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Abstract 

This project is similar in function to a player piano, taking a written input and converting 

it to musical notes. More technically, the project takes an image of a piece of sheet music 

and plays the music via the AC97 codec on the 6.111 labkit. The sheet music is limited in 

complexity to the level of a simple piano score. An image of the sheet music is stored in 

memory for processing. Image processing techniques are used to detect features of the 

image, such as notes, bar lines, and accidentals. The image processing generates a series 

of notes, including information about their frequencies and durations. This information 

drives an audio processing component that plays the music via the AC97 codec on the 

labkit. 
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1. Overview 

1a. General Overview 
The overall project is similar in design to a player piano. Sheet music was 

scanned and processed to decode information about the written notes. The system is 

divided into several modules.  These include an edge detector, note decoder, and audio 

processor. Stephen Chait was mainly responsible for the note decoder and audio 

processor.  Josh Runge worked primarily on the edge detector.  An overall block diagram 

of the project is shown below. 

Figure 1: Top-level block diagram 

 
 In order to process an image, it is important to first extract the basic structure.  

Pattern matching on an unprocessed image can be easily confused by changes in lighting 

and camera orientation.  By using edge detection on the image from the camera before 

passing it to the note decoder, we hope to minimize errors from such external sources. 

 The edge detector takes the values stored in the ZBT memory from the computer 

and performs edge detection on the represented image.  This will be implemented through 

a Canny edge detector.  The major steps in this process include convolution with a double 



differentiated Gaussian filter and thresholding.  The resulting image is be stored in the 

same ZBT memory. 

 The Note Decoder takes the modified raster image from the edge detector and 

determines the sequence of notes and rests, and the pitches and durations of each.  It 

includes several smaller modules essential to its operation.  The Staff Finder identifies the 

break between staves by looking for large sections of white space. Since we are using the 

constraint that all notes must be on the staff (no ledger lines), there will be a number of 

rows between each pair of staves that contain no edges. The module determines the first 

and last rows of each staff, and the locations of each line on the staff. It then sends the 

staves one at a time to the Pattern Matcher. The Pattern Matcher looks down each staff 

and identifies patterns of edges that represent notes or rests. Based on the edge pattern, it 

determines the duration of the note. Using the location of the lines determined by the 

Staff Finder, it determines the physical placement of the note on the staff (e.g. middle 

space, 2
nd

 line from the top). It sends the note’s duration and placement to the Frequency 

Finder.  The Frequency Finder determines the frequency of each note based on the 

placement of the note on the staff. Since all notes must be on the staff, the range of notes 

is limited (about 3 octaves if we use both treble and bass clef), so a lookup table is 

feasible.  

The Audio Processor generates sampled sine waves at the frequencies specified 

by the Note Decoder. It sends samples to the AC97 codec in a loop that represents one 

period of the sine wave. Since the AC97 codec outputs samples at 48 kHz, it is necessary 

to keep the sampling rate at a constant 48 kHz. This means that the number of samples in 

the loop is w ,where w is the desired frequency.  The Audio Processor also uses a tempo 

clock to determine how long to hold each note. The tempo clock is an enable signal that 

is generated by dividing the 27MHz clock, can be controlled by the user.  

 

2. Edge Detector 

2a. MATLAB Implementation 

 The first several versions of the edge detector were created in MATLAB.  Initially 

the built in functions for edge detection were used to find a desirable threshold level.  

Next, functions were created to perform the independent steps of the Canny filter.  Most 

of the focus was put into the design of the convolution module as this was anticipated to 

be the most complicated hardware design problem.  At this point in the process, a design 

choice was made to eliminate non-maximal suppression.  This operation would have 

required the calculation of arctan, which was considered too much additional 

complication for the hardware design.  A comparison of an image with and without non-

maximal suppression is shown below. 

 



 
Figure 2: Results using and not using non-maximal suppression 

 

 It was convenient to have the MATLAB implementation for comparison 

throughout the design process because of the large amount of data involved in the project.  

Correct operation of the edge detector is difficult to determine without at least a 13x13 

matrix of pixel values, 169 values.  Computation of these values by hand would have 

been painful and prone to error.  For each of the stages, it is possible to have the exact 

values that would be generated by a working edge detector. 

