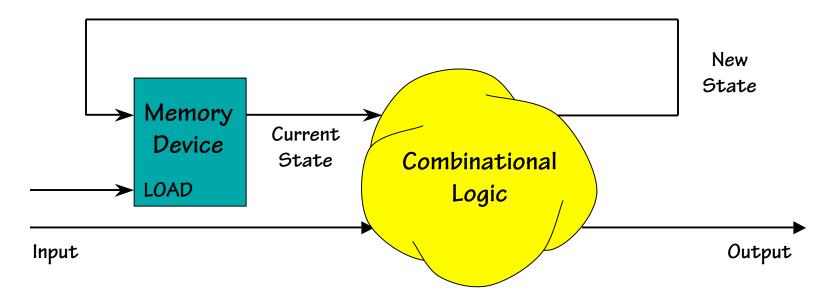
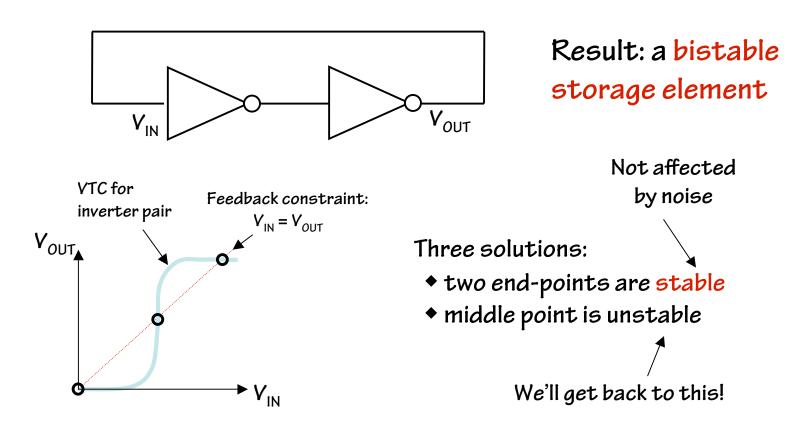

Something We Can't Build (Yet)


What if you were given the following design specification:

6.111 Fall 2007 Lecture 5, Slide 1

Digital State

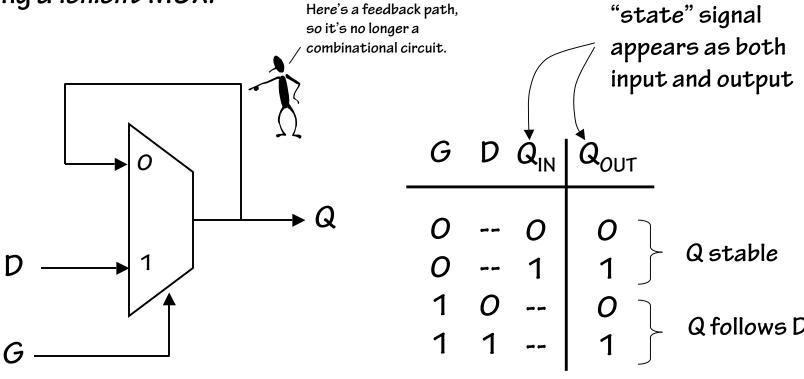
One model of what we'd like to build



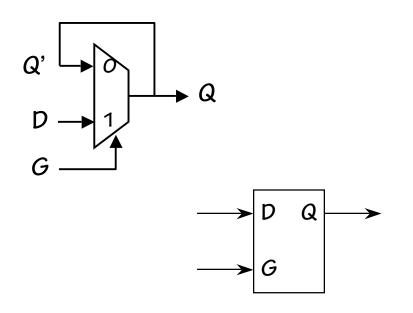
Plan: Build a Sequential Circuit with stored digital STATE -

- Memory stores CURRENT state, produced at output
- Combinational Logic computes
 - NEXT state (from input, current state)
 - OUTPUT bit (from input, current state)
- State changes on LOAD control input

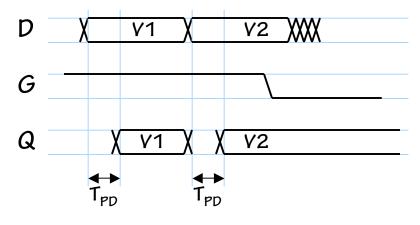
Storage: Using Feedback


IDEA: use positive feedback to maintain storage indefinitely. Our logic gates are built to restore marginal signal levels, so noise shouldn't be a problem!

