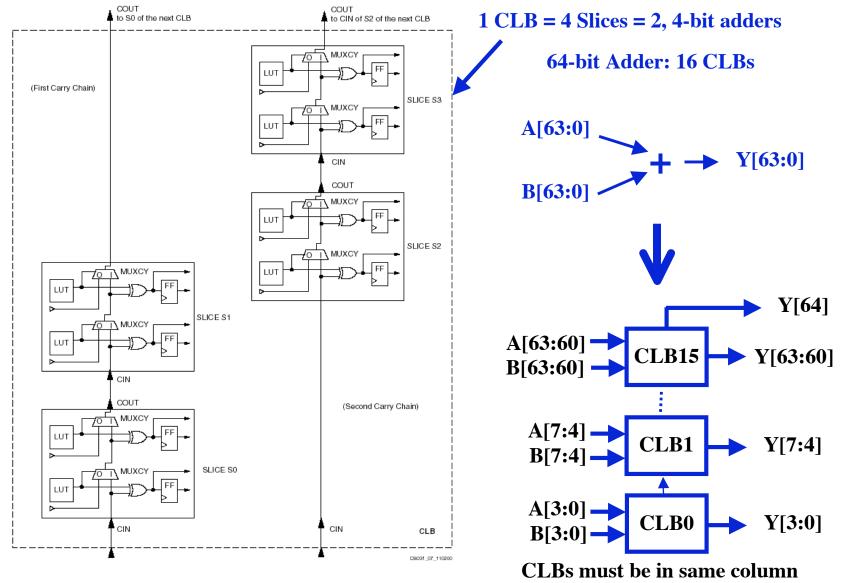


Virtex II Adder Implementation



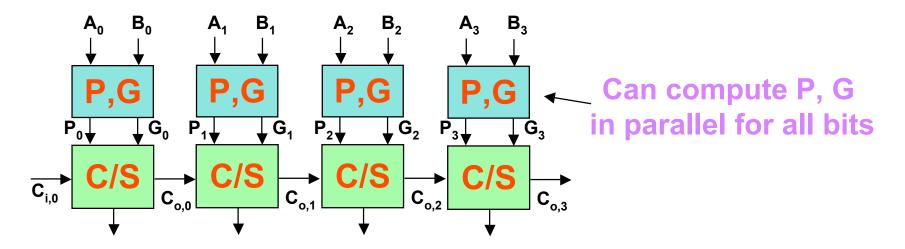
6.111 Fall 2007

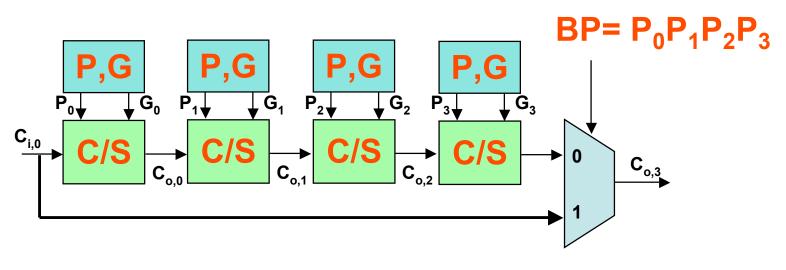
Virtex II Carry Chain



Lecture 12, Slide 11

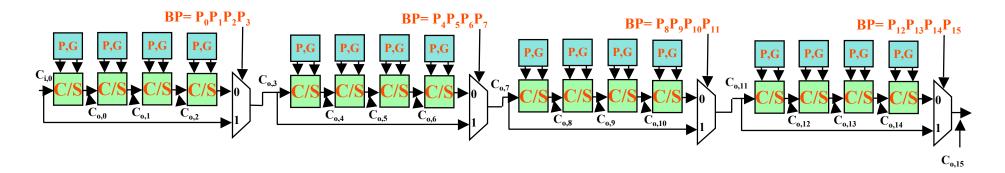
4. Carry Bypass Adder





Key Idea: if $(P_0 P_1 P_2 P_3)$ then $C_{0,3} = C_{i,0}$

16-bit Carry Bypass Adder

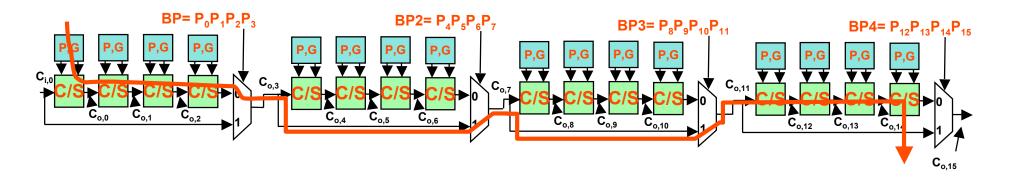


What is the worst case propagation delay for the 16-bit adder?