 

2b. Verilog Implementation  

 

Top-level Edge Detector 

 

 The top-level edge detector module handles communication with the major FSM 

for our project and through it the ZBT RAM.  It outputs horizontal and vertical pixel 

values for reading and writing, which are translated to ZBT memory addresses.  The ZBT 

RAM delays the read pixel values one clock cycle, which is compensated for by the 

introduction of old_hpixel and old_vpixel registers.  The module also outputs a zbt_select 

value and reading and writing zbt_slots which will be described below. 

 An FSM is included in the top-level module to control communication with the 

filter and magnitude/threshold modules.  This FSM progresses through five states 

representing operation performed and the direction of processing.  The DX and GX state 

represent convolution in the x direction with a differentiated Gaussian and normal 

Gaussian respectively.  The GY and DY states are similar but in the y direction.  The 

MAG state performs an iterative square root of the sum of the squares of the above two 

operations.  The ZBT RAM and slots used in each state as well as the transition 

conditions are included on the state diagram below.  Both ZBT RAMs are used and the 

states alternate RAMs for reading and writing to ensure both operations can occur in the 

same clock cycle. 

 



 
Figure 3: State diagram for edge detector FSM 

 

 There are also some important timing issues addressed by the FSM.  Since the 

filter has a built in delay caused by the pixel width of the convolution, the hpixel and 

vpixel values for writing must be delayed 9 clock cycles from the read values.  A 

simulation of the reading and writing pixel values for the GX stage is shown below. Also 

there are tight timing constraints on the MAG state.  The two input data values must 

occur on successive clock cycles corresponding to the start signal and the clock period 

afterward.  The write-enable signal must occur after the transition of done to 1 but before 

the enable pulse which increments the hpixel and vpixel values. 

 

 
Figure 4: Simulation showing hpixel and vpixel during filter operation 

 

 

Filter Module 

 

 The filter module performs the convolution the filters based on state inputs.  The 

filter contains 13 internal 8-bit registers for input values, basically an input vector, 

corresponding to the 13-pixel width of the filter.  On reset, the first 7 input registers are 

loaded with the first pixel value to extend the image and allow a more reasonable first 

convolution output.  On successive input values, each input register is shifted right and 

the new value added to the first register.  The input registers are multiplied, on each 

cycle, by the filter values corresponding to their position in the input vector.  These 



values are stored in 13 16 bit sum registers.  These filter values depend on the diff input, 

as shown in the tables below.  Also on each cycle, the sum registers are added together 

and the highest 8 bits are presented on the output.  The filter produces a valid signal 9 

clock cycles after the initial reset, indicating that the input vector is full of real values and 

the output corresponds to the sequence of input values. 

 

Filter[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 

diff = 0 2 9 28 67 124 180 204 180 124 67 28 9 2 

diff = 1 7 22 55 99 123 90 0 -90 -123 -99 -55 -22 -7 

Table 1: Filter coefficients for Gaussian and differentiated Gaussian 
 

 The use of a differentiated Gaussian filter introduced some interesting challenges 

regarding signed integers.  For the input image, values are stored as unsigned 8-bit values 

from 0-255.  On convolution with the differentiated Gaussian, the values are remapped to 

signed 8-bit values from -127 to 127.  Since these values had to be used by the filter 

again after the first state, signed integers had to be used in the internals of the filter.  The 

conversion was performed based on the past state.  If, the previous state performed a 

differentiated operation, then the input was sign extended to 8 bits before the 

multiplication.  Since the filter never produced values above about 90, the highest order 

bit could be used for this operation. 

 

 

Magnitude/Threshold Module 

 

The magnitude/threshold module is mostly an iterative square root procedure.  

When the start signal goes high, the value on the data input is stored in the register data1.  

On the next clock cycle, the value on data is, if it is negative, converted to a positive 

number, squared, added to the square of the data1 register, and stored in data2.  It is 

possible to determine if the number is negative because the second input is from a 

differentiated operation.  Positive numbers will never go above about 90 so the highest 

order bit is indicative of a negative number.  The iterative calculation of the square root is 

then allowed once this converted value is stored in data2.  When the calculation is 

finished, the done output goes high.  The output of this module is high if the magnitude is 

above the threshold of 12. 

