

Pen-Raised Quail Hunt
6.111 Final Project

Daniel Lopuch and Zachary Remscrim

December 13, 2006

Department of Electrical Engineering

and Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

Duck Hunt is among the most famous of the classic console games. This project

sought to recreate the Nintendo classic using the MIT 6.111 FPGA Labkit and a

video camera instead of the memorable Nintendo gun. To aim, the player wears a

glove with two different color regions which the video camera uses to track the

player’s in-game gun-sight and to shoot. Tracking is accomplished using video

processing, and the color regions that the image processing is sensitive to is

completely customizable by the user at run-time using the labkit’s buttons as inputs

and VFD display as feedback. The game engine renders a recreation of the classic

Duck Hunt playing field, but unlike the original, it is upsampled to be displayed on a

1024x768 XVGA display. The final implemented game met all given specifications

and proved to be a faithful recreation of the original classic except for certain

elements which added a socio-political commentary that expressed the views of the

authors on the current state of American politics.

Rev 1: Added Verilog Appendix

TABLE OF CONTENTS

List of Figures ... 5

List of Tables .. 5

Overview... 6

Overview... 6

System Inputs and Outputs ... 6

Video Decoding and Processing Overview .. 6

AI Overview.. 11

Game Module Overview... 11

Graphics Pipeline Overview ... 11

Project Description.. 12

Overview of Video Decoding and Processing Modules ... 12

Filter Configuration Module ... 15

RGB To HSV Converter... 19

NTSC to ZBT and Filtering .. 21

Filtering... 21

Centroid Calculation ... 21

Position Smoothening ... 21

Output Debouncing... 22

Game Module.. 22

AI Module... 23

Graphics Pipeline .. 24

Duck Module .. 25

Crosshair Module.. 25

Tree and Grass Modules ... 26

Background Module.. 26

Score Overlay Module .. 26

Round-Over Overlay Module ... 26

Title Screen Module.. 27

Round Timer Module.. 27

Testing and Debugging ... 27

Video Decoding and Processing ... 27

Game Engine Debugging.. 28

Conclusions... 29

APPENDIX

Appendix 1: Verilog Code .. 30

Base Labkit File .. 30

XVGA Signal Generator... 41

VRAM Display ... 41

Filter Limits Configuration ... 43

NTSC TO ZBT And Filtering... 55

RGB To HSV Color Converter... 66

Game Engine... 72

Graphics Pipeline .. 80

Background Sky.. 80

Duck.. 80

Tree and Grass .. 82

Crosshair ... 83

AI .. 84

Round Timer ... 88

Score Overlay.. 89

Round Over Overlay... 92

Title Screen ... 93

LIST OF FIGURES

Figure 1: Summary of System Inputs and Outputs... 7

Figure 2: Summary of Video Decoding and Processing Blocks Logic 7

Figure 3a: 3D Conical Representation of the HSV Color Space .. 9

Figure 3b: 2D Representation of the HSV Color Space ... 9

Figure 4: A Color Filter Adjusted To Pass “Blue” Pixels .. 11

Figure 5: Overview of Video Decoding and Processing Verilog Modules 14

Figure 6: Block Diagram of Filter Configuration Module.. 16

Figure 7: Slow-Fast FSM State Transition Diagram .. 17

 Figure 9: RGB to HSV Color Converter.. 20

LIST OF TABLES

Table 1: VFD Menu Options for Filter Configuration Parameter Selection 15

OVERVIEW

System Inputs and Outputs

The primary input to the game which moves the player’s gun sight is a glove with

two different color regions. The player moves his hand in front of a video camera,

and the video camera tracks the glove’s color regions to create the player’s in-game

coordinates. Although the game is played at a low resolution to maintain the original

Nintendo look, it is rendered as a 1024x768 XVGA signal. Push-buttons are used to

select between game-play and camera calibration.

The player can use switches and another set of buttons on the labkit to customize the

input camera filters to be sensitive to any two color regions he desires. This

customization allows the user to fine-tune the default color filter settings to suit his

particular lighting conditions and camera. This also allows the player to use any

input device he can conceive of that has two distinct color regions; the ambitious

enthusiast is encouraged to tweak the system for maximum accuracy. Filter settings

are displayed on the labkit’s VFD display. The filtered video signal is displayed

onto the XVGA output through an in-game calibration screen.

Figure 1 is a summary of the system’s input and output.

Video Decoding and Processing Overview

The primary objective of the Video Decoding and Processing blocks is to generate

player coordinates and a fire control signal for the game engine. This is done by

looking at the input NTSC video stream from the camera and filtering for regions of

user-defined color. The coordinates of pixels that pass the filters are added to a

center-of-mass calculator which simply averages all passing pixels’ coordinates.

These center-of-mass averages, updated once per NTSC frame, are fed into the game

engine as the player’s coordinates.

The secondary objective of the Video Decoding and Processing blocks is to display

the results of the color filtering and the center-of-mass calculation to the user. This

proved to be one of the initial significant design challenges. The main problem

associated with displaying the video feed to the user is that the user’s display is a

XVGA signal clocked at 60mhz while the video feed operates on a 27mhz clock.

Because these two different clock rates are not simple multiples of each other, they

had to be operated asynchronously. A ZBT RAM module was used as a frame

buffer to solve this problem, but because the ZBT module is a single-port memory

chip, a multiplexing scheme had to be designed to allow proper operation. A

summary of the Video Decoding and Processing blocks is shown in Figure 2.

Figure 1: Summary of System Inputs and Outputs

Figure 2: Summary of Video Decoding and Processing Blocks Logic

VIDEO DECODING

AND PROCESSING

GAME ENGINE

DISPLAY

CONTROLLER

VIDEO

CAMERA

LABKIT

BUTTONS

LABKIT

SWITCHES

LABKIT

BUTTONS

XVGA DISPLAY

VFD DISPLAY
NTSC

PLAYER COORDINATES

GAME VIDEO

CALIBRATION MODE

(Filtered Input Video)

VIDEO

FILTER SETTINGS

FPGA

Filtering Overview

The system actually needs to look for two separate regions of color: one

corresponding to a “track” hand gesture and one corresponding to a “fire” hand

gesture. For example, in the project demonstration, a glove was provided that had a

yellow-colored square on the part of the hand that was visible to the camera when the

hand was open; this region corresponded to the game engine merely tracking the

user’s hand and moving his gun-sight appropriately. When the user closed his hand

into a fist, a blue-colored square was attached to the part of the hand that was visible

to the camera; this region corresponded to the game engine shooting at the flying

duck. The Video Decoding and Processing blocks actually contain two color-region

filters which can be independently adjusted to be sensitive to different regions of

color. The filter which had the most passing pixels (and therefore tells the logic

which coordinates to send to the game engine and whether or not the user is firing or

just tracking) is representing using the WINNING_FILTER line.

The goal of the color filtering is to be able to specify regions of colors that are of

interest to the user; if the region on the player’s glove corresponding to tracking is a

yellow-colored square, we want to be able to tweak the color filter to be sensitive

only to regions of yellow. We are not interested in the intensity of the yellow since

this can change due to different lighting conditions or camera. What is of interest to

us is to specify the filter to be sensitive to all shades of “yellow.” The problem now

at hand is which color-space would give the solution to this problem the most

intuitive customization. Three color-spaces were considered: RGB, YCrCb, and

HSV.

RGB color space is defined as the “intensity” of the red, green, and blue elements of

a pixel. This makes the RGB color space poorly-suited to easily select a region of a

particular “color”; to ignore intensity and concentrate on the desired color, one must

look at the differential across the three channels. The RGB color space was quickly

disregarded as a potential color space to do the filtering work.

The next color space considered was the camera’s native YCrCb color space. This

color space was attractive because intensity is defined in the Y (or luminance)

channel and “color” is defined using the Cr and Cb (or Chrominance-red and

Chrominance-blue, respectively) channels. If intensity is not the main parameter, it

could easily be ignored. However, specifying a particular “color” is initially non-

intuitive because the “color” is a function of two variables – Cr and Cb. One of the

design objectives of the project was to allow very simple and intuitive control over

the color region of interest, and so this color space was disregarded on the grounds of

it being too difficult to specify a particular color region.

The final color space that was considered was the HSV, or Hue-Saturation-Value

color space. In HSV, the value of the Hue channel specifies a color, the value of the

Saturation channel specifies how much “white” there is in the pixel, and the value of

the Value channel specifies how much “black” there is in the pixel (equal Saturation

and Value in a color shifts the color towards neutral-gray). Thus, specifying a region

of “color” can be easily accomplished by specifying a range of Hues and ignoring

the Saturation and Value channels. A visualization of the HSV color space is shown

in Figures 3a and 3b.

Figure 3a: 3D Conical Representation of the HSV Color Space

Graphic Source: Wikipedia (http://en.wikipedia.org/wiki/HSV_color_space)

Figure 3b: 2D Representation of the HSV Color Space

Due to the simplicity of specifying a particular “color” in the HSV color space (a

color is the function of just one parameter instead of two, as in YCrCb), it was

decided that filtering would be done with a transformation into the HSV coordinate

space.

Filtering was originally implemented by just specifying a low cut-off for Hue and a

high cut-off for Hue. However, during testing, it was discovered that whiter pixels

tended to transform into the full spectrum of hues; a pure white pixel technically has

an undefined hue, but as soon as a little amount of noise is added, the Hue value of

the HSV transformation can easily become almost any hue. In other words, it was

found that when a white-ish region was picked up by the camera, it tended to

transform into some pixels in every hue-pass region, creating noise for the center-of-

mass calculator. It was decided that a way to get rid of this noise was to filter out

low saturation pixels, in essence adding a Saturation-Pass region to the Hue-Pass

region.

Thus, each of the system’s Color Filters is in fact a customizable Hue-Pass Filter and

a customizable Sat-Pass Filter. For a pixel to pass one of the Color Filters, it must

pass both the Hue-Pass Filter (if enabled) AND the Saturation-Pass Filter (if

enabled). It was found that near-black pixels did not create a significant amount of

the same problem, and so no filtering is done on the Value channel (although future

revisions of the project should include Value-Pass filter option). Each color filter is

therefore parameterized by four values: a Hue-Pass Low Mark, a Hue-Pass High

Mark, a Saturation-Pass Low Mark, and a Saturation-Pass High Mark. The system

has two independent color filters, so for the user to be able to completely customize

the filters, the Filter Configuration module must be capable of adjusting eight

independent parameters. Figure 4 is a visualization of one of the system’s two color

filters, adjusted to pass “blue” pixels.

Figure 4: A Color Filter Adjusted To Pass “Blue” Pixels

AI Overview

The AI Module is responsible for controlling all actions of the AI player. This

module receives state information from the Game Module, such as the duck’s

position and heading, and generates a decision on what action to take next. This

decision will include both considering where to move its crosshair as well as whether

or not to fire. The AI has multiple difficulty settings, which affect its behavior. On

higher difficulty settings, it tracks the duck extremely well and fires accurately,

while on lower difficulty settings, it tracks the duck poorly and misses frequently.

This is implemented by adding a small error term (the magnitude of which varies by

difficulty) to the AI’s perception of the duck’s current and future location. By

making the AI purposely miss and track without perfect precision, a more realistic,

human-like opponent is simulated.

Game Module Overview

The Game Module is responsible for storing and updating all game state information,

enforcing all game rules, and providing display data to the display controller. The

game state, which includes position and status of all game objects, is updated once

per frame of video. For example, at the beginning of every new frame of video, the

duck is moved to a new position, any attempted shots are processed, etc. Game rules

include game time limit, shots per round, scoring, etc. This module does not generate

the display data internally, but rather sends state information to the various graphics

modules, which return appropriate graphics information.

Graphics Pipeline Overview

The graphics pipeline is not a single module, but rather a collection of related

graphics modules organized into a pipeline. Each module stores the bitmaps related

to a single game object, for example the duck or a crosshair. The Game Module then

sends an hCount, vCount pair to each module, which represents the coordinate of a

pixel on screen. If a given module represents an object which has a pixel at that

location, it will output the RGB value of that pixel, and assert a hasPixel signal

which indicates that it has color information; otherwise, it will output nothing, and

not assert hasPixel. All modules compute the RGB color value of a given pixel in

parallel, and the module highest in the pipeline that asserts hasPixel will have its

color information displayed on screen, for the pixel in question.

PROJECT DESCRIPTION

Overview of Video Decoding and Processing Modules

Authorship: Daniel Lopuch

The overall architecture of the Video Decoding and Processing Modules is based

loosely off of the “ZBT RAM Example” sample code from the 6.111 Fall 2005

website. Although this sample file proved to be a good reference for code on

decoding the raw NTSC data stream into YCrCb pixels and for interfacing with the

ZBT memory, the shortcomings of the sample file were made painfully obvious

when the jump from black and white to color was made. An overview of this

project’s video decoding and processing modules is illustrated in Figure 5.

The main issues that had to be resolved involved multiplexing the writing and

reading of the pixel data. The NTSC decoder (which generates the data to be

written) operates at 27mhz while the XVGA display (which reads the data) operates

at 60mhz. These different clock rates result in asynchronous read and write requests.

The “ZBT RAM Example” source took advantage of the fact that when interested

only at the black and white data, it is possible to store 4 pixels in one word of ZBT

RAM. The XVGA display would read from the ZBT RAM once every four pixels

and let the NTSC-to-ZBT module write during the off-time.

When color information is introduced, it is no longer possible to store four pixels

in one word of ZBT RAM. ZBT RAM words are 36-bits long. It is possible to store

two color pixels per ZBT RAM word if one decides to truncate the two least

significant bits from the 8-bit RGB channels, but this approach was not considered

because maximum precision was desired for the color filtering and this approach

would loose some color depth. It was therefore decided that the system would store

one pixel per word, and the problem became how to allow the NTSC processing

module to write to the frame buffer when the XVGA display was reading from it

during every new pixel.

The solution to this problem was developed when the realization was made that

the XVGA display of the NTSC video stream is for the player’s feedback only and

the true accuracy of the picture really does not matter as long as the player doesn’t

perceive any imperfections. It was decided to allow the NTSC processing module to

write to the ZBT buffer whenever it had new data. Whenever it did not have any

new data, it would allow the display module to read whatever pixels it needed.

During those pixels where the NTSC processing module wrote new data, the display

module would read out junk data because it was overwritten by a write-request. This

resulted in “snow” noise that would drift up along the displayed XVGA signal.