Settable Storage Element


It's easy to build a settable storage element (called a latch)

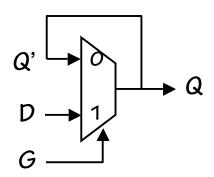
using a lenient MUX:



6.111 Fall 2007

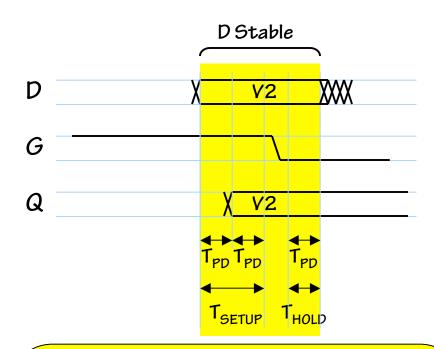
New Device: D Latch

G=1: G=0: Q follows D Q holds



BUT... A change in D or G contaminates Q, hence Q' ... how can this possibly work?

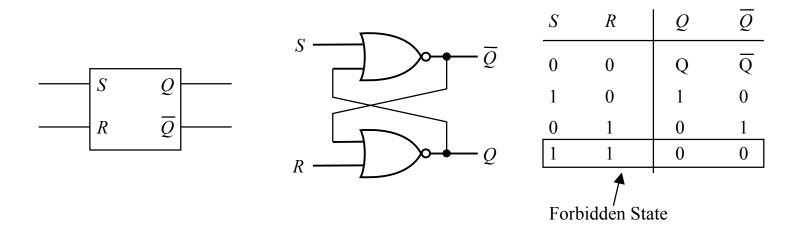
G=1: Q Follows D, independently of Q'

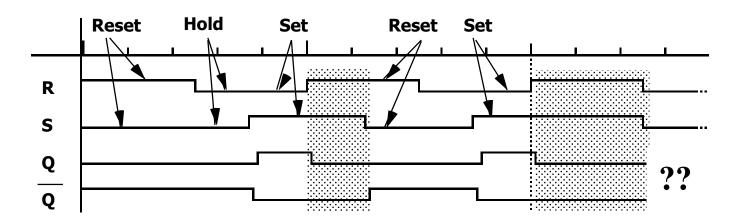

G=0: Q Holds stable Q', independently of D

D-Latch timing

To <u>reliably latch</u> V2:

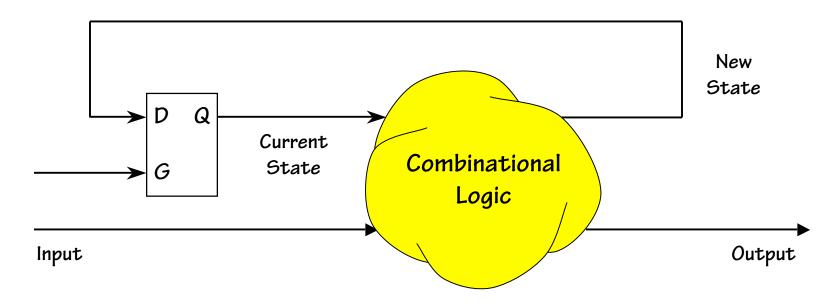
- Apply V2 to D, holding G=1
- After T_{PD} , V2 appears at Q=Q'
- After another T_{PD} , Q' & D both valid for T_{PD} ; will hold Q=V2 independently of G
- Set G=O, while Q' & D hold Q=D
- After another T_{PD} , G=0 and Q' are sufficient to hold Q=V2 independently of D




Dynamic Discipline for our latch:

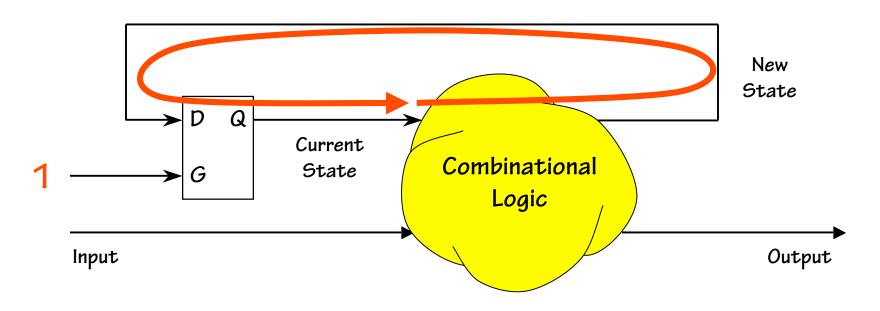
 $T_{SETUP} = 2T_{PD}$: interval prior to G transition for which D must be stable & valid

 $T_{HOLD} = T_{PD}$: interval following G transition for which D must be stable & valid


NOR-based Set-Reset (SR) Flipflop

Flip-flop refers to a bi-stable element

Lets try using the D-Latch...