 

 

3. Major FSM 

 The main function of the Major FSM, built in to the top-level module, is to 

integrate all of the modules with each other and with the ZBT. The Major FSM has three 

states: LOADING_DATA, EDGE_DETECTOR, and NOTE_DECODER. The states 

simply indicate which module is running at the time, and therefore which address inputs 

and write enables should be sent to the ZBT. The FSM starts out in the 

LOADING_DATA state on reset. When the loading_done signal is asserted, it transitions 

to the EDGE_DETECTOR state and asserts the edge_start signal, telling the Edge 

Detector to start. When edge_done is asserted, the FSM transitions to the 



NOTE_DECODER state and tells the Note Decoder to start by asserting the 

decoder_start signal. When the decoder_done signal is asserted, the FSM waits for the 

user to press Play and then asserts the playback_start signal, telling the Frequency Finder 

and Audio Processor to start. No change of state is needed because the Frequency Finder 

and Audio Processor do not access the ZBT. 

 The interface to the ZBT is a bit more interesting. Because of the many 

intermediate images used by the Edge Detector, it is necessary to use both ZBTs, as well 

as to use several “slots” within each ZBT. The write_zbt and read_zbt signals indicates 

which ZBT (0 or 1) is being written to and which is being read from. The write and read 

data are multiplexed to either ZBT0 or ZBT1 using write_zbt and read_zbt. Also, an 

offset is added to each address depending on the edge_slot_select signal. 

 Finally, the Edge Detector and Note Decoder work only with 8-bit pixel values. 

The ZBT, however, has 36 bits in each memory location, making it necessary to store 

four pixel values in each location of the ZBT. Thus the FSM needs to select the correct 8 

bits out of the 36-bit data coming to and from the ZBT. For reading, this is relatively 

simple; the FSM simply selects the appropriate 8 bits based on the low-order 2 bits of the 

edge_hpixel and note_hpixel inputs. Since the image is stored row by row (with the four 

pixels in each ZBT location representing pixels from the same row), it is the horizontal 

index that determines which 8 bits is selected.  

 Writing is trickier, because the FSM needs to write 8-bit values to the ZBT 

without changing the other 28 bits in that particular ZBT address. Since the Edge 

Detector does not always move horizontally across rows, the FSM cannot simply 

concatenate the 8-bit values and write every four clock cycles. Before it writes, the FSM 

must read from the address it is about to write to, and writes can only happen every other 

clock cycle. The 36-bit zbt_overwrite register stores the data from the address about to be 

written to. Then the appropriate 8 bits of the zbt_overwrite register are replaced by the 8-

bit write data from the Edge Detector. 

 
Figure 5: Major FSM state diagram 

 
 

 



4. Note Decoder 

The function of the Note Decoder is to read the edge-detected image data out of 

the ZBT RAM and determine the sequence of notes in each staff. The Note Decoder has 

three main modules: the Staff Finder, the Pattern Matcher, and the Frequency Finder. The 

Staff Finder finds the top and bottom lines of each staff, the Pattern Matcher determines 

the sequence of notes in a staff, and the Frequency Finder determines the frequency of 

each note based on its position on the staff. The Note Decoder operates one staff at a 

time. As soon as the Staff Finder finds the first staff, the Pattern Matcher decodes it. 

When the Pattern Matcher is done decoding, the Staff Finder starts finding the next staff, 

and so on. The Frequency Finder starts after both the Staff Finder and Pattern Matcher 

have finished. 

A minor FSM interacts with these three modules and determines which signals to 

send to the major FSM. The minor FSM has three states: S_INACTIVE, S_STAFF and 

S_PATTERN. These states indicate which Note Decoder module is running at the time, 

and thus which pixel addresses should be sent to the major FSM. A separate state for the 

Frequency Finder is not necessary, since the Frequency Finder does not read from the 

ZBT. 

The minor FSM starts out in the S_INACTIVE state. The decoder_start signal, an 

input from the major FSM, indicates that the Edge Detector is done and the Note Decoder 

can start. When this signal is asserted, the minor FSM transitions to the S_STAFF state. 

When the staff_done signal is asserted by the Staff Finder, the minor FSM transitions to 

the S_PATTERN state. Similarly, when the pattern_done signal is asserted by the Pattern 

Matcher, the minor FSM switches back to the S_STAFF state. 

Eventually, the Staff Finder will reach the bottom of the page and assert the 

last_staff_done signal, indicating that all staves have been found. When this signal is 

asserted, the minor FSM goes back to the S_INACTIVE state and asserts the 

decoder_done signal. Note that there will be no notes between the bottom of the last staff 

and the bottom of the page, so it is not necessary to go to the S_PATTERN state when 

last_staff_done is asserted. 