Assume the following for delay each gate:

P, G from A, B: 1 delay unit P, G, C_i to C_o or Sum for a C/S: 1 delay unit 2:1 mux delay: 1 delay unit

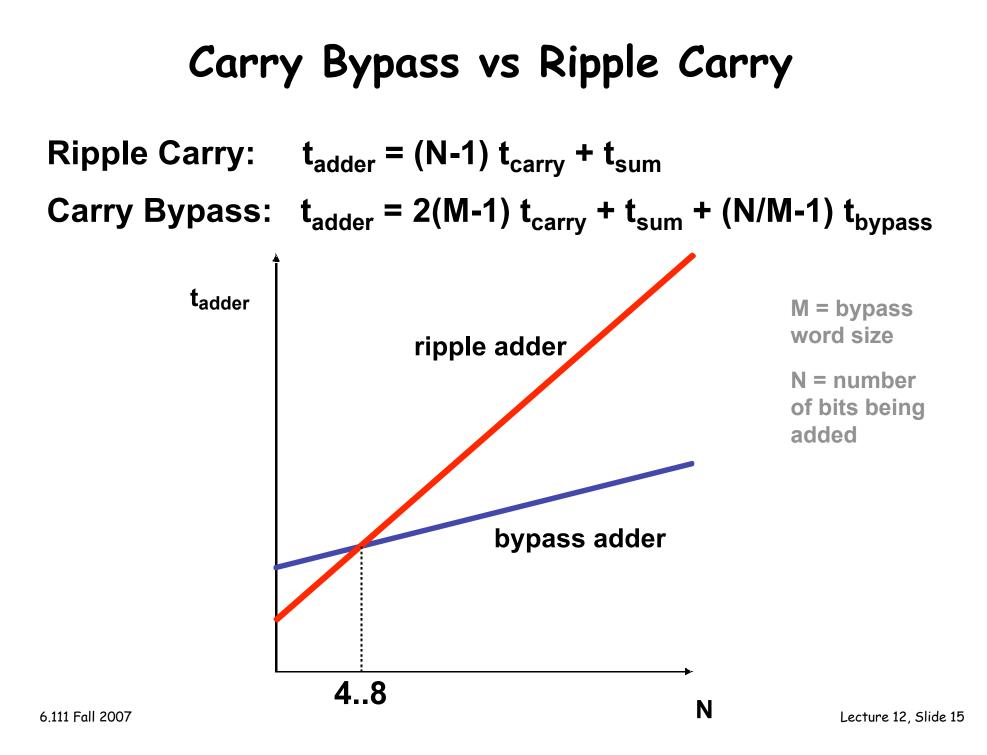
Critical Path Analysis



For the second stage, is the critical path:

BP2 = 0 or BP2 = 1?

Message: Timing Analysis is Very Tricky – Must Carefully Consider Data Dependencies For False Paths



5. Carry Lookahead Adder (CLA)

• Recall that $C_{OUT} = G + P C_{IN}$ where G = AB and $P = A \odot B$

• For adding two N-bit numbers:

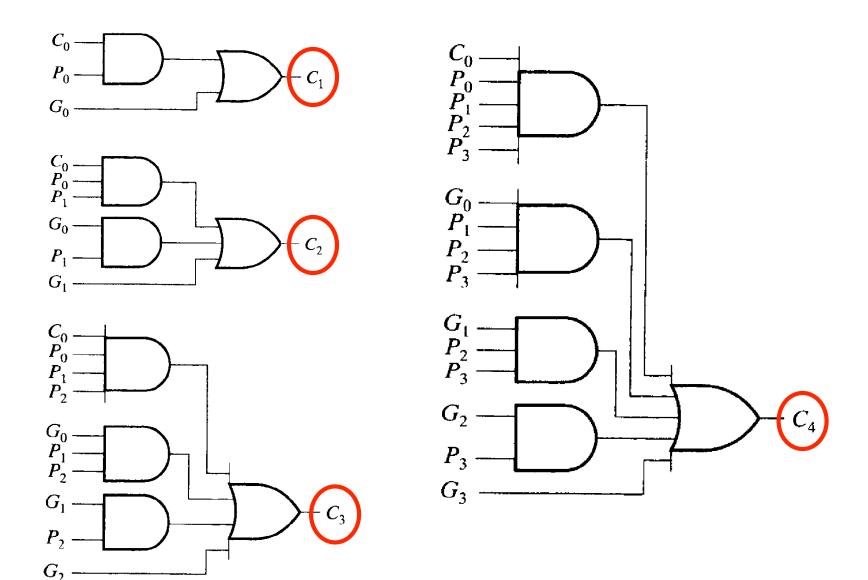
$$C_{N} = G_{N-1} + P_{N-1}C_{N-1}$$

= $G_{N-1} + P_{N-1}G_{N-2} + P_{N-1}P_{N-2}C_{N-2}$
= $G_{N-1} + P_{N-1}G_{N-2} + P_{N-1}P_{N-2}G_{N-3} + ... + P_{N-1}...P_{0}C_{IN}$