Plan: Build a Sequential Circuit with one bit of STATE -

- Single latch holds CURRENT state
- Combinational Logic computes
 - NEXT state (from input, current state)
 - OUTPUT bit (from input, current state)
- State changes when G = 1 (briefly!)

What happens when G=1?

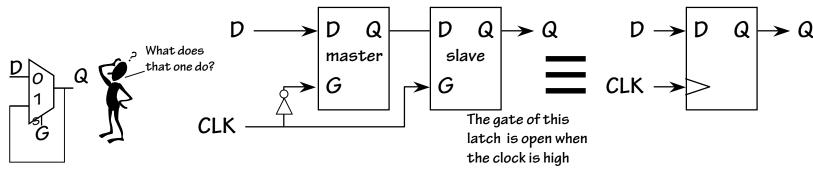
Combinational Cycles

When G=1, latch is Transparent...

 \dots provides a combinational path from D to Q.

Can't work without tricky timing constraints on G=1 pulse:

- Must fit within contamination delay of logic
- Must accommodate latch setup, hold times


Want to signal an INSTANT, not an INTERVAL...

Looks like a stupid Approach to me...

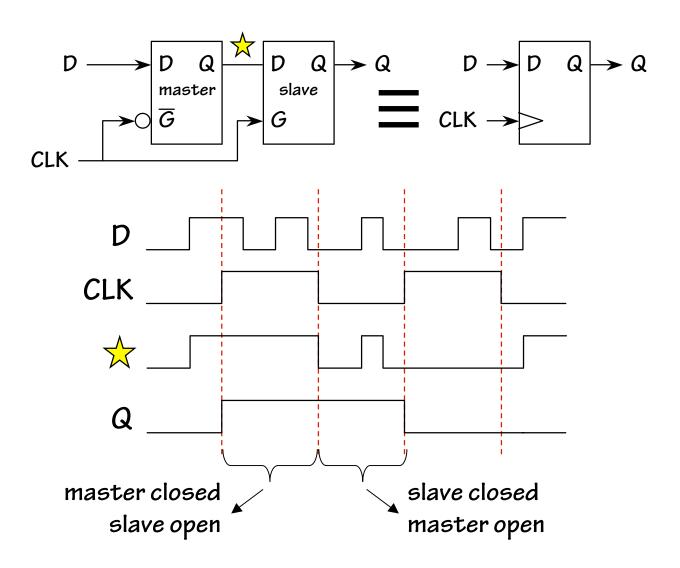
Edge-triggered D-Register

The gate of this latch is open when the clock is low

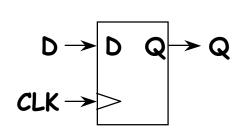
Observations:

- only one latch "transparent" at any time:
 - master closed when slave is open
 - slave closed when master is open
 - → no combinational path through flip flop

(the feedback path in one of the master or slave latches is always active)


◆ Q only changes shortly after O → 1
 transition of CLK, so flip flop appears
 to be "triggered" by rising edge of CLK

Transitions mark instants, not intervals



D-Register Waveforms

6.111 Fall 2007 Lecture 5, Slide 11

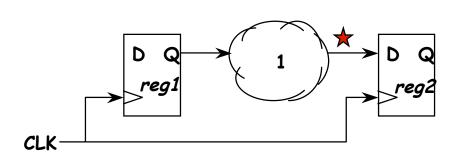
D-Register Timing - I

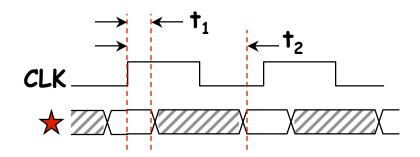
Values determined from slave latch $\Rightarrow t_{CD}$ $\Rightarrow t_{CD}$