When the Note Decoder is done and the user presses the Play button, the 

playback_start input (from the major FSM) is asserted. This signal tells the Frequency 

Finder to start sending frequency data to the Audio Processor. Since the Frequency 

Finder does not read from the ZBT, the minor FSM does not need to change state. 

 

4a. Staff Finder 
 

 The Staff Finder looks through the image, determines the location of the top and 

bottom lines of each staff, and sends those values to the Pattern Matcher. It does this by 

scanning each row of the image, looking for edge pixels. An edge pixel is defined as a 

pixel with value greater than 0 but less than 255 (since 255, the maximum value, denotes 

the first or last row or column on the page). If the Staff Finder finds more than 300 edge 

pixels in a row, it counts that row as a staff line (see figure).  

The Staff Finder receives a staff_start signal from the Note Decoder, which tells 

the Staff Finder to start and sets its active bit to 1. The top_found bit indicates whether 

the top of the current staff has been found yet. This bit is initialized to 0 on reset and is 



set to 1 when the first staff line is found. When the next staff line is found, the top_found 

bit will be 1. Thus the line represents the bottom of the staff and the top_found bit is set 

back to 0.  

Additionally, since the boundaries of the staff have been found, the Staff Finder 

passes control to the Pattern Matcher by setting its active bit to 0 and asserting the 

staff_done signal, which is sent to the minor FSM in the Note Decoder. The Staff Finder 

saves the values of the top and bottom signals as well as the values for old_hpixel and 

old_vpixel. When the Pattern Matcher finishes a staff and the Staff Finder starts again, it 

starts 16 pixels below the bottom of the previous staff (since some staff lines may be 

more than one pixel wide). 

 

 
Figure 6: The Staff Finder finds the top of the staff. The row has 453 

edge pixels in it. 
 

 

4b. Interfacing with the ZBT 
 

The Staff Finder and Pattern Matcher use the old_hpixel, old_vpixel, and 

data_valid signals to deal with the additional one cycle of latency in the ZBT RAM. 

When going across a row, values can be read out of the ZBT every clock cycle if one 

accounts for the latency. The modules do this by storing the previous pixel addresses in 

the old_hpixel and old_vpixel registers. Because of the latency, the data that will come 

out on the next clock cycle corresponds to the old_hpixel and old_vpixel addresses, not 

the current addresses. Thus the tests for end conditions use only old_hpixel and 

old_vpixel. 

However, when switching to a new row (or column), the first data value that 

comes out after the switch may not be meaningful. The value of the last pixel in a row 

often helps determine which row or column the Staff Finder or Pattern Matcher goes to 

next (this is especially true in the Pattern Matcher). However, since the addresses must 

always be one cycle ahead of the data, the data for the last pixel in a row will not come 

out until the next address has been clocked in. This next address will not be the beginning 

of the next row or column the Staff Finder or Pattern Matcher wants to scan, resulting in 

the next data value being invalid. Therefore, whenever the Staff Finder or Pattern 

Matcher finishes a row, the data_valid signal is deasserted for one cycle. 

We realize that the optimal solution to this problem would be to determine the 

most probable next address and deassert the data_valid signal only if the most probable 

path is not taken. However, we did not have time to make this optimization. The Staff 

Finder and Pattern Matcher simply go one pixel past the end of each row and column. 

 

 



4c. Pattern matcher 
 

 The Pattern Matcher takes in the top and bottom lines of a staff and determines 

the sequence of notes and other features (stems, flags, barlines) on that staff. After edge 

detection without non-maximal suppression, notes and other features show up as blobs of 

nonzero values. The Pattern Matcher looks for rectangular blobs of mostly nonzero 

values. Based on the height and width of each blob, the Pattern Matcher determines if the 

feature is a note, stem, flag, or barline.   

 The operation of the Pattern Matcher is governed by a 7-state FSM. Each state 

represents one stage of the pattern-matching operation. The states are as follows: 

 
Figure 7: Pattern Matcher FSM state diagram 

 
 

 The INACTIVE state indicates that the Pattern Matcher is not running. The 

module starts in this state. When the pattern_start input is received from the Note 

Decoder’s minor FSM, the Pattern Matcher transitions to the NO_FEATURE state. 