The “snow” was fixed by using a simple interpolator. The junk pixels could be

predicted by delaying the write-enable line from the NTSC processor. Whenever the

display module would read a junk pixel, it would simply override that pixel with the

previous clock cycle’s pixel. This is accomplished with the “Frame Buffer Write-

Conflict Interpolator” in Figure 5. This proved to be a very effective solution –

although the displayed picture was technically not the exact NTSC picture, the

interpolation was on such a fine scale that the error was unperceivable.

Another significant difference between the “ZBT RAM Example” source and the

developed system was in the number of pixels stored in RAM. Because the example

source used four pixels per word, it was able to store the entire 1024x768 XVGA

frame in RAM; the display module simply read off and displayed each pixel.

However, the 512k ZBT RAM chip is not big enough to do the same storing one

pixel per word. Instead, only the 720x480 NTSC frame is stored in the RAM, and

any XVGA pixels outside of this range are simply masked to black after the display

module receives the pixel from the RAM (see “NTSC Mask” in Figure 5).

After the pixel information is retrieved from RAM and passes through the Frame

Buffer Write-Conflict Interpolator and the NTSC Mask, it is passed to a Filter

Display Control module. This module has two purposes. The first is to read the

center-of-mass averages from the Filtering module and make a visualization of them

across the entire NTSC frame, and the second purpose is to determine which center-

of-mass should be used by the game engine and to scale it to the appropriate

coordinate space. The center-of-mass visualization is just vertical and horizontal

lines that form crosshairs onto the center-of-masses of each of the two color filters in

the NTSC video frame. The crosshairs change color depending on which color filter

passed the most amount of pixels (logically corresponding to which of the two

center-of-mass averages the game engine should use as the player coordinates and

whether the game should interpret the position as a tracking position or as a firing

position). The filter that has the most passing pixels is represented using the

winningFilter control line. Finally, the Filter Display and Control scales the winning

average from the 720x480 coordinate space into the 1024x768 coordinate space used

by the Game Engine and gives these coordinates to the Game Engine.

The VRAM Display Module simply uses hcount and vcount to generate an

address with appropriate NTSC clipping and then passes the RAM data onto the

other logic, and the Filter Display and Control is simply a collection of

combinational logic that overrides the current pixel with an appropriately colored

line if the pixel lines on a centroid’s x or y coordinate. Because the simplicity of

these modules, they will not be discussed in any detail.

NTSC DECODER NTSC TO ZBT AND FILTERING

VRAM DISPLAY

XVGA

SIGNAL

GENERATOR

ZBT CONTROLLER

YCrCb

FVH

data_valid

vcount

0 1

vram_read_data

vram_

address

vram_

write_

data

vram_addr1

0 1

(test bars

address)

ntsc_

addr

write_

addr

0 1

(test bars

data)

ntsc_

data

vram_we

testBars

Switch

testBars

Switch

ntsc_we

2 CYCLE

DELAY

vr_pixel

(RGB)

0 1

D Q

CY7C1370C

ZBT SRAM

Frame Buffer Write-

Conflict Interpolator

0 1

24'b0

(hcount < 720 &&

vcount < 480) ?

NTSC Mask

FILTER

DISPLAY &

CONTROL

DISPLAY

CONTROLLER

calibration_mode_video_data

GAME ENGINEx1024

y1024

hcount
vcount

hcount_invert

2 CYCLE

DELAY

filter

Winner

1

1

filter

Winner

filter

Avgs

2

2

filter

Avgs

ADV7125

game_video_data

2 CYCLE

DELAY

sync and

blanking

sync and blanking

Test Bars

Override

ADV7185 tv_in_ycrcb

hcount

hcount_invert

LABKIT

BUTTONS LABKIT

SWITCHES

FILTER

CONFIGURATION

VFD

DISPLAY

VFD STRING

DISPLAY

filter

Enables

filter1_hue_lowHigh
filter1_sat_lowHigh
filter2_hue_lowHigh
filter2_sat_lowHigh

Figure 5: Overview of Video Decoding and Processing Verilog Modules

Filter Configuration Module

Authorship: Daniel Lopuch

As described in the Filtering Overview section, each of the system’s two color

filters must have an adjustable Hue-Pass Low Mark, Hue-Pass High Mark,

Saturation-Pass Low Mark, and Saturation Pass High Mark. These values are

modified by the user on the fly using the Filter Configuration Module. The Filter

Configuration Module uses the four directional push-buttons on the labkit as inputs

and the labkit’s VFD display as a feedback to the user.

Selection of the particular parameter of interest is accomplished using a menu-

system on the VFD display. Each menu item on the VFD display is one of the two

color filter’s hue or saturation low and high marks. The VFD display can show one

line of 16 characters, and the possible menu items are listed in Table 1:

Table 1: VFD Menu Options for Filter Configuration Parameter

Selection

VFD

Character #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Item 1 h 1 l o w x x x h i x x x

Item 2 s 1 l o w x x x h i x x x

Item 3 h 2 l o w x x x h i x x x

Item 4 s 2 l o w x x x h i x x x

Each Menu Item will from here on be referred to as the Configuration Mode.

Each item (Mode, Low-Mark, High-Mark) will be from here on referred to as the

Configuration Object. Objects are selected by using the left and right buttons to

move left or right. As a new Object is selected, its display changes from lower-case

to upper-case and it begins blinking. The Object is changed by selecting it and

pressing the up or down buttons. Because the range of the selection values is

significant but precision is required in adjust the value, it is desirable to be able to go

through the possible values both quickly and slowly. This is accomplished using a

Slow/Fast FSM. When the FSM detects the user has pressed and holds a button, it

initially increments or decrements the value by one at a slow interval. If the user

keeps holding the button, it begins to increment or decrement the value rather

quickly. Figure 6 shows a block diagram of the individual modules in the Filter

Configuration Module, and Figure 7 is a state-transition diagram of the Slow/Fast

FSM.

Figure 6: Block Diagram of Filter Configuration Module

Figure 7: Slow-Fast FSM State Transition Diagram

Note: Transitions occur on the rising edge of each clock cycle. Shaded

blocks are states. Non-shaded blocks are combinational logic pieces

that determine the particular transition path.

The value of each mark is stored in the appropriate Mark Control Module. Each

Mark Control Module has increment and decrement inputs. For every clock cycle in

which its increment and decrement inputs are high, it increments or decrements its

stored value appropriately. The Mark Control Verilog modules can be parameterized

to use any minimum or maximum limits for their values, and they can be

parameterized to use any value as their default start values. Thus, even though the

Hue Marks go from 0 to 360 and the Saturation Marks go from 0 to 100, the same

Verilog module was used but instantiated with different parameters.

Because the end-user experience was a priority for the filter customization, it was

important that the VFD display show the filter parameters in common base-10 rather

than a radix that only computer programmers would be familiar with. To generate

the appropriate digits to be displayed, a divider module was used with a pipelined

dividend/divisor multiplexer scheme. Figure 8 briefly illustrates the scheme used.

MODE and

OBJECT

highMark

MODE and

OBJECT

lowMark DIVIDER
dividend

divisor

100

10

100

10

Q D

lastRemainder

low_ones

high_ones

low_tens

high_tens

low_hundreds

high_hundreds

+ 48 for

Digit -> ASCII Shift
remainder

+ 48 for

Digit -> ASCII Shift
quotient

Q D

EN

Q D

EN

Q D

EN

Q D

EN

Q D

EN

Q D

EN

count == 3

count == 1

count == 3

count == 1

count == 0

count == 2

12-cycle pipeline

STRING LOGIC

count

count

Figure 8: Pipelined Base-10 Digit Generator

NOTE: count increments on every clock cycle. highMark and

lowMark are the current low and high marks of interest.

RGB To HSV Converter

Authorship: Daniel Lopuch

An RGB to HSV transformation is done using the following formulas:

Image Source: Wikipedia (http://en.wikipedia.org/wiki/HSV_color_space)

Lacking a generalized ALU, each of the embedded operations were performed

using an independent math module. In total, 4 adder/subtractors, 2 multipliers, and 2

dividers were used along with many registers that generated the appropriate

synchronization delays to make a pipelined RGB to HSV Converter. Figure 9 shows

a block-diagram of the implementation used. Note that because it was deemed

unnecessary to add Value-checking to the filters, RGB to Value conversion is not

implemented.

The total latency of the converter is 24 clock cycles. However, the converter is

pipelined, so the throughput is still one conversion per clock cycle. The Filtering

Module works by checking to see if the HSV values are within specified filter

ranges, and if they are, it simply passes the RGB values through to the display

pipeline. However, because the HSV results are delayed by 24 clock cycles, a 24-

cycle pipelined delay was added to the RGB line to synchronize it with the results

from the RGB to HSV transformation.

L
a
te
n
c
y
: 1

L
a
te
n
c
y
: 2

L
a
te
n
c
y
: 1

9
L
a
te
n
c
y
: 1

L
a
te
n
c
y
: 1

M
IN
/M

A
X

G
E
N
E
R
A
T
O
R

D
E
L
A
Y

D
E
N
O
M
IN

A
T
O
R

G
E
N
E
R
A
T
O
R

(s
ig
n
e
d
 s
u
b
tra

c
to
r)

N
U
M
E
R
A
T
O
R

G
E
N
E
R
A
T
O
R

(s
ig
n
e
d
 s
u
b
tra

c
to
r)

D
E
L
A
Y

D
E
L
A
Y

c
o
n
s
ta
n
t *6

0

M
U
L
T
IP
L
IE
R

D
IV
ID
E
R

D
E
L
A
Y

D
E
L
A
Y

A
D
D
E
R

D
E
L
A
Y

0

1
2
0

2
4
0

3
6
0

0123

9
'b
0

=
=
 M

IN
e
q
M
A
X
 ?

c
o
n
s
ta
n
t *1

0
0

M
U
L
T
IP
L
IE
R

D
IV
ID
E
R

c
o
n
s
ta
n
t 1

0
0
-x

S
U
B
T
R
A
C
T
O
R

S
Y
N
C
H
R
O
N
IZ

IN
G
 D

E
L
A
Y

L
a
te
n
c
y
: 2

L
a
te
n
c
y
: 1

7
L
a
te
n
c
y
: 1

L
a
te
n
c
y
: 3

D
E
L
A
Y

01

1

1

Figure 9: RGB to HSV Color Converter

NTSC to ZBT and Filtering

Authorship: Daniel Lopuch

The NTSC to ZBT and Filtering module is based initially off of the “ZBT RAM

Example” from the 2005 website. The example code does the conversion from

YCrCb to RGB, generates the appropriate address, and synchronizes the RGB with

the XVGA clock, and generates the appropriate write-enable signal when the new

data is ready.

Some minor changes were done in the address generation to fit the new 1-pixel-

per-word scheme. In addition, the appropriate delays were added to the RGB,

address, and write-enable lines to synchronize them with the added HSV converter.

Filtering

In addition to the Hue-Pass and Saturation-Pass filters, a noise filter was added.

During testing it was found that many small regions were picked up by the camera

that happened to be inside the defined Color-Pass region. A noise filter was added

that checks whether or not the last seven pixels passed the Color-Pass filters. If they

did, and if the current pixel did as well, the current pixel passed the noise filter. This

was implemented using a simple shift register for the Color-Pass result. When the

color filters were tuned properly, the noise filter was effective at eliminating a lot of

the noise without eliminating much of the regions of interest.

The filter-pass logic was wired such that each of the hue-pass, saturation-pass,

and noise filters could be turned on or off using the labkit switches.

Centroid Calculation

The centroid, or center of mass, of each of the two filters was calculated by

simply adding the x- and y-coordinates of each pixel that passed the respective filter

to a separate sum. A counter kept track of how many pixels passed, and when the

frame was over, and averager calculated the average. The delay in calculating the

average was over 25 cycles at 60mhz, but because the value was updated only once

per NTSC frame and because it was not really important when the average would

update itself, this was not a problem.

The count of passing pixels was used later to determine which filter had the most

passing pixels, and so which filter should be used to calculate the player’s

coordinates and determine whether the player is shooting or not.

Position Smoothening

During testing, it was observed that the centroids would jitter very quickly from

frame to frame. A smoothening averager was added to address this problem. The

smoothener simply took the average of the current centroid position versus the

average of the previous frame’s centroid position. Mathematically, this results in an

infinite average of past centroids, but each location further back in time is weighted

less and less.

Output Debouncing

In testing, it was observed that the reported winning filter would sometimes

quickly switch when the player’s gesture did not change. The cause of this was

determined to be slight increases of noise for one filter would temporarly push its

filter’s passing count above the other filter’s passing count. A debouncer that

sampled once per NTSC frame was added to debounce the winning filter output and

eliminate false-positives.

Game Module

Authorship: Zachary Remscrim

The purpose of this module is to store the current state of the game, update the

state of the game based on the current state and current inputs, and provide data to

the display controller. The game state includes: the duck’s position and heading,

player’s score, AI’s score, number of shots the player has remaining this round, etc.

The game state is updated once per frame of video (there are 60 frames of video per

second). This is necessary since, if the state of the game were to change in the

middle of a frame, part of the displayed frame would correspond to the old state, and

the other part would correspond to the new state. This could, possibly, create a

completely incorrect displayed image. For example, the duck could appear in two

places at one time. To avoid this, state updates occur once per frame of video and are

synchronized to the transition between frames of video. This is done by observing

the vertical sync signal from the XVGA module, and executing a state transition

whenever the vertical sync signal first goes low.

During a game state update, the states of all game objects are updated in parallel.

The duck is moved to a new position, which is determined by its current position

plus a small offset in the direction of its current heading. If this would move the duck

outside of its valid region (which is bounded by the top, left, and right sides of the

screen, as well as by the horizontal line which represents the upper boundary of the

dirt image), then the duck would instead be reflected off the boundary. Since the

duck is an animated sprite, the game module must also update the state of the

animation. When the duck is flying, the animation has three possible states, which

correspond to three different positions of the duck’s wings. A given state is

maintained for several frames of video, then the animation enters the next state.

There are also animation states which correspond to the image to be displayed when

the duck is first shot, as well as when the duck falls from the sky. These animation

states are entered after the duck has been shot by either the player or the AI. In order

to generate proper animation state information, a simple FSM was implemented in

which each animation position was a state. State transitions are governed by the rules

outlined above. This animation state information, as well as the duck’s current

position, is sent to the Duck Module (one of the graphics module) which will then

return the proper image data. More details on this process will be included later in

this section as well as in the section concerning the Duck Module.

