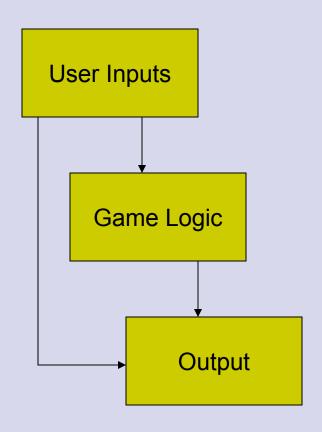
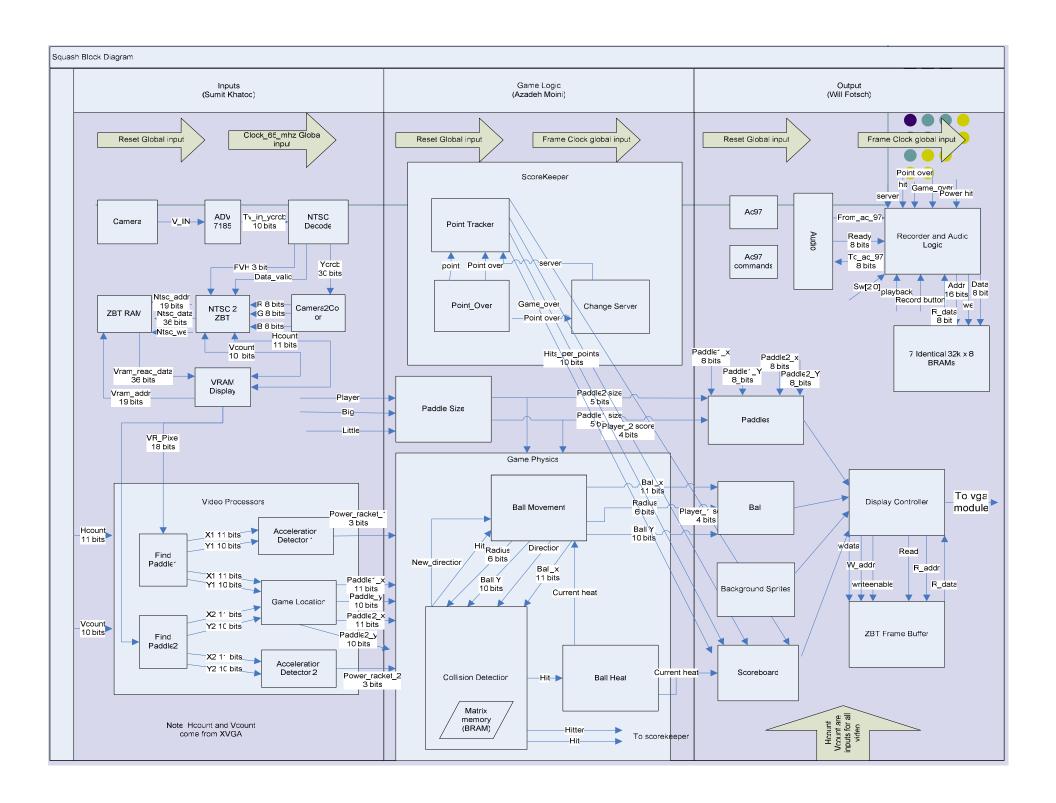


Squash Yourself....

Presented by Sumit Khatod Azadeh Moini Will Fotsch




- The purpose of our project is to create a two player interactive racquetball game.
- This project was motivated by Nintendo Wii's innovative approach towards making gaming more realistic
- We wanted to create a game that we could appreciate and enjoy playing ourselves. Since sports are something of interest to us and we find using a real paddle more interactive than pressing buttons; we thought this would be fun.

- There are three main components
 - User Controls (Sumit Khatod)
 - Game Logic
 (Azadeh Moini)
 - Video and Audio Output (Will Fotsch)

User Interface

- The users uses a ping-pong racquet with an LED placed in the center to play the game
- Both movements and swings are registered by a camera that tracks the movement of the LEDs
- Users can change paddle size using buttons and a switch to select which paddle is being changed
- Why not accelerometers?

Video Processing

- The camera sends out a YCrCb.
- Using modules provided by the 6.111 staff modified to convert the camera input into RGB, the camera input is stored as a 18 bit color data in a ZBT
- The data is then processed in a video processing unit to detect:
 - Location
 - center of mass of LED
 - Acceleration
 - change in location of led over last few frames
 - Direction of the swing
 - change in location of led over last few frames

Game Logic

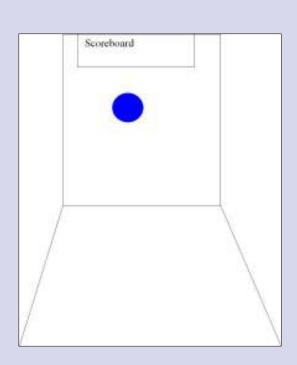
Game Physics

- Determines:
 - Paddle location
 - Ball movement

- Collision detection (ball & paddle; ball & ground)
 - Current hitter
- Ball heat
 - Paddle power and ball speed
 - Ball movement with respect to angle

Scorekeeper

- Whether point awarded or point over:
 - Based on hitter, server, and groundball
- Tracks points:
 - Based on point and server
 - "Rally" for one-player
- Changes server:
 - Based on previous server and point over



Outputs

- On The Screen
 - Court
 - Ball with appropriate size according to the Game Physics
 - Paddle(s) with appropriate size and coordinates according to the Game Physics
 - Scoreboard
 - Player 1 Score, Player 2 Score
 - Rally Score (Hits per point)
 - Ball Heat
 - Frame Buffer will store the display on ZBT Memory

- Audio clips will be added to make the game more fun and interactive
- Audio clips for
 - Server Change (Player 1 or Player 2)
 - Hit
 - End of a Point
 - End of a Game
 - Power Hits
- Audio clips will be stored into BRAM
 - The samples will be stored using the microphone and selecting the correct BRAM through 3 switches on the FPGA. A button will be used to indicate record mode.
 - BRAM will be split up into 6 different sound bytes on 32K x 8 BRAMs

Project Roadmap

- Phase 1 Thanksgiving break
 - Basic ball and paddle movements with court graphics
- Phase 2 December 2nd
 - Full one player mode
 - Major enhancements to the graphics (scoreboard)
 - Ball heat and acceleration calculations
- Phase 3 December 9th
 - Two player game
 - Sound effects
 - Added graphic detail