 t_{PD} : maximum propagation delay, CLK $\rightarrow Q$

 t_{CD} : minimum contamination delay, CLK $\rightarrow Q$

Values determined from master latch

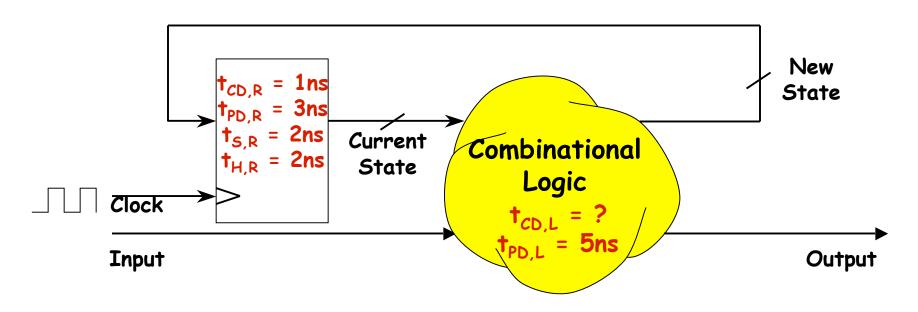

t_{SETUP}: setup time


guarantee that D has propagated through feedback path before master closes

t_{HOLD}: hold time

guarantee master is closed and data is stable before allowing D to change

D-Register Timing - II


$$t_1 = t_{CD,reg1} + t_{CD,1} > t_{HOLD,reg2}$$

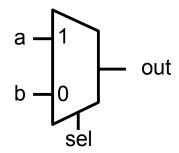
$$t_2 = t_{PD,reg1} + t_{PD,1} < t_{CLK} - t_{SETUP,reg2}$$

Questions for register-based designs:

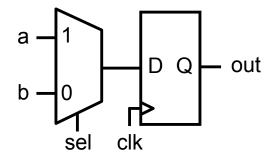
- how much time for useful work (i.e. for combinational logic delay)?
- does it help to guarantee a minimum t_{CD}? How about designing registers so that t_{CD,reg} > t_{HOLD,reg}?
- what happens if CLK signal doesn't arrive at the two registers at exactly the same time (a phenomenon known as "clock skew")?

Sequential Circuit Timing

Questions:


- Constraints on T_{CD} for the logic? > 1 ns
- Minimum clock period? > 10 ns $(T_{PD,R}+T_{PD,L}+T_{S,R})$
- Setup, Hold times for Inputs? $T_S = T_{PD,L} + T_{S,R}$ $T_H = T_{H,R} T_{CD,L}$

This is a simple Finite State Machine ... more on next time!


The Sequential always Block

 Edge-triggered circuits are described using a sequential always block

Combinational

<u>Sequential</u>

Importance of the Sensitivity List

- The use of posedge and negedge makes an always block sequential (edge-triggered)
- Unlike a combinational always block, the sensitivity list does determine behavior for synthesis!

```
D Flip-flop with synchronous clear
module dff_sync_clear(d, clearb,
clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock)
begin
  if (!clearb) q <= 1'b0;
  else q <= d;
end
endmodule</pre>
```

always block entered only at each positive clock edge

D Flip-flop with asynchronous clear

```
module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;

always @ (negedge clearb or posedge clock)
begin
  if (!clearb) q <= 1'b0;
  else q <= d;
end
endmodule</pre>
```

always block entered immediately when (active-low) clearb is asserted

Note: The following is **incorrect** syntax: always @ (clear or negedge clock) If one signal in the sensitivity list uses posedge/negedge, then all signals must.

 Assign any signal or variable from <u>only one</u> always block, Be wary of race conditions: always blocks execute in parallel

Blocking vs. Nonblocking Assignments

- Verilog supports two types of assignments within always blocks, with subtly different behaviors.
- · Blocking assignment: evaluation and assignment are immediate

```
always @ (a or b or c)
begin

x = a | b;

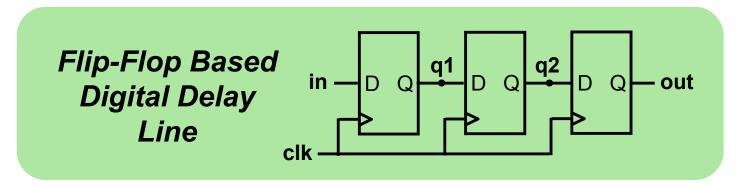
y = a ^ b ^ c;

z = b & ~c;

end

1. Evaluate a | b, assign result to x

2. Evaluate a^b^c, assign result to y


3. Evaluate b&(~c), assign result to z
```

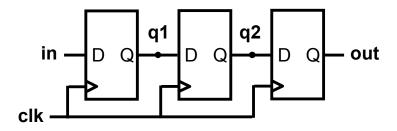
 Nonblocking assignment: all assignments deferred until all righthand sides have been evaluated (end of simulation timestep)

 Sometimes, as above, both produce the same result. Sometimes, not!