 The NO_FEATURE state represents the start of the Pattern Matcher process and 

indicates that the module is looking for the possible start of a feature. In this state, the 

Pattern Matcher proceeds vertically, column by column, so that the overall movement 

down the staff is horizontal. When a nonzero pixel is found that does not overlap with a 

previous feature, the Pattern Matcher transitions to the H_BOUND state. This nonzero 

pixel represents the possible start of a rectangular blob. On the transition to H_BOUND, 

the registers h_start and v_start are set to the pixel addresses of this start pixel. Also, the 

registers feature_height and feature_width are set to 0. 



 The H_BOUND state determines the width of the rectangular blob that starts at 

(h_start, v_start). The Pattern Matcher proceeds horizontally from the start pixel, 

incrementing feature_width for every nonzero pixel it finds. When it finds three 

consecutive zeroes (indicated by the value of stop_count), it stops. If feature_width is 

greater than 3, the Pattern Matcher transitions to the BACKTRACK state and returns to 

the start pixel. Otherwise, it assumes this has insufficient width to be a real feature. It 

transitions to the NO_FEATURE state and returns to one below the start pixel. In 

addition, if feature_width exceeds 47 at any point, the Pattern Matcher assumes it is on a 

staff line and transitions to the NO_FEATURE state. 

 The BACKTRACK state is like the H_BOUND state, except the Pattern Matcher 

proceeds horizontally backwards from the start pixel. The feature_width register is 

incremented for every nonzero pixel found. The procession stops when two consecutive 

zeroes are found, at which point the Pattern Matcher returns to the start pixel and 

transitions to the V_BOUND state. The BACKTRACK state is necessary because of the 

overlap between flags and stems. Since the start pixel cannot overlap with a previous 

feature, the start pixel for flags will be somewhere in the middle of the flag. The 

BACKTRACK state thus is necessary to determine the true width of the flag. 

 The V_BOUND state determines the height of the rectangular blob. In this state 

the Pattern Matcher proceeds vertically, incrementing feature_height for every nonzero 

pixel and stopping when two consecutive zeroes are found. At this point, if the feature 

width and height are in acceptable ranges for a note head, a stem, or a flag, the Pattern 

Matcher transitions to the COUNTING state. Otherwise, it transitions to the 

NO_FEATURE state. Also, if feature_height exceeds 31 or the pixel address goes too far 

past the bottom of the staff, the Pattern Matcher assumes it is a barline and the 

feature_found signal is asserted. 

 The COUNTING state counts the number of zero pixels within the boundaries of 

the rectangular blob determined by the start pixel, the height, and the width. If at any 

point the number of zero pixels exceeds the threshold, the Pattern Matcher determines 

that the blob is not a valid feature and returns to the NO_FEATURE state. If it reaches 

the end of the blob, the feature_found signal is asserted. The feature type is determined 

by the length and width of the feature. A note head corresponds to feature type 1. 

 When a feature is found, the boundaries of the feature are stored in registers to 

check for future overlaps. If the feature is not a note head, the Pattern Matcher transitions 

to the NO_FEATURE state and resumes scanning at the pixel just below the bottom-left 

corner of the feature. If the feature is a note head, the Pattern Matcher first transitions to 

the RAW_IMAGE state before going back to NO_FEATURE. The RAW_IMAGE state 

is just like the COUNTING state, except the Pattern Matcher is looking at the original 

image instead of the edge-detected image. The purpose of this is to determine whether the 

note is filled in or not, which is essential in determining the type of note. 

 The Pattern Matcher uses a FIFO to store the notes (Figure). When a note head is 

found, the boundaries of the note head are stored in the head_h_start, head_v_start, 

head_h_end, and head_v_end registers. The position of the note is determined by the 

relative position of head_v_start, head_v_end, and the top and bottom staff lines. The 

duration of the note is determined by the proximity of stems (indicating that the note is 

not a whole note) and flags (indicating eighth notes) as well as whether the note is filled 

in. The duration is stored as the number of 16
th
 notes equivalent to the note (for example, 



a quarter note’s duration is 4). When the next note head is found, the duration and 

position of the current note (the one whose boundaries are stored in the four registers) are 

put into the FIFO. 

 

 
Figure 8: The Pattern Matcher finds a note. The fifo_we signal is 

asserted and the position is calculated from the four boundary values. 
 