Additionally, during a game state update, any shots fired by either the human

player or the AI player are processed. If the firing player has no shots remaining this

round, then nothing will occur. Otherwise, the number of shots that that player has

will be reduced by one; and, if that player’s cursor currently overlaps any portion of

the duck, then the duck will be killed and that player’s score will be updated

accordingly. The score will be increased by a number of points inversely

proportional to the time that has elapsed since the beginning of the round. For

example, if less than 1 second has passed, the player will earn 300 points, while if 3

seconds have passed the player will only earn 100 points. Time is kept through

instances of the RoundTimer Module. The score information and number of shots

left will be sent to the ScoreOverlay module, which will be responsible for producing

the appropriate display data.

A round can end in one of two ways. Either the duck can be killed, or the round

timer could expire. If the duck has been killed, it will fall until it reaches the ground.

If sufficiently long period of time has passed (specifically, 10 seconds) and neither

the human player nor the AI player has successfully shot the duck, then the round

will end and the duck will be removed from the screen . In either case, a special

graphic will popup at the end of the round. If the player killed the duck, the popup

will depict Cheney holding a dead duck. If the AI killed the duck, or the round ended

due to time expiring, the popup will depict Cheney holding a gun. This will be

accomplished by providing the RoundOverOverlay module with a signal that

specifies which player killed the duck, if any, which will cause the

RoundOverOverlay module to produce the appropriate display data. After a period of

time has passed, the duck will return to the starting position, and a new round will

begin. A game consists of a total of ten rounds, at which point the player can start a

fresh game if they choose to.

As mentioned earlier, part of the purpose of this module is to provide data to the

display controller. The Game Module does not produce this data on its own. Instead,

it makes use of a series of graphics modules, each of which corresponds to a single

game object, to produce the appropriate display information. These modules include

the Duck Module, ScoreOverlay Module, and RoundOverOverlay Module

mentioned already, as well as the TreeGrass Module, Background Module, and

Crosshair Module. The game engine sends appropriate state information, as well as

the coordinates of a pixel to these modules, and they each return the appropriate

RGB color information, if the object they represent has a pixel at that location, to the

Game Module. The Game Module then outputs the pixel that corresponds to the

object closest to the foreground at the coordinates in question. Specific details

concerning the operation of these modules can be found in the section dealing with

the graphics pipeline.

AI Module

Authorship: Zachary Remscrim

The purpose of this module is to control the actions of the AI player. Specifically,

this module will determine where the AI’s crosshair will be moved at the next game

state update, as well as whether or not the AI will fire at any given time. These

decisions are sent to the game engine and are processed in an identical manner to the

player’s decision on movement and firing. This assures that the AI is given no

special advantages or disadvantages. The game AI has the ability to be set to one of

several difficulty settings, which affects how well the AI tracks the ducks

movements and how accurate the AI’s shots are.

To determine where to move the crosshair, the module examines the duck’s

current location and heading. It then estimates the location that the duck will be in at

the next game state update. A small amount of error is purposely introduced here to

cause the AI to not track the duck perfectly. This is done to make the AI’s play more

human-like. The amount of error varies by difficulty level. After the estimated

location has been found, the AI will move its crosshair in the direction of the

estimated location. The distance moved is limited to avoid the crosshair moving

immediately to the duck’s location. This limit also varies by difficulty level.

If the AI has any shots left (it has the same limit of three shots per round that the

player has), then it will decide whether or not to shoot. If the location to which the

AI has decided to move its crosshair at the next game state update places the

crosshair over the duck’s estimated position, and a sufficient amount of time has

passed since the beginning of the round, then the AI will fire. Since the duck’s

estimated position had a small amount of error purposely introduced, it is possible

that the AI will miss. Again, this is done to make the AI’s play more human-like.

The AI waits a small amount of time after a new round begins before it takes a shot

in order to give the player more of a chance to kill the duck. The amount of time

varies by difficulty level and is kept through an instance of the RoundTimer module.

Graphics Pipeline

Authorship: Zachary Remscrim

 Due to the complexity of display data and the short clock period (15.4 nS), the

various graphics modules mentioned earlier were organized into a graphics pipeline.

They are each given the appropriate state information and values for hCount and

vCount (the horizontal and vertical coordinates, respectively, of the pixel whose

value is currently being requested) simultaneously, and compute the appropriate

RGB value for that pixel in parallel (if the given module corresponds to an object

that has a pixel at those coordinates). For a given hCount and vCount, the pixel color

that will actually be displayed is the RGB value produced by the module highest in

the pipeline that has color information for that pixel. This produces a layering effect

whereby objects higher in the graphics pipeline are displayed above objects lower in

the graphics pipeline. For example, the TreeGrass Module is above the Duck

Module, which is above the Background Module in the graphics pipeline. Therefore,

the tree and grass will be displayed over the duck, which in turn will be displayed

over the background. This will have the desired effect of having the duck appear as

though it is flying behind the tree and grass, while still appearing above the sky.

 Each module (with the exception of the background) consists of one or more

single-port ROM modules, created using the Xilinx tools, that stores the bitmaps of

the various objects. In general, these ROMs are 8 bits wide, and each entry stores the

RGB values of a single pixel. For dichromatic images, such as the crosshair, the

ROM is only 1 bit wide. In that case, each entry would be a 1 to represent one color,

and a 0 to represent the other. The module stores the full 8 bit RGB values for both

the “1” color and the “0” color, and returns the appropriate RGB value when either a

1 or 0 is encountered in the ROM. This was done to save memory. Each address

corresponds to a single pixel of the bitmap. All RGB values are encoded in the 8 bit

truecolor format, in which the high order 3 bits correspond to red, the next 3 bits

correspond to green, and the low order 2 bits correspond to blue. Since the

ADV7125 expects 24 bit color (8 bits for each of red, green and blue), an appropriate

number of zeroes is added as low order bits to turn the 2 or 3 bit values into 8 bit

values. For example, if a given pixel had the 8 bit RGB value 10111011, then

10100000, 11000000, and 11000000 would be the red, green, and blue values sent to

the ADV7125. In many modules, the bitmaps stored in the ROMS were compressed

relative to their display size. This was done to save memory. In order to display the

image at the appropriate size, the same address in memory is accessed for several

different hCount, vCount pairs.

 In order to facilitate the creation of the .coe files needed by the ROMS, a Matlab

script was written to convert .jpg, .gif, and .bmp files to .coe format. This made the

graphics creation far easier since it eliminated the otherwise absurdly tedious task of

generating .coe files.

 The modules that make up the graphics pipeline are: Duck, Crosshair, TreeGrass,

Background, ScoreOverlay, RoundOverOverlay, and TitleScreen.

Duck Module

This module is responsible for displaying the animated duck. It possesses 6

ROMs, each of which corresponds to one of the 6 possible duck images. 3 of these

images form the flying animation, 2 form the falling animation, and the last is

displayed when the duck is first shot. The Game Module sends a state signal to this

module to specify which image should be displayed. For example, when the duck is

in its standard flying state, the state signal repeatedly cycles through the 3 flying

images. Thus, it appears as though the duck is flapping its wings while flying. The

Game Module also provides the current coordinates of the top left corner of the duck.

This allows the Duck Module know where the duck is, and provide RGB information

for a given hCount and vCount.

Crosshair Module

This module is responsible for displaying a crosshair. There are two instances of

this module in the device, one for the player’s crosshair, and another for the AI’s

crosshair. Since the bitmap for a crosshair is dichromatic (the “X” portion of the

crosshair is one color, and the background is another color), the ROM that stores the

crosshair bitmap is only 1 bit wide, for the reason discussed above. This module has

a color parameter, which specifies the color to be returned whenever a portion of the

“X” is encountered in memory. This parameter is set to a different value in each

instance of the module, thereby allowing the two crosshairs to be distinguished. No

color information is returned when the background is encountered. This is done to

allow the image of whatever the crosshair is over to still be visible, while still

accurately displaying the “X” portion. As was the case for the Duck Module, this

module needs the coordinates of the object that it represents. In this case, the Game

Module transmits the x and y coordinates of the center of the “X”. Since the

crosshair is not animated, no state information is needed.

Tree and Grass Modules

This module stores the color information for the tree, grass, and dirt. Since all

these objects are static, neither state information nor coordinates are required. For

convenience, the bitmap of the tree is stored in a different ROM than the bitmap of

the grass and dirt.

Background Module

Unlike the other modules that make up the graphics pipeline, this module has no

need for a ROM. This module simply returns a blue pixel for any hCount, vCount

pair in the sky, and a brown pixel otherwise. If the device is working properly, this

brown pixel will never be displayed since the grass and dirt are displayed over it. It

was included to assure that something reasonable is displayed even if there is a glitch

in the TreeGrass Module.

Score Overlay Module

This module is responsible for displaying all score related information, as well as

the number of shots that the player has left. The score information includes the

player’s score and AI’s score, which are computed by the Game Module.

Additionally, there is a display of the 10 ducks that appear in a round. The color of

the duck corresponds to its state. White indicates that the duck has not been killed,

red indicates that it was killed by the AI, and green indicates that it was killed by the

player. This data is provided by the Game Module.

Round-Over Overlay Module

This module is responsible for displaying a graphic popup whenever the round

ends. The graphic popup is either a fake image of Dick Cheney brandishing a rifle or

a fake image of Dick Cheney holding a dead duck. The Game Module sends signals

to this module indicating the player that killed the duck, or that the duck was not

killed, as well location of the top left corner of the Dick Cheney image (which is

needed since the image slowly rises from behind the grass). If the human player

killed the duck, the popup will show Cheney holding a dead duck. If the AI player

shot the duck, or no player shot the duck, the popup will show Cheney holding a

rifle.

Title Screen Module

Authorship: Zachary Remscrim

This module displays the title screen. It receives a signal from the Game Module

which specifies whether or not the title screen should be displayed at any point in

time.

Round Timer Module

Authorship: Zachary Remscrim

 The purpose of this module is to keep track of the passage of time. Upon

receiving a start signal, the module will increment a counter variable at each clock

edge until that variable reaches a threshold, at which point it will assert a time

expired signal. The time expired signal will remain asserted until this module is

reset. This threshold is determined by multiplying the clock frequency by the length

of the desired timing interval. The length of the timing interval is a parameter that

can be set on instantiation. This allows different instances of the module to measure

different lengths of time. Several instances of this module are present throughout the

device. For example, the Game Module uses an instance of this module to determine

when the time limit of a round has expired.

TESTING AND DEBUGGING

Video Decoding and Processing

 When the project was first conceived, the video filtering was simply a single hue-

pass region. Testing, however, showed this was a dramatic oversimplification. The

first problem that became apparent during testing was how insufficient a hue-pass

filter region was by itself. As described in the Filtering Overview section, it was

quickly learned that regions of near-white pixels tended to display as pixels of all

hues; when the camera was focused on a white area, there would always be noise

from there regardless of which hue was being passed through the filter. A second

filter – the Saturation-Pass Filter – improved this problem significantly.

 It was also realized early on that the customization of the filter paramaters was a

necessity rather than a convenience. Depending on the particular lab bench chosen

for the day and the position of the sun through the outside windows, the lighting

conditions would change enough that if the camera was calibrated for a certain color

at one bench, at another bench or at a different time of day the perceived color would

change enough to make the calibration outdated.

 A further complication in calibrating to perceived colors came from the camera it

self. The camera that the group was assigned had built-in gain and color-shift

circuitry. These are desirable features for a consumer electronics device since they

ensure the best picture based on changing lighting conditions, but for us, this

unnessicarly complicated the project. We would find that we could calibrate the

camera’s detection to work well for one region, but when we would move our hand

closer to it or to another position (such as blocking a ceiling light from the camera’s

view), the camera’s auto-gain would kick in and shift perceived colors out of our

calibration region. We experimented with other groups’ cameras, and we found that

other groups cameras lacked this auto-gain function and so performed significantly

better.

 Another grievance that was had with the assigned camera was the lack of picture

quality. One issue that was noticed right away was for the camera to shift the picture

towards green. Because it lacked significant color depth, any gray or dark pixels

would often be shifted into the green hue region, and so if the filter was calibrated

for green, there would be a significant amount of noise. Again, other groups’

cameras, although older, proved to have a much greater color depth and noise tended

to be inside the color’s actual hue region rather than shifted into the green region.

 Both types of cameras, however, displayed significant trouble with sharp edges.

When they would see a sharp edge, they would actually register pixels colored with

colors that we not actually in the edge but just showed up as noise. Dealing with the

noise encouraged the development of the noise filter, but an ultimately more

effective and low-tech solution was found in simply blurring the camera’s focus – all

we cared about was regions of color, and bluring the camera’s focus effectively

eliminated edge-noise.

Game Engine Debugging

In order to facilitate easy debugging of the Game Module, AI Module, and

graphics modules, careful attention was paid to assure their modularity. This greatly

simplified testing since each module could be tested independently. During the early

stages of the project, work was focused on the creation of the Game Module and the

framework of the graphics modules. Initially, many of the bitmaps used by the

graphic modules were simply single color rectangles that were used purely for

testing purposes to verify that the module correctly displayed a simple image at the

times dictated by the Game Module. Additionally, the input that would normally

come from the Image Processing Module was replaced by a simple input through the

labkit’s buttons This allowed the basic functionality of the Game Module and

graphics modules to be tested. Once this stage of the project was fully debugged,

actual bitmaps were used by the graphics modules, the AI was introduced, and the

Game Module had all desired functionality implemented. After the debugging this

stage, the final phase of the project began. This included integration of these modules

with the Image Processing Module, as well as improving the general look and

performance of the game.

 While the initial Game Module and basic graphic modules were mostly bug free,

many bugs were encountered once the AI was introduced. The initial behavior of the

AI was problematic. It had a tendency to wander, not accurately track the duck, and

fire at strange times. After a closer examination of the AI module, including

extensive use of the logic analyzer to examine the critical signals of this module, it

was discovered that the AI’s calculation for the duck’s position had more error than

intended (a small amount of error is purposely present, in order to make the AI’s

play more realistic). Once this error was discovered, it was quickly corrected, and

many of the bugs present disappeared.

CONCLUSIONS

 The goal of this project was to create a device that enabled a user to play a game

of Duck Hunt, with several added features. These features included the addition of a

“Realistic Dick Cheney AI” which competes against the player as well as the

replacement of the traditional “Duck Hunt Gun” with an input system based on

moving one’s hand in front of a camera.