6.111 Fall 2007

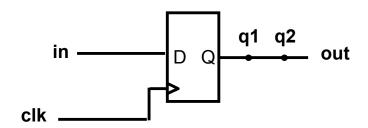
Assignment Styles for Sequential Logic

 Will nonblocking and blocking assignments both produce the desired result?


```
module nonblocking(in, clk, out);
                                        module blocking(in, clk, out);
                                           input in, clk;
  input in, clk;
  output out;
                                           output out;
  reg q1, q2, out;
                                           reg q1, q2, out;
  always @ (posedge clk)
                                           always @ (posedge clk)
  begin
                                           begin
    q1 <= in;
                                             q1 = in;
    q2 <= q1;
                                             q2 = q1;
    out <= q2;
                                             out = q2;
  end
                                           end
endmodule
                                         endmodule
```

6.111 Fall 2007 Lecture 5, Slide 18

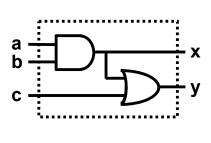
Use Nonblocking for Sequential Logic


```
always @ (posedge clk)
begin
  q1 <= in;
  q2 <= q1;
  out <= q2;
end</pre>
```

"At each rising clock edge, q1, q2, and out simultaneously receive the old values of in, q1, and q2."


```
always @ (posedge clk)
begin
  q1 = in;
  q2 = q1;
  out = q2;
end
```

"At each rising clock edge, q1 = in. After that, q2 = q1 = in. After that, out = q2 = q1 = in. Therefore out = in."



- Blocking assignments do not reflect the intrinsic behavior of multi-stage sequential logic
- Guideline: use nonblocking assignments for sequential always blocks

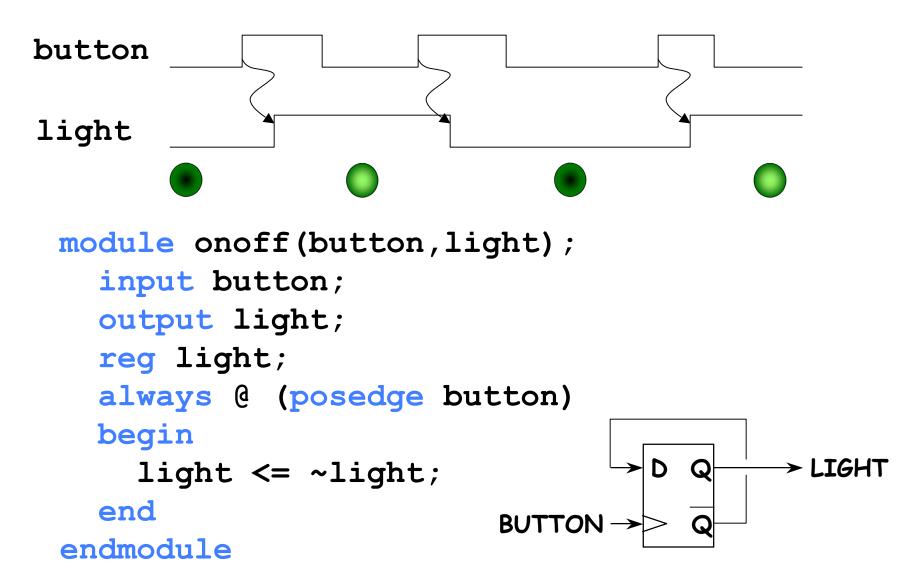
6.111 Fall 2007

Use Blocking for Combinational Logic

Blocking Behavior	abc xy
(Given) Initial Condition	11011
a changes;always block triggered	01011
x = a & b;	01001
y = x c;	01000


```
module blocking(a,b,c,x,y);
  input a,b,c;
  output x,y;
  reg x,y;
  always @ (a or b or c)
  begin
    x = a & b;
    y = x | c;
  end
```

endmodule


No	nblocking Behavior	abc x y	Deferred
	(Given) Initial Condition	11011	
	a changes; always block triggered	01011	
	x <= a & b;	01011	x<=0
	y <= x c;	01011	x<=0, y<=1
	Assignment completion	01001	

```
module nonblocking(a,b,c,x,y);
  input a,b,c;
  output x,y;
  reg x,y;
  always @ (a or b or c)
  begin
    x <= a & b;
    y <= x | c;
  end
endmodule</pre>
```

- Nonblocking and blocking assignments will synthesize correctly. Will both styles simulate correctly?
- Nonblocking assignments do not reflect the intrinsic behavior of multi-stage combinational logic
- While nonblocking assignments can be hacked to simulate correctly (expand the sensitivity list), it's not elegant
- Guideline: use blocking assignments for combinational always blocks

6.111 Fall 2007

Implementation for on/off button

6.111 Fall 2007 Lecture 5, Slide 21

A Simple Counter

Isn't this a lot like Exercise 1 in Lab 22 count clr enb # 4-bit counter with enable and synchronous clear module counter(clk,enb,clr,count); input clk,enb,clr; output [3:0] count; reg [3:0] count; always @ (posedge clk) begin count <= clr ? 4'b0 : (enb ? count+1 : count);</pre> end

endmodule