 

4d. Frequency Finder 
  

 The Frequency Finder reads the position data out of the FIFO and determines the 

note’s frequency using a lookup table. The lookup table has three addresses for each 

named note: one for sharp, one for natural, and one for flat. This has some redundancy 

but takes care of the cases where the sharp of one note and flat of the next note are not the 

same (i.e. between E and F). The frequency finder uses the key signature input from the 

user to determine whether the note should be sharped or flatted.  

 Since the Audio Processor has a fixed output rate of 48 kHz, the lookup table does 

not output the actual frequency of the sine wave corresponding to the note. Instead, it 

outputs two values: freqratio and num_samples. Because of the sampling rate, the Audio 

Processor needs to generate a sine wave with frequency w/48000, where w is the 

frequency of the note. Thus the value of freqratio is w/48000, shifted left by 16 bits in 

order to represent decimal values with adequate precision. Also, the Audio Processor 

works by generating the samples in a loop corresponding to one period of the sine wave, 

with the number of samples in the loop determining the period. Thus the Audio Processor 

also needs the period of the sine wave, determined by 48000/w. This is the value of 

num_samples. 

 The playback_start signal tells the Frequency Finder when to start reading values 

out of the FIFO. The note_done input from the Audio Processor indicates when the 

Audio Processor is done reading the current note. When note_done is asserted, the 

Frequency Finder reads a new value out of the FIFO. 

 

5. Audio Processor 

 The Audio Processor generates sampled sine waves corresponding to the 

frequency of each note. It does this by sending samples to the AC97 codec in a loop that 

represents one period of the sine wave. Because of the 48 kHz sampling rate, as 

mentioned above, this requires calculating sin(2 n*w/48000) for all values of n between 

0 and 48000/w. The original intent of this project was to be able to read both treble and 



bass clef. This required a range of about 40 frequencies, ranging from about 87 to over 

600 Hz. Since the 87 Hz sine wave requires 550 samples, and the samples are 20-bit 

values, storing the sample values in a lookup table would require at least 16 BRAM’s. To 

avoid using this much space, we used a CORDIC core to calculate the sample values. 

 To keep track of the samples, the Audio Processor uses the register sample_count, 

which increments in a loop from 0 to num_samples. Immediately after each ready pulse 

from the AC97, it begins calculating the next sample value. It multiplies freqratio by 

sample_count and then by the constant TWOPI_SH9, which is 2  shifted left by 9 bits. 

(We realized, too late, that the TWOPI_SH9 constant could have been incorporated into 

the lookup table to save a multiplication). Since freqratio has a 16-bit shift and 

TWOPI_SH9 has a 9-bit shift, this product is equal to 2
25 

times the desired argument of 

the sine function. Since the CORDIC core takes inputs in 2QN form (for a 10-bit input, 

this basically means the input needs to be shifted 13 bits to the left), the Audio Processor 

throws out the high-order 12 bits of the product. Finally, the angle is converted to an 

equivalent angle in the range (- , ) and fed into the CORDIC.  

 To control the duration of each note, the Audio Processor uses the register 

count_16
th

_note, which increments on every pulse of the user-controlled tempo clock. 

(The tempo clock is simply a clock divider, with the divisor controlled by switches on the 

labkit). When count_16
th

_note reaches the value of the duration, the note_done signal is 

asserted and count_16
th

_note is reset to zero.  

 

6. Serial Data Loader 

 The Serial Data Loader was the one module that we could not manage to get 

working. It was an afterthought from the beginning, since the point of our project was the 

image processing and audio processing. We assumed that there would be some easy way 

to load our data onto the ZBT when the time came. When we couldn’t find a serial/ZBT 

interface on the 6.111 website, we tried to build one ourselves, using a terminal emulator 

to load a text file onto the ZBT. But we quickly ran into a problem. 

 In order to transmit 8-bit grayscale values, we needed the full range of values 

from 0 to 255. But the terminal emulator would only accept valid ASCII characters, 

represented by values from 32 to 126. We considered using several characters to 

represent one 8-bit value. Since the range of valid ASCII characters is less than 128 

values, we realized we needed at least three characters per 8-bit value. Additionally, we 

needed some way to represent values less than 32. The hack we came up with was to add 

three ASCII character values and then subtract 96, giving us a range from 0 to 282. We 

used a MATLAB script to generate an appropriate sequence of three ASCII characters for 

each grayscale value in the image. 

