
A Floating-Point Unit for Numerical Calculations

Jeff Walden– 6.111

5.11.06

Abstract

In this project we will implement a partially IEEE-754 compliant
floating-point unit in Verilog. The FPU will implement addition, subtrac-
tion, and multiplication, and it will meet the exactness criteria specified by
IEEE-754 and set exception flags as specified by IEEE-754. Due to time
constraints, it will implement little of the rest of IEEE-754; however, that
which it implements should be sufficient for many floating-point needs.

1 Overview

Numbers in computation may be divided into two categories: integers and
floating-point numbers. Integers are precise and exactly store mathematical
integers purely within the bounds dictated by their width; floating-point num-
bers store mathematical real numbers but even with unbounded width suffer
some imprecision. This project will implement a floating-point unit supporting
the basic mathematical operations from which most floating-point operations
may be constructed, namely addition and subtraction, multiplication, and (if
time permits) division.

The implementation will aim for limited conformance with the IEEE-754
standard for binary floating-point arithmetic. Rounding-mode functionality will
be limited to the round-to-nearest mode, and only single-format numbers will
be implemented. No FPU-level support will be provided for determining square
roots, calculating remainders, rounding to or from integer values, or converting
between bases. However, the implementation will endeavor to support accurate
value rounding (within the limits of the single-format number), positive and
negative zero and infinity, a NaN (not a number) value, and floating-point ex-
ceptions, whenever possible. Deviations from the standard will be clearly noted
in all reports.

2 Preliminary Implementation Overview

For simplicity, the initial FPU implementation will consist of a mux which se-
lects among the results of the set of possible calculations. This will be helpful
in getting a prototype together against which initial testing can occur. Once

1



a mostly-working prototype has been constructed, the design will be modified
to accommodate faster processing on an operation-by-operation (and for spe-
cial values on a value-by-value) basis. This should not be difficult to do using
some form of tristate device, but we prefer to reason about a working but slow
implementation over reasoning about an as-yet-unrealized plan for an imple-
mentation.

Figure 1: A high-level diagram of the FPU

2.1 Inputs

The inputs to the FPU will consist of the two floating-point numbers, each
stored in 32 bits, and an operation code to indicate what calculation should be
performed. The operation code is given in 3 bits to allow for possible function-
ality increases, although it is unlikely such increases will occur.

2.2 Test

This block converts the external operation code into an internal code (which
may or may not be the same). The intent of this block is to combinationally
determine when numerical calculation can be avoided entirely (e.g., if either
operand is NaN, the entire operation may short-circuit). Its outputs are the
aforementioned internal operation code and the two input numbers.

2.3 Output Mux

The output mux selects among the various results for each of the different
floating-point operations and determines which one is to be sent to the module
outputs. Its intent is to allow exactly one calculation to control the relevant

2



module outputs at any given time, allowing faster operations to finish before
slower operations may have finished. It is not yet entirely clear whether this
could be replaced with some form of tristate device, but in the likely case that
it is, doing so should allow a slight speedup in processing the faster operations.

2.4 cmp

Comparison of floating-point numbers is relatively simple to implement, and
since a comparison requires nothing more than the bit patterns which make up
the numbers being compared, it is calculated separately from the main flow of
control.

2.5 Outputs

The outputs of the FPU are a ready flag, five exception values, the result of
the comparison between the two input floating-point numbers, and the result
of the calculation. The ready flag allows for fast returns in the cases where
the requested floating-point calculation is simple. The five exceptions are those
specified by IEEE-754: invalid operation, divide by zero, overflow, underflow,
and inexact. The result of the calculation will be accurate within the limits of the
floating-point format; in other words, the result will be the number determined
by performing the calculation exactly and using round-to-nearest to dtermine
the answer.

3 FPU Operations

The implementation method used in calculation of each floating-point value
will be as given in On the Design of IEEE Compliant Floating Point Units,
Guy Even and Wolfgang Paul, May 2000 IEEE Transactions on Computers.
This method reduces each calculation to the following steps: preprocessing each
operand to bound precision, performing the operation, and rounding the result
in the correct manner while setting exception flags as required.

3.1 Addition/Subtraction

The addition algorithm consists of aligning the floating points (and thus making
the exponents equal), performing a sticky-bit computation (to ensure sufficient
accuracy so that during final rounding no significant data is lost), adding the
numbers (their exponents are equal, making this a relatively simple integral
addition), and rounding the final result.

3.2 Multiplication

Multiplication of floating-point numbers consists of multiplying the integer data
and adding the exponents; exceptions should be the only complication in im-
plementing multiplication.

3



4 Additional Details

In addition to implementing the FPU, we will also implement a user interface
by which interaction with the FPU is possible. We will allow the floating-point
and operation inputs to the FPU to be set, and the result and exceptions will be
displayed in some manner for the user to view. At the moment it is unclear what
this interface will be, but ideally the interface will consist of a small calculator
with input given by a keyboard and with output displayed on a VGA monitor.

Testing of the FPU will occur primarily through Verilog test modules. IEEE-
754 verification suites will be used to verify the functionality which the FPU
implements, and a test script to run these tests will be executed on a regular
basis during development.

4


	Overview
	Preliminary Implementation Overview
	Inputs
	Test
	Output Mux
	cmp
	Outputs

	FPU Operations
	Addition/Subtraction
	Multiplication

	Additional Details