 After extensive testing of all modules, it is clear that these goals have been

satisfied. With the exception of a few minor, and rare, glitches, as well as a slight

jitter presence in the input system, all aspects of the device behave as desired. All

game rules are accurately followed, all graphics are displayed properly, the AI

functions well, and visual inputs are successfully delivered to the game.

 The design and implementation of this device demonstrated the value of

modularity in digital systems (or any other system, for that matter). By separating the

functionality of the device into several modules, each module could be tested and

debugged independently. This greatly sped up the debugging process.

 Furthermore, the modular nature of the device makes the system easier to

understand due to the layers of abstraction it provides. The system as a whole can be

analyzed from a global perspective without considering the specific implementation

details of a given module. This has the further advantage of allowing a module to be

revised for the purpose of improving efficiency. Any such internal change will not

affect the overall behavior of the device if the utilized abstractions are used.

APPENDIX 1: VERILOG CODE

Base Labkit File
///

//

// 6.111 FPGA Labkit -- Template Toplevel Module

//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file

// Author: Nathan Ickes

//

///

//

// CHANGES FOR BOARD REVISION 004

//

// 1) Added signals for logic analyzer pods 2-4.

// 2) Expanded "tv_in_ycrcb" to 20 bits.

// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to

// "tv_out_i2c_clock".

// 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an

// output of the FPGA, and "in" is an input.

//

// CHANGES FOR BOARD REVISION 003

//

// 1) Combined flash chip enables into a single signal, flash_ce_b.

//

// CHANGES FOR BOARD REVISION 002

//

// 1) Added SRAM clock feedback path input and output

// 2) Renamed "mousedata" to "mouse_data"

// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into

// the data bus, and the byte write enables have been combined into the

// 4-bit ram#_bwe_b bus.

// 4) Removed the "systemace_clock" net, since the SystemACE clock is now

// hardwired on the PCB to the oscillator.

//

///

//

// Complete change history (including bug fixes)

//

// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",

// "disp_data_out", "analyzer[2-3]_clock" and

// "analyzer[2-3]_data".

//

// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices

// actually populated on the boards. (The boards support up to

// 256Mb devices, with 25 address lines.)

//

// 2004-Oct-31: Adapted to new revision 004 board.

//

// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default

// value. (Previous versions of this file declared this port to

// be an input.)

//

// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices

// actually populated on the boards. (The boards support up to

// 72Mb devices, with 21 address lines.)

//

// 2004-Apr-29: Change history started

//

///

module DuckHunt (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in,

ac97_synch,

 ac97_bit_clock,

 vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,

 vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,

 vga_out_vsync,

 tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,

 tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,

 tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

 tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,

 tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,

 tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,

 tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

 ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,

 ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

 ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,

 ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,

 clock_feedback_out, clock_feedback_in,

 flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,

 flash_reset_b, flash_sts, flash_byte_b,

 rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

 mouse_clock, mouse_data, keyboard_clock, keyboard_data,

 clock_27mhz, clock1, clock2,

 disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,

 disp_reset_b, disp_data_in,

 button0, button1, button2, button3, button_enter, button_right,

 button_left, button_down, button_up,

 switch,

 led,

 user1, user2, user3, user4,

 daughtercard,

 systemace_data, systemace_address, systemace_ce_b,

 systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

 analyzer1_data, analyzer1_clock,

 analyzer2_data, analyzer2_clock,

 analyzer3_data, analyzer3_clock,

 analyzer4_data, analyzer4_clock);

 output beep, audio_reset_b, ac97_synch, ac97_sdata_out;

 input ac97_bit_clock, ac97_sdata_in;

 output [7:0] vga_out_red, vga_out_green, vga_out_blue;

 output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,

 vga_out_hsync, vga_out_vsync;

 output [9:0] tv_out_ycrcb;

 output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,

 tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,

 tv_out_subcar_reset;

 input [19:0] tv_in_ycrcb;

 input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,

 tv_in_hff, tv_in_aff;

 output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,

 tv_in_reset_b, tv_in_clock;

 inout tv_in_i2c_data;

 inout [35:0] ram0_data;

 output [18:0] ram0_address;

 output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;

 output [3:0] ram0_bwe_b;

 inout [35:0] ram1_data;

 output [18:0] ram1_address;

 output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;

 output [3:0] ram1_bwe_b;

 input clock_feedback_in;

 output clock_feedback_out;

 inout [15:0] flash_data;

 output [23:0] flash_address;

 output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;

 input flash_sts;

 output rs232_txd, rs232_rts;

 input rs232_rxd, rs232_cts;

 input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

 input clock_27mhz, clock1, clock2;

 output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;

 input disp_data_in;

 output disp_data_out;

 input button0, button1, button2, button3, button_enter, button_right,

 button_left, button_down, button_up;

 input [7:0] switch;

 output [7:0] led;

 inout [31:0] user1, user2, user3, user4;

 inout [43:0] daughtercard;

 inout [15:0] systemace_data;

 output [6:0] systemace_address;

 output systemace_ce_b, systemace_we_b, systemace_oe_b;

 input systemace_irq, systemace_mpbrdy;

 output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,

 analyzer4_data;

 output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

 //

 //

 // I/O Assignments

 //

 //

 // Audio Input and Output

 assign beep= 1'b0;

 assign audio_reset_b = 1'b0;

 assign ac97_synch = 1'b0;

 assign ac97_sdata_out = 1'b0;

/*

*/

 // ac97_sdata_in is an input

 // Video Output

 assign tv_out_ycrcb = 10'h0;

 assign tv_out_reset_b = 1'b0;

 assign tv_out_clock = 1'b0;

 assign tv_out_i2c_clock = 1'b0;

 assign tv_out_i2c_data = 1'b0;

 assign tv_out_pal_ntsc = 1'b0;

 assign tv_out_hsync_b = 1'b1;

 assign tv_out_vsync_b = 1'b1;

 assign tv_out_blank_b = 1'b1;

 assign tv_out_subcar_reset = 1'b0;

 // Video Input

 //assign tv_in_i2c_clock = 1'b0;

 assign tv_in_fifo_read = 1'b1;

 assign tv_in_fifo_clock = 1'b0;

 assign tv_in_iso = 1'b1;

 //assign tv_in_reset_b = 1'b0;

 assign tv_in_clock = clock_27mhz;//1'b0;

 //assign tv_in_i2c_data = 1'bZ;

 // tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,

 // tv_in_aef, tv_in_hff, and tv_in_aff are inputs

 // SRAMs

/* change lines below to enable ZBT RAM bank0 */

/*

 assign ram0_data = 36'hZ;

 assign ram0_address = 19'h0;

 assign ram0_clk = 1'b0;

 assign ram0_we_b = 1'b1;

 assign ram0_cen_b = 1'b0; // clock enable

*/

/* enable RAM pins */

 assign ram0_ce_b = 1'b0;

 assign ram0_oe_b = 1'b0;

 assign ram0_adv_ld = 1'b0;

 assign ram0_bwe_b = 4'h0;

/**********/

 assign ram1_data = 36'hZ;

 assign ram1_address = 19'h0;

 assign ram1_adv_ld = 1'b0;

 assign ram1_clk = 1'b0;

 assign ram1_cen_b = 1'b1;

 assign ram1_ce_b = 1'b1;

 assign ram1_oe_b = 1'b1;

 assign ram1_we_b = 1'b1;

 assign ram1_bwe_b = 4'hF;

 assign clock_feedback_out = 1'b0;

 // clock_feedback_in is an input

 // Flash ROM

 assign flash_data = 16'hZ;

 assign flash_address = 24'h0;

 assign flash_ce_b = 1'b1;

 assign flash_oe_b = 1'b1;

 assign flash_we_b = 1'b1;

 assign flash_reset_b = 1'b0;

 assign flash_byte_b = 1'b1;

 // flash_sts is an input

 // RS-232 Interface

 assign rs232_txd = 1'b1;

 assign rs232_rts = 1'b1;

 // rs232_rxd and rs232_cts are inputs

 // PS/2 Ports

 // mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

 // LED Displays

/*

 assign disp_blank = 1'b1;

 assign disp_clock = 1'b0;

 assign disp_rs = 1'b0;

 assign disp_ce_b = 1'b1;

 assign disp_reset_b = 1'b0;

 assign disp_data_out = 1'b0;

*/

 // disp_data_in is an input

 // Buttons, Switches, and Individual LEDs

 //lab3 assign led = 8'hFF;

 // button0, button1, button2, button3, button_enter, button_right,

 // button_left, button_down, button_up, and switches are inputs

 // User I/Os

 assign user1 = 32'hZ;

 assign user2 = 32'hZ;

 assign user3 = 32'hZ;

 assign user4 = 32'hZ;

 // Daughtercard Connectors

 assign daughtercard = 44'hZ;

 // SystemACE Microprocessor Port

 assign systemace_data = 16'hZ;

 assign systemace_address = 7'h0;

 assign systemace_ce_b = 1'b1;

 assign systemace_we_b = 1'b1;

 assign systemace_oe_b = 1'b1;

 // systemace_irq and systemace_mpbrdy are inputs

 // Logic Analyzer

 /*assign analyzer1_data = 16'h0;

 assign analyzer1_clock = 1'b1;

 assign analyzer2_data = 16'h0;

 assign analyzer2_clock = 1'b1;

 assign analyzer3_data = 16'h0;

 assign analyzer3_clock = 1'b1;

 assign analyzer4_data = 16'h0;

 assign analyzer4_clock = 1'b1;*/

 // use FPGA's digital clock manager to produce a

 // 65MHz clock (actually 64.8MHz)

 wire clock_65mhz_unbuf,clock_65mhz;

 DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));

 // synthesis attribute CLKFX_DIVIDE of vclk1 is 10

 // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24

 // synthesis attribute CLK_FEEDBACK of vclk1 is NONE

 // synthesis attribute CLKIN_PERIOD of vclk1 is 37

 BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

 wire clk = clock_65mhz;

 // power-on reset generation

 wire power_on_reset; // remain high for first 16 clocks

 SRL16 reset_sr (.D(1'b0), .CLK(clock_65mhz), .Q(power_on_reset),

 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));

 defparam reset_sr.INIT = 16'hFFFF;

 // ENTER button is user reset

 wire reset,user_reset;

 debounce db1(power_on_reset, clock_65mhz, ~button_enter, user_reset);

 assign reset = user_reset | power_on_reset;

 reg [7:0] rgb;

 // generate basic XVGA video signals

 wire [10:0] hcount, hcount_inverse;

 assign hcount_inverse = hcount <= 720 ? 720 - hcount : 0;

 wire [9:0] vcount;

 wire hsync,vsync,blank;

 xvga xvga1(clk,hcount,vcount,hsync,vsync,blank);

////////////////////////

 //HUE LIMITS CONTROLLER

 // This part makes the hue-pass controlled by the labkit buttons

 wire [8:0] hue1_lowMark, hue1_highMark, hue2_lowMark, hue2_highMark;

//hue values between 0 and 360 to pass

 wire [6:0] sat1_lowMark, sat1_highMark, sat2_lowMark, sat2_highMark;

 wire [16*8-1:0] string_data_out;

 reg [16*8-1:0] string_data[1:0];

 limits_interface li(clk, 1'b0, ~button_up, ~button_down, ~button_left,

~button_right, button_enter, //don't invert enter_button so that stuff happens

on buttonUp rather than on buttonDown

 hue1_lowMark,

hue1_highMark, hue2_lowMark, hue2_highMark,

 sat1_lowMark,

sat1_highMark, sat2_lowMark, sat2_highMark,

 string_data_out);

 //syncronize data to 27mhz clock

 always @ (posedge clock_27mhz) begin

 {string_data[1], string_data[0]} <= {string_data[0],

string_data_out};

 end

 assign led = hue1_lowMark;

 // END HUE LIMITS

 ////////////////////////

 display_string ds(reset, clock_27mhz, string_data[1],

 disp_blank,

disp_clock, disp_rs, disp_ce_b,

 disp_reset_b,

disp_data_out);

 // wire up to ZBT ram

 wire [35:0] vram_write_data;

 wire [35:0] vram_read_data;

 wire [18:0] vram_addr;

 wire vram_we;

 zbt_6111 zbt1(clk, 1'b1, vram_we, vram_addr,

 vram_write_data, vram_read_data,

 ram0_clk, ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

 // generate pixel value from reading ZBT memory

 wire [23:0] vr_pixel; //Full RGB info

 wire [18:0] vram_addr1;

 vram_display vd1(reset,clk,hcount_inverse,vcount,vr_pixel,

 vram_addr1,vram_read_data);

 // ADV7185 NTSC decoder interface code

 // adv7185 initialization module

 adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),

 .source(1'b0), .tv_in_reset_b(tv_in_reset_b),

 .tv_in_i2c_clock(tv_in_i2c_clock),

 .tv_in_i2c_data(tv_in_i2c_data));

 wire [29:0] ycrcb; // video data (luminance, chrominance)

 wire [2:0] fvh; // sync for field, vertical, horizontal

 wire dv; // data valid

 ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),

 .tv_in_ycrcb(tv_in_ycrcb[19:10]),

 .ycrcb(ycrcb), .f(fvh[2]),

 .v(fvh[1]), .h(fvh[0]), .data_valid(dv));

 // code to write NTSC data to video memory

 wire [18:0] ntsc_addr;

 wire [35:0] ntsc_data;

 wire ntsc_we;

 wire [9:0] x1_avg, y1_avg, x2_avg, y2_avg;

 wire filterWinner; //Which filter is winning, 0==filter1, 1==filter2

/*DEBUGS:

 wire [26:0] x_sum;

 wire [26:0] new_x_avg;

 wire [18:0] pixelCount;

 wire startFinalAvgDividing, endFinalAvgDividing;

 wire [9:0] x;

 wire [7:0] y; */

 wire [18:0] pixelCount1, pixelCount2;

 ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, ycrcb,

 ntsc_addr, ntsc_data, ntsc_we,

 1'b0, switch[5],

 hue1_lowMark, hue1_highMark, hue2_lowMark, hue2_highMark,

 sat1_lowMark, sat1_highMark, sat2_lowMark, sat2_highMark,

 switch[4], switch[3], switch[2], switch[1],

 x1_avg, x2_avg, y1_avg, y2_avg, filterWinner, 1,

switch[0],

 pixelCount1, pixelCount2);

 //x_sum, new_x_avg, pixelCount, startFinalAvgDividing,

endFinalAvgDividing, x, y);

 // code to write pattern to ZBT memory

 reg [31:0] count;

 always @(posedge clk) count <= reset ? 0 : count + 1;

 wire [18:0] vram_addr2 = count[0+18:0];

 wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'b0}}

 : {4{count[3+4:4],4'b0}});

 wire sw_ntsc = 1'b1;

 wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vram_addr2;

 wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;

 //SWITCH BETWEEN READING AND WRITING MODES:

 /*Method 1:

 Give vram priority to xvga

 Here we write new data only when the current xvga pixel is

outside of the NTSC area.