 After spending several days unsuccessfully testing this data loader, we finally 

realized the fundamental problem with it. We were trying to use an enable pulse to match 

the bitrate of the serial stream. However, because the serial data has no clock, we could 

never get it exactly synchronized. Bits were being shifted or skipped when the enable 

pulses lined up with transitions of the serial bitstream, resulting in huge chunks of invalid 

data.   

 Finally, we found a Verilog serial interface on the Internet that used a process of 

oversampling and recentering to solve the synchronicity problem. We built our data 



loader around this module, reading in three bytes at a time and computing the grayscale 

value by summing the three bytes and subtracting 96. However, we did not have time to 

test it extensively, since we had already spent about 40 more combined hours on it than 

we were planning to. When we were testing the note decoder, we discovered that the 

output from the ZBT was different from the actual pixel values in the image. But we had 

no time to fix it. 

 

7. Testing and Debugging 

 As was stated before, the greatest single testing procedure was checking the 

output of all the modules with the MATLAB implementation created in the design stages.  

All outputs could be check for accuracy, assuming correct inputs.  Generating the correct 

inputs was one of the most interesting testing challenges. 

 Initially, inputs to the edge detector filter module were manually entered in a 

simple test bench.  This allowed testing of the Gaussian convolution as long as more than 

13 pixel values were entered.  This could be compared against the convolution of a single 

row in MATLAB. 

 Before we could test the modules in simulation, we needed a way to simulate the 

ZBT. To do this, we wrote a simple module that introduced an additional clock cycle of 

latency to the memory reads and writes. We then simulated the ZBT with a BRAM, 

knowing that ModelSim could simulate an arbitrarily large memory. We copied the HDL 

functional module from one of our other memories and adjusted its parameters so that we 

would have a 1Mx8 memory. Since the Edge Detector and Note Decoder only worked 

with 8-bit values anyway, there was no point in making it 36 bits wide. We then used 

MATLAB to transform our image matrix into a vector of binary values, thus generating 

the memory initialization file for our simulated ZBT. 

 In later stages, the top-level edge detector module was designed and tested to 

ensure that it produced the correct values for the major FSM.  This simulation was unable 

to test the actual operation of the filters or magnitude module, but at least it was able to 

show that the pixel values were progressing correctly.  In the ideal case this module 

would also have been used to test the operation on the labkit with real data.  Due to errors 

in the serial module, however, this was not possible. 

 Because of the sheer amount of logic involved, the Note Decoder was the hardest 

module to debug, other than the Serial Data Loader. Even after we got it working in 

simulation, it took several long days to get it working on the labkit. Because we made 

significant use of initial statements in our simulation, it took awhile to make sure that 

values were getting initialized properly. Early on, we noticed a bug in the state transitions 

for the Pattern Matcher. However, a thorough analysis of the logic revealed nothing. 

Then we checked the warnings and saw a warning about a combinational loop that 

involved several of the signals that affected the Pattern Matcher’s state. After many hours 

of scanning the code and looking at schematics, we fixed the combinational loop. But the 

Pattern Matcher state transitions still only worked about a third of the time. Often, the 

Pattern Matcher would transition incorrectly to the inactive state and get stuck there. 

 Finally, we put a timing constraint into our UCF file. The constraint passed, but 

just barely. We decided to slow down the clock from 65mhz to 54mhz and then to 

27mhz. At 54mhz the Pattern Matcher state transitions worked half the time; at 27mhz 



the bug was fixed. It seemed that we were overclocking the Note Decoder. The logic did 

not have enough time to finish, leading to the invalid state transitions. 

 The Frequency Finder and Audio Processor were relatively easy to debug. Once 

we got them working in simulation, it was very easy to get them working on the labkit. 

 

 

8. Conclusion 

 Obviously, our biggest mistake was grossly underestimating the amount of time it 

would take to build the Serial Data Loader. We budgeted about a half a day; it ended up 

taking seven days and we still didn’t get it to work. We would have saved a lot of time if 

we had realized the synchronicity problem earlier in the process. 

 Also, it was very surprising how much trouble we had getting the Note Decoder 

to work on the labkit after we had it working in simulation. In the earlier 6.111 lab 

exercises, neither of us had any trouble once everything was simulating correctly. 

However it took several days to solve the timing issues in the Note Decoder. 

 Other than the data loader, however, we got our project to work. It was simply 

unfortunate that the Edge Detector and Note Decoder both depended on the data loader to 

generate valid output. 

 