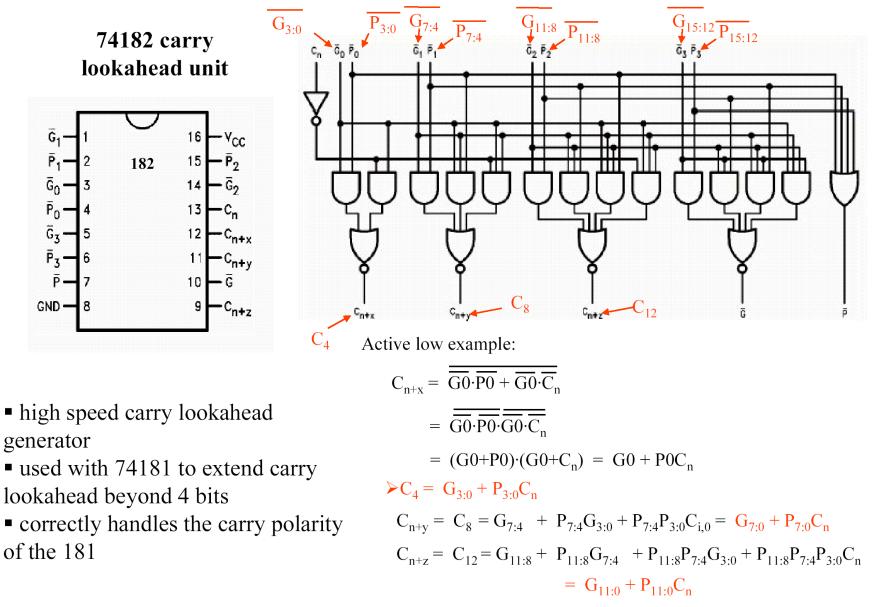
C_N in only 3 gate delays* :
1 for P/G generation, 1 for ANDs, 1 for final OR
*assuming gates with N inputs

• Idea: pre-compute all carry bits as $f(Gs, Ps, C_{IN})$

Carry Lookahead Circuits



The 74182 Carry Lookahead Unit



6.111 Fall 2007

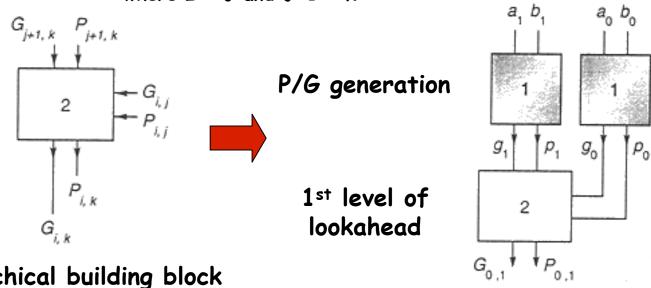
Block Generate and Propagate

G and P can be computed for groups of bits (instead of just for individual bits). This allows us to choose the maximum fan-in we want for our logic gates and then build a hierarchical carry chain using these equations:

$$C_{J+1} = G_{IJ} + P_{IJ}C_{I}$$
$$G_{IK} = G_{J+1,K} + P_{J+1,K}G_{IJ}$$
$$P_{IK} = P_{IJ}P_{J+1,K}$$

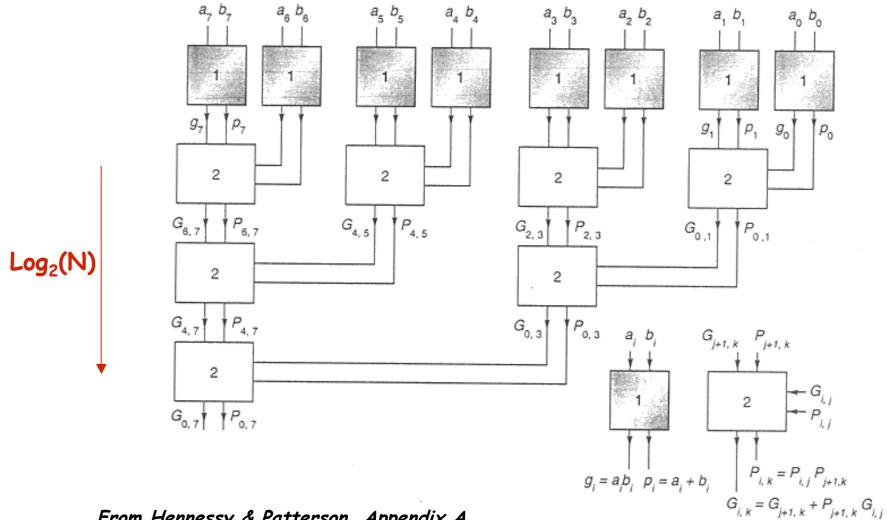
where I < J and J+1 < K

"generate a carry from bits I thru K if it is generated in the high-order (J+1,K) part of the block or if it is generated in the low-order (I,J) part of the block and then propagated thru the high part"

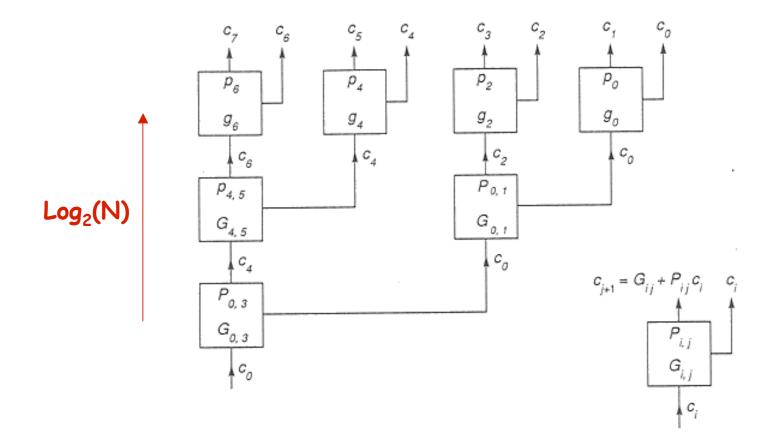


Hierarchical building block

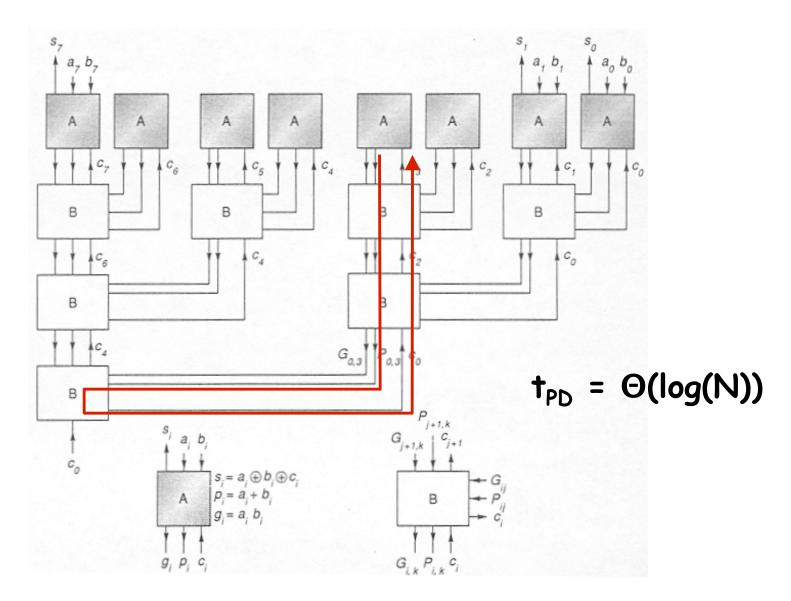
8-bit CLA (P/G generation)



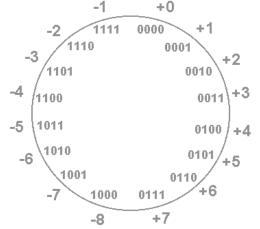
8-bit CLA (carry generation)



8-bit CLA (complete)



Summary



- Negative numbers:
 - Twos Complement -B = \overline{B} + 1
 - Addition & Subtraction use same adder
- Ripple Carry Adder:
 - $t_{adder} = (N-1) t_{carry} + t_{sum}$
- Carry Bypass Adder:
 - t_{adder} ¹/₄ (M-1) t_{carry} + t_{sum} + (N/M-1) t_{bypass}
- Carry Lookahead Adder:
 - $t_{adder} \frac{1}{4} 2 \log_2(N) t_{pg}$