 Result is you get "waves" of old frames in the display

since we can't write new video data

 constantly. We take advantage of the fact that XVGA clock

and video clock are not multiples,

 so because of non-constant interferance, we do write new

video data to all pixels eventually,

 just not in the same frame.

 wire read_select = (hcount <= 720) && (vcount <= 480);

 //when this wire is 1, we want to reader.

 //when this

wire is 0, we want to write.

 assign vram_addr = (read_select) ? vram_addr1 : write_addr;

 assign vram_write_data = write_data;

 assign vram_we = ~read_select;

 //NTSC Mask (during write mode, display b/w bars)

 //wire [23:0] pixel = vr_pixel;

 reg [23:0] pixel;

 always @(posedge clk)

 begin

 //pixel <= switch[5] ? vr_pixel : {hcount[8:6],5'b0,

hcount[8:6],5'b0, hcount[8:6],5'b0};

 pixel <= (hcount <= 723 && vcount <= 483) ? vr_pixel : 24'b0;

 end

 //*/

 /*Method 2:

 Give vram priority to video

 Here we write new data whenever it arrives. The problem is

that certain xvga pixels will not be

 able to be reader. The advantage here is that we don't get

"waves of old data" as in method 1.

 The disadvantage is we get bits of random snow scattered

throughout (ie at those pixels where new

 data is being written).

 We'll hack around the snow by when data is being written,

we'll just display the previous pixel again.

 Thus the displayed image won't be true, but it shouldn't be

noticable since we're repeating only

 single pixels. */

 assign vram_addr = (ntsc_we) ? write_addr : vram_addr1;

 assign vram_write_data = write_data;

 assign vram_we = ntsc_we; //*/

 //Delay the we by ZBT read + color conversion so we know when we hit a

"snow pixel"

 wire we_delay;

 //wire theDelayedWE;

 //delayN we_delayer(clk, vram_we, theDelayedWE);

 //defparam we_delayer.NDELAY = 2; //2 for ZBT pipeline

 reg delayed_we[1:0];

 always @(posedge clk)

 {delayed_we[1], delayed_we[0]} <= {delayed_we[0], vram_we};

 wire theDelayedWE = delayed_we[1]; //*/

 //NTSC Mask (during write mode, display b/w bars)

 //wire [23:0] pixel = vr_pixel;

 reg [23:0] pixel;

 wire [23:0] pixel_out[2:0];

 reg [23:0] oldPixel;

 always @(posedge clk)

 begin

 //pixel <= switch[5] ? vr_pixel : {hcount[8:6],5'b0,

hcount[8:6],5'b0, hcount[8:6],5'b0};

 oldPixel <= vr_pixel;

 pixel <= (hcount <= 722 && vcount <= 482) ?

 (theDelayedWE ? oldPixel : vr_pixel) :

//When the pixel was being written to (ie couldn't read it), interpolate by

putting in the previous pixel

 24'b0;

 //else (when we're outside the NTSC box),

display blackness

 end

 //DRAWING FILTER TRACKERS

 wire [8*3-1:0] filter1_tracker, filter2_tracker;

 //filterWinner is which color filter has more pixels. ==0 -> filter1, ==1

-> filter2

 assign filter1_tracker = (~filterWinner) ?

 {8'd0,

8'd255, 8'b0} : {8'd255, 8'd255, 8'b0};

 assign filter2_tracker = (filterWinner) ?

 {8'd0,

8'd255, 8'b0} : {8'd255, 8'd255, 8'b0};

 assign pixel_out[0] = (hcount_inverse == {1'b0, x1_avg} || vcount ==

y1_avg) ? filter1_tracker : pixel;

 assign pixel_out[1] = (hcount_inverse == {1'b0, x2_avg} || vcount ==

y2_avg) ? filter2_tracker : pixel_out[0];

 //GENERATING 1024x768-TRANSLATED X AND Y AVERAGES (only winning x & y)

 wire [9:0] x720, y720, x1024, y1024;

 assign x720 = filterWinner ? //filterWinner is which color filter has

more pixels. ==0 -> filter1, ==1 -> filter2

 (720 - x2_avg) : (720 - x1_avg);

 assign y720 = filterWinner ?

 y2_avg : y1_avg;

 // feed XVGA and AI signals to game

 wire [7:0] aPixel;

 wire phsync,pvsync,pblank,AIFire;

 wire [10:0] AICrosshairX, duckX, x720Prime;

 wire [9:0] AICrosshairY, duckY, y720Prime;

 wire duckAlive,roundOver,roundStart,inCalibrate;

 wire [1:0] playerShotsLeft,AIShotsLeft,dir;

 wire

abutton_left,abutton_right,abutton_up,abutton_down,aButton2,aButton3,calibrate,

startPlaying;

 assign pixel_out[2] = (hcount == x720Prime || vcount == y720Prime) ?

{8'b0, 8'b0, 8'd255} : pixel_out[1];

 wire hsPrime,vsPrime,bPrime;

 delayN dn1(clk,hsync,hsPrime); // delay by 3+2+1 cycles to sync with ZBT read

+ YCrCb2RGB + RGB2Hue + NTSC mask

 delayN dn2(clk,vsync,vsPrime);

 delayN dn3(clk,blank,bPrime);

 defparam dn1.NDELAY = 4;

 defparam dn2.NDELAY = 4;

 defparam dn3.NDELAY = 4;

 // debugging

 /*wire [26:0] x_sum,

 wire [9:0] x_avg;

 wire [26:0] new_x_avg;

 wire [18:0] pixelCount;*/

 assign analyzer1_data = {pixelCount1[18:3]}; //{x_avg, pixelCount[18:16],

ntsc_we, startFinalAvgDividing, endFinalAvgDividing} ;

 assign analyzer1_clock = clk;

 assign analyzer2_data = {x1024, x1_avg[9:4]}; //{x, y[7:2]};

//vram_addr1[15:0];

 assign analyzer2_clock = clk;

 assign analyzer3_data = {pixelCount2[18:3]}; //{new_x_avg[9:0], y[1:0],

4'b0}; //{hcount[10:0], vcount[4:0]};

 assign analyzer3_clock = clk;

 assign analyzer4_data = {x720, x1_avg[3:0], 2'b0}; //{hcount[10:0], 5'b0};

//pixelCount[15:0];

 assign analyzer4_clock = clk;

 assign x720Prime=(x720>100) ? (((x720<512)? ((2*x720)-200):1024)) : 0;

 assign y720Prime=y720;

 Game

aGame(clock_65mhz,reset,hcount,vcount,hsync,vsync,blank,AICrosshairX,AICrosshai

rY,AIFire,x720Prime,y720Prime,filterWinner,~button3,~button2,~button1,

 phsync,pvsync,pblank,aPixel,duckX,duckY,duckAlive,AIShotsLeft,playerShots

Left,roundOver,roundStart,dir,inCalibrate);

 AI

aAI(clock_65mhz,reset,duckX,duckY,duckAlive,AIShotsLeft,roundStart,roundOver,di

r,vsync,switch[7:6],

 AICrosshairX,AICrosshairY,AIFire);

 debounce aDebounce(reset,clock_65mhz,button_left,abutton_left);

 debounce bDebounce(reset,clock_65mhz,button_right,abutton_right);

 debounce cDebounce(reset,clock_65mhz,button_up,abutton_up);

 debounce dDebounce(reset,clock_65mhz,button_down,abutton_down);

 debounce eDebounce(reset,clock_65mhz,button3,aButton3);

 debounce fDebounce(reset,clock_65mhz,button2,aButton2);

 reg b,hs,vs;

 //playerInput

aPlayerInput(clock_65mhz,reset,~abutton_left,~abutton_right,~abutton_up,~abutto

n_down,~button0,playerShotsLeft,playerCrosshairX,playerCrosshairY,playerFire);

 always @ (posedge clock_65mhz) begin

 hs <= phsync;

 vs <= pvsync;

 b <= pblank;

 rgb <= aPixel;

 end

 // VGA Output. In order to meet the setup and hold times of the

 // AD7125, we send it ~clock_65mhz.

 assign vga_out_red = inCalibrate ? pixel_out[2][23:16]:{rgb[7:5],5'b00000};

 assign vga_out_green = inCalibrate ? pixel_out[2][15:8]:{rgb[4:2],5'b00000};

 assign vga_out_blue = inCalibrate ? pixel_out[2][7:0]:{rgb[1:0],6'b000000};

 assign vga_out_sync_b = 1'b1; // not used

 assign vga_out_blank_b = inCalibrate ? ~b : ~bPrime;

 assign vga_out_pixel_clock = ~clock_65mhz;

 assign vga_out_hsync = inCalibrate ? hsPrime : hs;

 assign vga_out_vsync = inCalibrate ? vsPrime : vs;

endmodule

XVGA Signal Generator
///

/

//

// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

//

///

/

module xvga(vclock,hcount,vcount,hsync,vsync,blank);

 input vclock;

 output [10:0] hcount;

 output [9:0] vcount;

 output vsync;

 output hsync;

 output blank;

 reg hsync,vsync,hblank,vblank,blank;

 reg [10:0] hcount; // pixel number on current line

 reg [9:0] vcount; // line number

 // horizontal: 1344 pixels total

 // display 1024 pixels per line

 wire hsyncon,hsyncoff,hreset,hblankon;

 assign hblankon = (hcount == 1023);

 assign hsyncon = (hcount == 1047);

 assign hsyncoff = (hcount == 1183);

 assign hreset = (hcount == 1343);

 // vertical: 806 lines total

 // display 768 lines

 wire vsyncon,vsyncoff,vreset,vblankon;

 assign vblankon = hreset & (vcount == 767);

 assign vsyncon = hreset & (vcount == 776);

 assign vsyncoff = hreset & (vcount == 782);

 assign vreset = hreset & (vcount == 805);

 // sync and blanking

 wire next_hblank,next_vblank;

 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;

 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;

 always @(posedge vclock) begin

 hcount <= hreset ? 0 : hcount + 1;

 hblank <= next_hblank;

 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;

 vblank <= next_vblank;

 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);

 end

endmodule

VRAM Display
///

// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency

//

// We take care of that by latching the data at an appropriate time.

//

// Note that the ZBT stores 36 bits per word; we use only 32 bits here,

// decoded into four bytes of pixel data.

module vram_display(reset,clk,hcount,vcount,vr_pixel,

 vram_addr,vram_read_data);

 input reset, clk;

 input [10:0] hcount;

 input [9:0] vcount;

 output [23:0] vr_pixel;

 output [18:0] vram_addr;

 input [35:0] vram_read_data;

 wire [18:0] vram_addr;

 assign vram_addr = (vcount > 480 || hcount > 720) ?

 19'b0 :

 {vcount[8:0],

hcount[9:0]};

 wire [1:0] hc4 = hcount[1:0];

 assign vr_pixel = vram_read_data[23:0]; //Filtered RGB info!

 /*assign vr_pixel[1] = (hueFilterSwitch) ?

 (satpassHigh >

satpassLow ?

 (sat >

satpassLow && sat < satpassHigh ?

 vr_pixel[0] :

 hueFilterFailColor) :

 (sat >

satpassLow || sat < satpassHigh ?

 vr_pixel[0] :

 hueFilterFailColor)) :

 vr_pixel[0]; */

endmodule // vram_display

Filter Limits Configuration
`timescale 1ns / 1ps

///

/

// Company:

// Engineer:

//

// Create Date: 11:16:06 11/30/06

// Design Name:

// Module Name: limits_interface

// Project Name:

// Target Device:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

///

/

module limits_interface(clk, reset, up_button, down_button, left_button,

right_button, enter_button,

 hue1_lowMark,

hue1_highMark, hue2_lowMark, hue2_highMark,

 sat1_lowMark,

sat1_highMark, sat2_lowMark, sat2_highMark, vfd_data);

 input clk, reset;

 input up_button, down_button, left_button, right_button, enter_button;

//raw button lines; assumes 1=pressed, 0=open

 output [8:0] hue1_lowMark, hue1_highMark, hue2_lowMark, hue2_highMark;

//Min and max values of the hue-pass, valued from 0 to 360

 output [6:0] sat1_lowMark, sat1_highMark, sat2_lowMark, sat2_highMark;

//Min and max values of the sat-pass, valued from 0 to 100 (0 == white, 100 ==

full color)

 output [16*8-1:0] vfd_data; //ascii output to vfd data (ie 16 8-bit

bytes, encoded as ASCII)

 //First lets syncronize and debounce the buttons

 wire up_button_s, down_button_s, left_button_s, right_button_s,

enter_button_s;

 wire up_button_d, down_button_d, left_button_d, right_button_d,

enter_button_d;

 synchronize sync1(clk, up_button, up_button_s);

 synchronize sync2(clk, down_button, down_button_s);

 synchronize sync3(clk, left_button, left_button_s);

 synchronize sync4(clk, right_button, right_button_s);

 synchronize sync5(clk, enter_button, enter_button_s);

 debounce deb1(reset, clk, up_button_s, up_button_d);

 debounce deb2(reset, clk, down_button_s, down_button_d);

 debounce deb3(reset, clk, left_button_s, left_button_d);

 debounce deb4(reset, clk, right_button_s, right_button_d);

 debounce deb5(reset, clk, enter_button_s, enter_button_d);

 //Wire up the marker fsm's

 wire doIndividualMove, doJointMove; //These wires go high for every clock

cycle where we move either

 //and individual marker (selected by mode fsm) or both markers at once

 slow_fast_fsm individual_fsm(reset, clk, (left_button_d ||

right_button_d), doIndividualMove);

 //ie the left or right button control what speed we're moving the

individual marker

 slow_fast_fsm joint_fsm(reset, clk, (up_button_d || down_button_d),

doJointMove);

 //ie the up or down buttons control what speed we're moving both

markers at once

 //SELECTION: move between 0:MODE, 1:LOW, 2:HIGH, or 3:BOTH on left/right

buttons

 parameter SELOBJ_MODE = 0;

 parameter SELOBJ_LOW = 1;

 parameter SELOBJ_HI = 2;

 parameter SELOBJ_BOTH = 3;

 reg [1:0] objectSelection = 0;

 reg prev_right=0, prev_left = 0;

 wire right_pulse = ~prev_right && right_button;

 wire left_pulse = ~prev_left && left_button;

 always @ (posedge clk) begin

 prev_right <= right_button;

 prev_left <= left_button;

 if (right_pulse)

 objectSelection <= objectSelection + 1;

 else if (left_pulse)

 objectSelection <= objectSelection - 1;

 end

 //Wire up the limits controller

 wire [8:0] hue1_lowMark, hue1_highMark, hue2_lowMark, hue2_highMark;

 wire [6:0] sat1_lowMark, sat1_highMark, sat2_lowMark, sat2_highMark;

 wire [1:0] modeSelection; //0:HUE1, 1:SAT1, 2:HUE2, 3:SAT2

 limits_controller lc(reset, clk,

 up_button_d,

down_button_d, left_button_d, right_button_d,

 doIndividualMove,

doJointMove, objectSelection, modeSelection,

 hue1_lowMark,

hue1_highMark, sat1_lowMark, sat1_highMark,

 hue2_lowMark,

hue2_highMark, sat2_lowMark, sat2_highMark);

 //Wire up the VFD controller

 vfd_control vfdc(clk, reset,

 objectSelection, modeSelection,

 hue1_lowMark, hue1_highMark,

sat1_lowMark, sat1_highMark,

 hue2_lowMark, hue2_highMark,

sat2_lowMark, sat2_highMark,

 vfd_data);

endmodule

module limits_controller(reset, clk,

 up_button,

down_button, left_button, right_button,

 doIndepMove,

doJointMove, objectSelection, modeSelection,

 hue1_lowMark,

hue1_hiMark, sat1_lowMark, sat1_hiMark,

 hue2_lowMark,

hue2_hiMark, sat2_lowMark, sat2_hiMark);

 input reset, clk, up_button, down_button, left_button, right_button;

 input doIndepMove, doJointMove; //Move the currently selected marker by

itself or with its partner (ie high AND low together) -- merely tells which

marker-control fsm the button came from

 input [1:0] objectSelection;

 parameter SELOBJ_MODE = 0;

 parameter SELOBJ_LOW = 1;

 parameter SELOBJ_HI = 2;

 parameter SELOBJ_BOTH = 3;

 output [1:0] modeSelection;

 reg [1:0] modeSelection = 0;

 parameter SELMODE_HUE1 = 0;

 parameter SELMODE_SAT1 = 1;

 parameter SELMODE_HUE2 = 2;

 parameter SELMODE_SAT2 = 3;

 output [8:0] hue1_lowMark, hue1_hiMark, hue2_lowMark, hue2_hiMark;

//These get sent to the VFD display and to the ultimate output of the limits

interface

 output [6:0] sat1_lowMark, sat1_hiMark, sat2_lowMark, sat2_hiMark;

 //Keep the individual marks as seperate modules

 mark the_hue1_hiMark(reset, clk, hue1_hiMark_incr, hue1_hiMark_decr,

hue1_hiMark);

 mark the_hue1_lowMark(reset, clk, hue1_lowMark_incr, hue1_lowMark_decr,

hue1_lowMark);

 defparam the_hue1_hiMark.START_VALUE = 35; //Add some arbitrary default

values

 defparam the_hue1_lowMark.START_VALUE = 20;

 mark the_hue2_hiMark(reset, clk, hue2_hiMark_incr, hue2_hiMark_decr,

hue2_hiMark);

 mark the_hue2_lowMark(reset, clk, hue2_lowMark_incr, hue2_lowMark_decr,

hue2_lowMark);

 defparam the_hue2_hiMark.START_VALUE = 35; //Add some arbitrary default

values

 defparam the_hue2_lowMark.START_VALUE = 20;

 wire [1:0] junk[3:0];

 mark the_sat1_hiMark(reset, clk, sat1_hiMark_incr, sat1_hiMark_decr,

{junk[0], sat1_hiMark});

 mark the_sat1_lowMark(reset, clk, sat1_lowMark_incr, sat1_lowMark_decr,

{junk[1], sat1_lowMark});

 defparam the_sat1_hiMark.MAX_VALUE = 100;

 defparam the_sat1_lowMark.MAX_VALUE = 100;

 defparam the_sat1_hiMark.START_VALUE = 100; //Note: 0% saturation ==

white, 100% saturation == pure color

 defparam the_sat1_lowMark.START_VALUE = 20;

 mark the_sat2_hiMark(reset, clk, sat2_hiMark_incr, sat2_hiMark_decr,

{junk[2], sat2_hiMark});

 mark the_sat2_lowMark(reset, clk, sat2_lowMark_incr, sat2_lowMark_decr,

{junk[3], sat2_lowMark});

 defparam the_sat2_hiMark.MAX_VALUE = 100;

 defparam the_sat2_lowMark.MAX_VALUE = 100;

 defparam the_sat2_hiMark.START_VALUE = 100; //Note: 0% saturation ==

white, 100% saturation == pure color

 defparam the_sat2_lowMark.START_VALUE = 20;

 //MODE TRANSITIONING: when SELECTION ==0 (selecting MODE), change

modeSelection between 0:HUE1, 1:HUE2, 2:SAT1, and 3:SAT2

 reg up_button_prev = 0, down_button_prev = 0;

 wire up_button_pulse = ~up_button_prev && up_button;

 wire down_button_pulse = ~down_button_prev && down_button;

 always @ (posedge clk) begin

 up_button_prev <= up_button;

 down_button_prev <= down_button;

 if (objectSelection == SELOBJ_MODE) begin //ie if changing MODE

object

 if (up_button_pulse)

 modeSelection <= modeSelection + 1;

 if (down_button_pulse)

 modeSelection <= modeSelection - 1;

 end

 end

 //DO THE CONTROLLER LOGIC

 //hue1

 assign hue1_hiMark_incr = (modeSelection == SELMODE_HUE1 &&

 //ie,

increment the hi-mark when: we're adjusting hue1, AND

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 // we're adjusting either the HI mark OR BOTH marks, AND

 up_button &&

doJointMove) ?

 // we pressed the up button AND the movementFSM

tells us to go

 1 : 0;

 assign hue1_lowMark_incr= (modeSelection == SELMODE_HUE1 &&

 //ie,

increment the low-mark when: we're adjusting hue1, AND

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 // we're adjusting either the LOW mark OR BOTH marks, AND

 up_button &&

doJointMove) ?

 // we pressed the up button AND the movementFSM

tells us to go

 1 : 0;

 assign hue1_hiMark_decr = (modeSelection == SELMODE_HUE1 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 assign hue1_lowMark_decr= (modeSelection == SELMODE_HUE1 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 //hue2

 assign hue2_hiMark_incr = (modeSelection == SELMODE_HUE2 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 up_button &&

doJointMove) ?

 1 : 0;

 assign hue2_lowMark_incr= (modeSelection == SELMODE_HUE2 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 up_button &&

doJointMove) ?

 1 : 0;

 assign hue2_hiMark_decr = (modeSelection == SELMODE_HUE2 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 assign hue2_lowMark_decr= (modeSelection == SELMODE_HUE2 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 //saturation1

 assign sat1_hiMark_incr = (modeSelection == SELMODE_SAT1 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 up_button &&

doJointMove) ?

 1 : 0;

 assign sat1_lowMark_incr= (modeSelection == SELMODE_SAT1 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 up_button &&

doJointMove) ?

 1 : 0;

 assign sat1_hiMark_decr = (modeSelection == SELMODE_SAT1 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 assign sat1_lowMark_decr= (modeSelection == SELMODE_SAT1 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 //hue2

 assign sat2_hiMark_incr = (modeSelection == SELMODE_SAT2 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 up_button &&

doJointMove) ?

 1 : 0;

 assign sat2_lowMark_incr= (modeSelection == SELMODE_SAT2 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 up_button &&

doJointMove) ?

 1 : 0;

 assign sat2_hiMark_decr = (modeSelection == SELMODE_SAT2 &&

 (objectSelection == SELOBJ_HI || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

 assign sat2_lowMark_decr= (modeSelection == SELMODE_SAT2 &&

 (objectSelection == SELOBJ_LOW || objectSelection == SELOBJ_BOTH) &&

 down_button

&& doJointMove) ?

 1 : 0;

endmodule

module blinker(clk, onOff);

 input clk;

 output onOff;

 reg onOff = 0;

 parameter MAXCOUNT = 25000000; //1/2 second blinking

 reg [25:0] count = 0;

 always @ (posedge clk) begin

 if (count == MAXCOUNT) begin

 count <= 0;

 onOff <= !onOff;

 end else

 count <= count + 1;

 end

endmodule

module vfd_control(clk, reset,

 objectSelection, modeSelection,

 hue1_low, hue1_high, sat1_low_in,

sat1_high_in,

 hue2_low, hue2_high, sat2_low_in,

sat2_high_in,

 vfd_data);

 //Purpose: Output text "HUE LOWxxx HIxxx" or "SAT LOWxxx HIxxx" to VFD

module, blinking the mode thats appropriate

 input clk, reset;

 input [1:0] objectSelection, modeSelection;

 parameter SELOBJ_MODE = 0;

 parameter SELOBJ_LOW = 1;

 parameter SELOBJ_HI = 2;

 parameter SELOBJ_BOTH = 3;

 parameter SELMODE_HUE1 = 0;

 parameter SELMODE_SAT1 = 1;

 parameter SELMODE_HUE2 = 2;

 parameter SELMODE_SAT2 = 3;

 input [8:0] hue1_low, hue1_high, hue2_low, hue2_high;

 input [6:0] sat1_low_in, sat1_high_in, sat2_low_in, sat2_high_in;

 wire [8:0] sat1_low = {2'b0, sat1_low_in}, //sign-extend saturation to

fit division format

 sat1_high = {2'b0, sat1_high_in},

 sat2_low = {2'b0, sat2_low_in},

 sat2_high = {2'b0, sat2_high_in};

 output [8*16-1:0] vfd_data;

 //Blink generator

 wire blink;

 blinker bl(clk, blink);

 wire [8*4-1:0] textMode[1:0]; //partial string "H1 ",

"H2 ", "S1 ", "S2 " to be determined by mode and blinker

 wire [8*3-1:0] textLow, textHi; //partial strings "LOW" and " HI"

 assign textMode[0] = (modeSelection == SELMODE_HUE1) ?

 (objectSelection == SELOBJ_MODE ? "H1 " : "h1 ") :

 (modeSelection == SELMODE_SAT1 ?

 (objectSelection == SELOBJ_MODE ? "S1 " : "s1 ") :

 (modeSelection == SELMODE_HUE2 ?

 (objectSelection == SELOBJ_MODE ? "H2 " : "h2 ") :

 (objectSelection == SELOBJ_MODE ? "S2 " : "s2 ")

)

);

 assign textMode[1] = (objectSelection == SELOBJ_MODE) ?

 (blink ?

textMode[0] : " ") :

 textMode[0];

 assign textLow = (objectSelection == SELOBJ_LOW || objectSelection ==

SELOBJ_BOTH) ? //"LOW" : "low";

 (blink ? "LOW" : " "):

 "low";

 assign textHi = (objectSelection == SELOBJ_HI || objectSelection ==

SELOBJ_BOTH) ? //" HI" : " hi";

 (blink ? " HI" : " "):

 " hi";

 //EXTRACTION OF 100's, 10's, and 1's DIGITS

 // **ASSUMES max number will be 360**

 wire [8:0] high, low; //hue high-mark and low-mark or sat high-mark and

low-mark, depending on the mode

 assign high = modeSelection == SELMODE_HUE1 ?

 hue1_high :

 (modeSelection == SELMODE_SAT1 ?

 sat1_high :

 (modeSelection ==

SELMODE_HUE2 ?

 hue2_high :

 sat2_high));

 assign low = modeSelection == SELMODE_HUE1 ?

 hue1_low :

 (modeSelection == SELMODE_SAT1 ?

 sat1_low :

 (modeSelection ==

SELMODE_HUE2 ?

 hue2_low :

 sat2_low));

 reg [8:0] dividend;

 reg [6:0] divisor; //will be either 100 or 10

 wire [8:0] quot;

 wire [6:0] remainder;

 reg [6:0] lastRemainder;

 wire ready;

 divider3 div9x7(dividend, divisor, quot, remainder, clk, ready, 1'b0,

1'b0, 1'b0);

 //Divider with dividend size 9 (511-0), divisor size 7 (127-0),

delay of 9+2 + 1=12 clock cycles

 reg [7:0] highs_hundreds, lows_hundreds;

 reg [7:0] highs_tens, highs_ones, lows_tens, lows_ones;

 reg [1:0] hi_low = 0; //multiplex hi-val and low-val division

 always @ (posedge clk) begin

 lastRemainder <= remainder;

 hi_low <= hi_low + 1;

 /* Divider has 12-cycle pipeline (ie get answer out 12

cycles later)

 when =0, send in hi / 100,

 get out hi/100 from 12 cycles ago

 =1, send in rem(hi/100) / 10, get

out rem(hi/100) /10 from 12 cycles ago

 =2, send in low / 100,

 get out low/100 from 12 cycles ago

 =3, send in rem(low/100)/ 10,

 get out rem(low/100)/10 from 12 cycles ago

 */

 case (hi_low)

 0: begin

 dividend <= high;

 divisor <= 100;

 highs_hundreds <= quot + 48;

 end

 1: begin

 dividend <= lastRemainder; //remainder(hi/100)

 divisor <= 10;

 highs_tens <= quot + 48;

 highs_ones <= remainder + 48;

 end

 2: begin

 dividend <= low;

 divisor <= 100;

 lows_hundreds <= quot + 48;

 end

 3: begin

 dividend <= lastRemainder;

 divisor <= 10;

 lows_tens <= quot + 48;

 lows_ones <= remainder + 48;

 end

 endcase

 end

 wire [16*8-1:0] vfd_data = {textMode[1], textLow,

 lows_hundreds, lows_tens, lows_ones,

 textHi,

 highs_hundreds, highs_tens, highs_ones };

 /*

 ({6'b0, lows_hundreds} + 48), //+48 to get the number into the ASCII code

(ie ASCII "0" == 0d48)

 ({4'b0, lows_tens} + 48), //hopefully these all come out to be 8-

bits wide

 ({4'b0, lows_ones} + 48),

 textHi,

 ({6'b0, highs_hundreds} + 48), //+48 to get the number into the ASCII

code (ie ASCII "0" == 0d48)

 ({4'b0, highs_tens} + 48), //hopefully these all come out to

be 8-bits wide

 ({4'b0, highs_ones} + 48) };*/

endmodule

module mark(reset, clk, increment, decrement, value);

 //This module just keeps track of incrementing/decrementing a mark-value

and doing the wrap around.

 //Mark value is 8-bits [0 and 360]

 parameter MIN_VALUE = 0;

 parameter MAX_VALUE = 360;

 parameter START_VALUE = 5;

 input reset, clk, increment, decrement; //We do +/- 1 each clock cycle

that increment and decrement are high (increment takes priority)

 output [8:0] value;

 reg [8:0] value = START_VALUE;

 always @ (posedge clk) begin

 if (reset)

 value <= START_VALUE;

 else begin

 if (increment)

 if (value == MAX_VALUE)

 value <= MIN_VALUE;

 else

 value <= value + 1;

 else if (decrement)

 if (value == MIN_VALUE)

 value <= MAX_VALUE;

 else

 value <= value - 1;

 end

 end

endmodule

/*module selection_fsm(reset, next_button, prev_button, mode_select);

 input reset, next_button, prev_button;

 output [1:0] mode_select; //Says which parameter we're controlling...

0=hue, 1=low mark, 2=hi mark

 parameter MODE_HUE = 0;

 parameter MODE_LOWMARK = 1;

 parameter MODE_HIMARK = 2;

 reg [1:0] mode_select = MODE_HUE;

 always @ (posedge enter_button) begin //move only on posedge of the

enter_button

 if (reset)

 mode_select <= MODE_HUE;

 else begin

 if (mode_select == MODE_HIMARK)

 mode_select <= 0;

 else

 mode_select <= mode_select + 1;

 end

 end

endmodule

*/

module slow_fast_fsm(reset, clk, button, doMovePulse);

 input reset, clk, button; //button is the slow/fast button of interest

 output doMovePulse; //High for every clock cycle we want to increment the

value of interest

 parameter SLOW_LENGTH = 130000000; //Num clock cycles to stay in

slow mode while button is depressed (max 256)

 parameter SLOW_TICK = 30000000; //Num clock cycles between slow

doMovePulses, should be a factor of SLOW_INTERVAL (max 256)

 parameter FAST_TICK = 01000000; //Num clock cycles between fast

doMovePulses (max 256)

 reg [26:0] count = 0, tick = 0;

 reg mode=0, doMovePulse;

 always @ (posedge clk) begin

 if (reset) begin

 count <= 0;

 mode <= 0;

 end else begin

 if (mode == 0) begin //SLOW MODE

 if (button) begin

 if (count < SLOW_LENGTH) begin

 count <= count + 1;

 if (tick >= SLOW_TICK)

 tick <= 0;

 else

 tick <= tick + 1;

 if (tick == 0)

 doMovePulse <= 1;

 else begin

 doMovePulse <= 0;

 end

 end else

 mode <= 1; //Switch to fast mode

 end

 else begin //ie, if no button is pressed

 doMovePulse <= 0;

 count <= 0;

 tick <= 0;

 end

 end //end slow mode

 else begin //FAST MODE

 if (button) begin

 if (count >= FAST_TICK) begin

 count <= 0;

 doMovePulse <= 1;

 end else begin

 doMovePulse <= 0;

 count <= count + 1;

 end

 end else begin//ie, no button pressed

 doMovePulse <= 0;

 count <= 0;

 mode <= 0; //back to SLOW MODE;

 end

 end

 end

 end

endmodule

NTSC TO ZBT And Filtering
//

// File: ntsc2zbt.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

//

// Example for MIT 6.111 labkit showing how to prepare NTSC data

// (from Javier's decoder) to be loaded into the ZBT RAM for video

// display.

//

// The ZBT memory is 36 bits wide; we only use 32 bits of this, to

// store 4 bytes of black-and-white intensity data from the NTSC

// video input.

///

// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we,

 filterFail_bw_switch,

filterFail_color_switch,

 hue1_passLow, hue1_passHigh,

hue2_passLow, hue2_passHigh,

 sat1_passLow, sat1_passHigh,

sat2_passLow, sat2_passHigh,

 hue1FilterSwitch,

sat1FilterSwitch, hue2FilterSwitch, sat2FilterSwitch,

 weighted_x1_avg, weighted_x2_avg,

weighted_y1_avg, weighted_y2_avg, winningFilter,

 noiseFilterSwitch,

filterDebounceSw,

 pixelCount1, pixelCount2);

 //DEBUGS:

 //x_sum, new_x_avg, pixelCount,

startFinalAvgDividing, endFinalAvgDividing, x_out, y_out);

 input clk; // system clock

 input vclk; // video clock from camera

 input [2:0] fvh;

 input dv;

 input [29:0] din; // full ycrcb data

 output [18:0] ntsc_addr;

 output [35:0] ntsc_data; //in RGB!!

 output ntsc_we; // write enable for NTSC data

 output [9:0] weighted_x1_avg, weighted_x2_avg; //x-average of all passing

pixels in filter1

 output [9:0] weighted_y1_avg, weighted_y2_avg; //

 ...in filter2

 output winningFilter; //(Debounced) Whether there is more in filter1

(==0) or filter2 (==1)

 output [18:0] pixelCount1, pixelCount2;

 input filterFail_bw_switch, filterFail_color_switch;

 input [8:0] hue1_passLow, hue1_passHigh, hue2_passLow, hue2_passHigh;

 input [6:0] sat1_passLow, sat1_passHigh, sat2_passLow, sat2_passHigh;

 input hue1FilterSwitch, hue2FilterSwitch;

 input sat1FilterSwitch, sat2FilterSwitch;

 input noiseFilterSwitch;

 input filterDebounceSw;

 //DEBUGS:

 /*output [26:0] x_sum;

 output [26:0] new_x_avg;

 output [18:0] pixelCount;

 output startFinalAvgDividing, endFinalAvgDividing;

 output [9:0] x_out;

 output [7:0] y_out; */

 wire [23:0] vr_pixel; //This is the output pixel line.

 wire [23:0] vr_pixel_hue1pass, vr_pixel_hue2pass;

 wire [23:0] vr_pixel_sat1pass, vr_pixel_sat2pass;

 reg [9:0] col = 0;

 reg [7:0] row = 0;

 reg [29:0] vdata = 0;

 reg vwe;

 reg old_dv;

 reg old_frame; // frames are even / odd interlaced

 reg even_odd; // decode interlaced frame to this wire

 wire frame = fvh[2];

 wire frame_edge = frame & ~old_frame;

 //********************

 // START COLOR-SPACE CONVERTERS

 // all color space converters use 65mhz clock

 //////////////////////////

 // YCrCb->RGB Color Space Converter (with Y Cr Cb as 10-bit inputs, R G B

as 8-bit outputs, 3 clock cycle delay */

 wire [9:0] Ylum, Cr, Cb;

 wire [7:0] R, G, B;

 YCrCb2RGB ycrcb_csc(R, G, B, clk, reset, Ylum, Cr, Cb);

 //////////////////////////

 //RGB->Hue COLOR SPACE CONVERTER (24 cycle delay)

 wire [8:0] hue; //between 0 and 360

 wire [6:0] sat;

 RGB2Hue rgb_csc(clk, reset, R, G, B, hue, sat);

 //Still want to use RGB later, so need to delay it by 24 cycles to match

it with the hue output

 wire [7:0] Rd, Gd, Bd;

 parameter RGB_delay = 24;

 delayNxM Rder(clk, R, Rd);

 delayNxM Gder(clk, G, Gd);

 delayNxM Bder(clk, B, Bd);

 defparam Rder.MSIZE = 8;

 defparam Rder.dn[7].NDELAY = RGB_delay;

 defparam Rder.dn[6].NDELAY = RGB_delay;

 defparam Rder.dn[5].NDELAY = RGB_delay;

 defparam Rder.dn[4].NDELAY = RGB_delay;

 defparam Rder.dn[3].NDELAY = RGB_delay;

 defparam Rder.dn[2].NDELAY = RGB_delay;

 defparam Rder.dn[1].NDELAY = RGB_delay;

 defparam Rder.dn[0].NDELAY = RGB_delay;

 defparam Gder.MSIZE = 8;

 defparam Gder.dn[7].NDELAY = RGB_delay;

 defparam Gder.dn[6].NDELAY = RGB_delay;

 defparam Gder.dn[5].NDELAY = RGB_delay;

 defparam Gder.dn[4].NDELAY = RGB_delay;

 defparam Gder.dn[3].NDELAY = RGB_delay;

 defparam Gder.dn[2].NDELAY = RGB_delay;

 defparam Gder.dn[1].NDELAY = RGB_delay;

 defparam Gder.dn[0].NDELAY = RGB_delay;

 defparam Bder.MSIZE = 8;

 defparam Bder.dn[7].NDELAY = RGB_delay;

 defparam Bder.dn[6].NDELAY = RGB_delay;

 defparam Bder.dn[5].NDELAY = RGB_delay;

 defparam Bder.dn[4].NDELAY = RGB_delay;

 defparam Bder.dn[3].NDELAY = RGB_delay;

 defparam Bder.dn[2].NDELAY = RGB_delay;

 defparam Bder.dn[1].NDELAY = RGB_delay;

 defparam Bder.dn[0].NDELAY = RGB_delay;

 //If displaying just B&W data, want to delay it by 27 cycles so it still

stays sync'd with RGB mode

 wire [7:0] BW_delayed;

 parameter BW_delay = 27; //3 for RGB + 24 for hue

 delayNxM BWder(clk, Ylum, BW_delayed);

 defparam BWder.MSIZE = 8;

 defparam BWder.dn[7].NDELAY = BW_delay;

 defparam BWder.dn[6].NDELAY = BW_delay;

 defparam BWder.dn[5].NDELAY = BW_delay;

 defparam BWder.dn[4].NDELAY = BW_delay;

 defparam BWder.dn[3].NDELAY = BW_delay;

 defparam BWder.dn[2].NDELAY = BW_delay;

 defparam BWder.dn[1].NDELAY = BW_delay;

 defparam BWder.dn[0].NDELAY = BW_delay;

 //END COLOR-SPACE CONVERTERS

 //***************************

 //Address Delay -- Syncronize generated address with the results of hue

and sat filtering

 wire [18:0] myaddr;

 wire [18:0] ntsc_addr;

 parameter addr_delay = BW_delay; //3 for RGB + 24 for hue

 delayNxM addr_der(clk, myaddr, ntsc_addr);

 defparam addr_der.MSIZE = 19;

 defparam addr_der.dn[18].NDELAY = addr_delay;

 defparam addr_der.dn[17].NDELAY = addr_delay;

 defparam addr_der.dn[16].NDELAY = addr_delay;

 defparam addr_der.dn[15].NDELAY = addr_delay;

 defparam addr_der.dn[14].NDELAY = addr_delay;

 defparam addr_der.dn[13].NDELAY = addr_delay;

 defparam addr_der.dn[12].NDELAY = addr_delay;

 defparam addr_der.dn[11].NDELAY = addr_delay;

 defparam addr_der.dn[10].NDELAY = addr_delay;

 defparam addr_der.dn[9].NDELAY = addr_delay;

 defparam addr_der.dn[8].NDELAY = addr_delay;

 defparam addr_der.dn[7].NDELAY = addr_delay;

 defparam addr_der.dn[6].NDELAY = addr_delay;

 defparam addr_der.dn[5].NDELAY = addr_delay;

 defparam addr_der.dn[4].NDELAY = addr_delay;

 defparam addr_der.dn[3].NDELAY = addr_delay;

 defparam addr_der.dn[2].NDELAY = addr_delay;

 defparam addr_der.dn[1].NDELAY = addr_delay;

 defparam addr_der.dn[0].NDELAY = addr_delay;

 //////////////////

 //VIDEO READING STUFF

 always @ (posedge vclk) //LLC1 is reference

 begin

 old_dv <= dv;

 vwe <= dv && !fvh[2] & ~old_dv; // if data valid, write it

 old_frame <= frame;

 even_odd = frame_edge ? ~even_odd : even_odd;

 if (!fvh[2])

 begin

 col <= fvh[0] ? 0 : //on a horizontal-sync, reset column

 (!fvh[2] && !fvh[1] && dv) ? col + 1 : col; //should

effectively go up to 720

 row <= fvh[1] ? 0 : //on a vertical-sync, reset row

 (!fvh[2] && fvh[0]) ? row + 1 : row;

//should effectively go up to 480/2 (interlacing)

 vdata <= (dv && !fvh[2]) ? din : vdata;

 end

 end

 // synchronize with system clock (above was sync'd with

tv_in_line_clock1)

 reg [9:0] x[1:0]; //two-register synchronizers

 reg [7:0] y[1:0]; //''

 reg [29:0] data[1:0]; //''

 reg we[1:0]; //''

 reg eo[1:0]; //''

 always @(posedge clk)

 begin

 {x[1],x[0]} <= {x[0],col};

 {y[1],y[0]} <= {y[0],row};

 {data[1],data[0]} <= {data[0],vdata};

 {we[1],we[0]} <= {we[0],vwe};

 {eo[1],eo[0]} <= {eo[0],even_odd};

 end

 //WRITE-ENABLE GENERATION

 // edge detection on write enable signal

 reg old_we;

 wire we_edge = we[1] & ~old_we;

 always @(posedge clk) old_we <= we[1];

 //STORAGE ADDRESS COMPUTATION

 //Address to store in ZBT-ram is basically the y-location plus the x-

location

 assign myaddr = {y[1][7:0], eo[1], x[1][9:0]};

 //wire ntsc_addr (output) is my_addr delayed by 3+24 @ 65mhz (ie its the

myaddr of the output of the hue and sat filters)

 delayN we_der(clk, we_edge, ntsc_we);

 defparam we_der.NDELAY = addr_delay; //Delay the generated we by 3+24 to

syncronize it with outputs of filters

 //COLOR SPACE CONVERSION

 // YCrCb->RGB Color Space Converter (with Y Cr Cb as 10-bit inputs, R G B

as 8-bit outputs, 3 clock cycle delay */

 assign Ylum = data[1][29:20] ; //luminance data

 assign Cr = data[1][19:10] ; //Cr data

 assign Cb = data[1][9: 0] ; //Cb data

 /*WIRE LIST AT THIS POINT:

 R, G, B are Ylum, Cr, and Cb converted and delayed by 3 @ 65mhz

 hue and sat are R, G, B converted and delayed by 24 @

65mhz

 Rd, Gd, Bd are R, G, B

 delayed by 24 @ 65mhz

 BW_delayed is Ylum

 delayed by 3+24 @ 65mhz */

 /*OUTPUT PIXEL GENERATION:

 Output to ZBT ram will be in RGB format.

 To create output pixel, we want to send it first through two

filters.

 First we send it through a hue-pass filter. If the pixel's hue is

inside the specified range

 of allowable hues, we pass the RGB information on to the next

filter.

 The next filter is a saturation-pass filter. If the pixel's

saturation is inside the specified range

 of allowable saturations, we pass the RGB information out to the

memory.

 If the pixel fails any of these filters, we pass through a "fail-

color" to be written to ZBT memory

 for that particular location. */

 /*Fail-Color:

 If we fail the hue and sat limits filter, we have 3 options:

 if bw_switch: display failed pixels as b&w

 if colorFail_switch: display failed pixels as pure blue

 if neither: display failed pixels as black */

 wire [24:0] hueFilterFailColor = filterFail_bw_switch ?

 {BW_delayed,BW_delayed,BW_delayed} :

 (filterFail_color_switch ? {8'b0, 8'b0, 8'd255} : 24'b0);

 wire pixel_failed_huesatFilter1, pixel_failed_huesatFilter2;

 hueSatFiltering huesat1_filter(hue1FilterSwitch, sat1FilterSwitch,

 hue, sat,

 hue1_passHigh, hue1_passLow, sat1_passHigh, sat1_passLow,

 hue1_Failed, sat1_Failed, pixel_failed_huesatFilter1);

 hueSatFiltering huesat2_filter(hue2FilterSwitch, sat2FilterSwitch,

 hue, sat,

 hue2_passHigh, hue2_passLow, sat2_passHigh, sat2_passLow,

 hue2_Failed, sat2_Failed, pixel_failed_huesatFilter2);

 wire pixel_failed_huesat = pixel_failed_huesatFilter1 &&

pixel_failed_huesatFilter2; //Did the pixel fail both enabled filters (ie

passes either filter)?

 /*NOISE FILTER:

 For a pixel to be displayed and count, the last

number_of_past_passing_pixels pixels have to

 have passed the hue and sat filters*/

 reg [6:0] past_passingFilter1_pixel_buffer = 0;

 reg [6:0] past_passingFilter2_pixel_buffer = 0;

 parameter LAST_7_PIXELS = 7'b1111111;

 always @ (posedge clk) begin

 if (x[1] < 2) begin //Reset pixel buffer at the start of a row

 past_passingFilter1_pixel_buffer <= 0;

 past_passingFilter2_pixel_buffer <= 0;

 end else begin

 past_passingFilter1_pixel_buffer <=

{past_passingFilter1_pixel_buffer[5:0], ~pixel_failed_huesatFilter1};

 past_passingFilter2_pixel_buffer <=

{past_passingFilter2_pixel_buffer[5:0], ~pixel_failed_huesatFilter2};

 end

 end

 wire pixel_passed_noiseFilter1, pixel_passed_noiseFilter2;

 assign pixel_passed_noiseFilter1 = past_passingFilter1_pixel_buffer[6:0]

== LAST_7_PIXELS;

 assign pixel_passed_noiseFilter2 = past_passingFilter2_pixel_buffer[6:0]

== LAST_7_PIXELS;

 //Output Pixel:

 wire pixelPassedFilters1 = noiseFilterSwitch ?

 pixel_passed_noiseFilter1 : //NOTE: Implicit that if it passed the

noise filter, it passed the hue-sat filter as well

 ~pixel_failed_huesatFilter1;

 wire pixelPassedFilters2 = noiseFilterSwitch ?

 pixel_passed_noiseFilter2 :

 ~pixel_failed_huesatFilter2;

 //Note: If filter1 (ie hue1 and sat1) or filter2 (ie hue2 and sat2) is

disabled,

 // the pixel "fails" the appropriate filter

 assign vr_pixel = (pixelPassedFilters1 || pixelPassedFilters2) ? //If

the pixel passes either noise filter...

 {Rd,Gd,Bd} :

 //display it as rgb

 hueFilterFailColor;

 //Else, kill it

 wire [35:0] ntsc_data;

 assign ntsc_data = {12'b0, vr_pixel};

 //CENTROID CALCULATOR

 wire [9:0] x1_avg, x2_avg, y1_avg, y2_avg;

 wire [18:0] pixelCount1, pixelCount2;

 centroid_calculator filter1_centroid(clk, x[1], y[1], eo[1], ntsc_we,

~pixelPassedFilters1, x1_avg, y1_avg, pixelCount1);

 centroid_calculator filter2_centroid(clk, x[1], y[1], eo[1], ntsc_we,

~pixelPassedFilters2, x2_avg, y2_avg, pixelCount2);

 weighted_averager w_avger1(clk, x1_avg, (x[1]==0 && y[1]==0),

weighted_x1_avg);

 weighted_averager w_avger2(clk, x2_avg, (x[1]==0 && y[1]==0),

weighted_x2_avg);

 weighted_averager w_avger3(clk, y1_avg, (x[1]==0 && y[1]==0),

weighted_y1_avg);

 weighted_averager w_avger4(clk, y2_avg, (x[1]==0 && y[1]==0),

weighted_y2_avg);

 //OUTPUT DEBOUNCING

 wire noisyWinner; //The filter that has most pixels detected at the

moment (0 == filter1, 1==filter2)

 assign noisyWinner = (pixelCount2 > pixelCount1) ? 1:0;

 reg newWinner = 0; //Which filter we are suspecting to be the winner (0

== filter1, 1==filter2)

 reg cleanFilterWinner = 0; //Debounced winning filter

 reg [4:0] debounceCount=0; //Number of NTSC frames the current winning

filter has been the winning filter

 parameter FILTER_DEBOUNCE_TIME = 5; //Number of NTSC frames to a filter

needs to be winning before its considered the winner (note: 1 frame = 37ms)

 always @ (posedge clk) begin

 if (x[1] == 0 && y[1] == 0) begin //ie check every new frame

 if (noisyWinner != newWinner) begin

 newWinner <= noisyWinner;

 debounceCount <= 0;

 end else if (debounceCount == FILTER_DEBOUNCE_TIME)

 cleanFilterWinner <= newWinner;

 else

 debounceCount <= debounceCount+1;

 end

 end

 assign winningFilter = filterDebounceSw ?

 cleanFilterWinner :

noisyWinner;

endmodule // ntsc_to_zbt

module hueSatFiltering(hueFilterSwitch, satFilterSwitch,

 hue, sat,

 huepassHigh, huepassLow,

satpassHigh, satpassLow,

 hueFailed, satFailed,

pixelFailed);

 /*Hue/Sat-Pass Filter:

 hue1_passLow, hue1_passHigh, hue2_passLow, hue2_passHigh,

 sat1_passLow, sat1_passHigh, sat2_passLow, sat2_passHigh,

 If huepassHigh > huepassLow, pass any pixel between low and high

 If huepassHigh < huepassLow, pass any pixel not between low and

high */

 input hueFilterSwitch, satFilterSwitch;

 input [8:0] hue, huepassHigh, huepassLow;

 input [6:0] sat, satpassHigh, satpassLow;

 output hueFailed, satFailed, pixelFailed;

 assign hueFailed = (hueFilterSwitch) ?

 (huepassHigh > huepassLow

?

 (hue > huepassLow

&& hue < huepassHigh ?

 0 :

 1) :

 (hue > huepassLow

|| hue < huepassHigh ?

 0 :

 1)) :

 0;

 assign satFailed = (satFilterSwitch) ?

 (satpassHigh >

satpassLow ?

 (sat >

satpassLow && sat < satpassHigh ?

 0 :

 1) :

 (sat >

satpassLow || sat < satpassHigh ?

 0:

 1)) :

 0;

 /*For pixelFailed, we want:

 If both filters are enabled, fail (=1) if it fails either filter.

 If one filter is enabled, fail (=1) if it fails just that

filter

 If both filters are disabled, fail (=1) always . */

 assign pixelFailed = (hueFilterSwitch || satFilterSwitch) ?

 ((hueFilterSwitch

&& hueFailed) || (satFilterSwitch && satFailed)) :

 1;

 //Thus if both hue and sat filters are disabled, the pixel

"fails" the filter.

 /*(hueFilterSwitch &&

satFilterSwitch) ?

 (hueFailed ||

satFailed) :

 (hueFilterSwitch ?

 hueFailed :

 (satFilterSwitch ?

 satFailed :

 0));*/

endmodule

module centroid_calculator(clk, x, y, eo, ntsc_we, pixelFailed, x_avg, y_avg,

pixelCount_out);

 input clk;

 input [9:0] x;

 input [7:0] y;

 input eo;

 input ntsc_we;

 input pixelFailed;

 output [9:0] x_avg, y_avg;

 output [18:0] pixelCount_out;

/*Averages/Centroid Calculation

 Centroid calculation is done by simply averaging all passing

pixels. But what size should

 the sum register be?

 Worst-case scenario: every pixel in a row passes. The max value

of the row's x-sum

 is then:

 720/2*720 + 720/2 = 259,560 (proving this is left as an

excercise to the reader).

 Assuming every pixel in every row passes, the max value of the

total x-sum is:

 259,560*480 = 124,588,800

 2^27 is: 134,217,128

 so lets make the x-sum variable 27-bits long.

 What size should the count register be? Worst case scenario is:

 480*720 = 345,600

 2^19 is 524,288

 */

 reg [26:0] x_sum = 0, y_sum=0;

 wire [26:0] new_x_sum, new_y_sum;

 wire [9:0] new_pixel_x, new_pixel_y;

 reg latch_x_sum, latch_y_sum;

 reg [9:0] x_avg = 0, y_avg=0;

 reg [18:0] pixelCount = 0;

 reg [18:0] pixelCount_out = 0;

 xy_adder2 x_summer(x_sum, new_pixel_x, new_x_sum, clk);

 xy_adder2 y_summer(y_sum, new_pixel_y, new_y_sum, clk);

 wire [26:0] new_x_avg, new_y_avg;

 wire startFinalAvgDividing, endFinalAvgDividing;

 delayN validAvgDivision(clk, startFinalAvgDividing, endFinalAvgDividing);

 defparam validAvgDivision.NDELAY = 30; //Divider's delay is 29 clocks.

start is high when the final values go in, so end will be high when final avg

comes out

 xyavg_divider x_avger(new_x_sum, pixelCount, new_x_avg, junk1, clk,

junk2, junk3, junk4, junk5);

 xyavg_divider y_avger(new_y_sum, pixelCount, new_y_avg, junk6, clk,

junk7, junk8, junk9, junk10);

/*CENTROID CALCULATION */

 assign new_pixel_x = pixelFailed ? 0 : x; //Add the current pixel's x-

value to the sum only when it passes the filters

 assign new_pixel_y = pixelFailed ? 0 : {1'b0, y, eo};

 assign startFinalAvgDividing = (x == 718 && y == 238) ? 1 : 0; //y==238

because y is interlaced, so y=238 corresponds to line 476 or 477, depending on

eo[0]

 //endFinalAvgDividing is startFinalAvgDividing delayed by 29+1

 always @ (posedge clk) begin

 latch_x_sum <= ntsc_we; //ntsc_we is valid when the output pixel

and address info is correct.

 //Since the

adder is adding passing pixels and has a latency of 1, the cycle

 //after

ntsc_we is high is when we have a new valid sum.

 if (x < 1 && y < 1) begin

 //If we're starting a new frame, reset all the averages

 //x_avg <= 0;

 //y_avg <= 0;

 x_sum <= 0;

 y_sum <= 0;

 pixelCount <= 0;

 end else begin

 //Update sums

 if (latch_x_sum) begin

 x_sum <= new_x_sum;

 y_sum <= new_y_sum;

 end

 //Update the pixel count

 if (ntsc_we && !pixelFailed)

 pixelCount <= pixelCount + 1;

 if (startFinalAvgDividing)

 pixelCount_out <= pixelCount;

 //Latch the output average to the calculated average from

the (pipelined) divider

 else if (endFinalAvgDividing) begin //Output of divider

right now is the final x_avg

 x_avg <= new_x_avg[9:0];

 y_avg <= new_y_avg[9:0];

 end

 end

 end

endmodule

module weighted_averager(clk, new_input, new_data_enable, prev_average);

 /* DOES A TIME-WEIGHTED AVERAGE:

 if x_4 is oldest input and x_0 is current input, output is

basically

 x0 + x1 + x2 + x3 + x4

 /2 /4 /6 /8 /10 */

 input clk;

 input [10:0] new_input;

 input new_data_enable;

 output [10:0] prev_average;

 reg [11:0] prev_average = 0;

 reg [10:0] new_input_latched = 0;

 wire [10:0] weighted_average = prev_average[10:0];

 wire [11:0] new_weighted_average;

 weighted_average_divider w_avg_diver(prev_average + new_input_latched,

3'd2, new_weighted_average,

 junk1, clk, junk2, junk3, junk4, junk5);

 always @ (posedge clk) begin

 if (new_data_enable) begin

 new_input_latched <= new_input;

 prev_average <= new_weighted_average;

 end

 end

endmodule

RGB To HSV Color Converter
module delayNxM(clk,in,out);

 //parameter NDELAY = 3; //Number of cycles to delay, min=2

 parameter MSIZE = 1; //Number of bits to delay (ie 2 == input is [1:0]),

min=1

 input clk;

 input [MSIZE-1:0] in;

 output [MSIZE-1:0] out;

 delayN dn[MSIZE-1:0] ({MSIZE{clk}}, in, out);

 //defparam dn.NDELAY = NDELAY;

endmodule // delayN

module RGB2Hue(clk, reset, Rin, Gin, Bin, hueOut, satBuffered);

 input [7:0] Rin, Gin, Bin;

 input clk,reset;

 wire [8:0] R, G, B; //We need to do arithmitic with signed variables,

so here

 assign R = {1'b0, Rin}; //we're just sign-extending RGB

 assign G = {1'b0, Gin};

 assign B = {1'b0, Bin};

 output [8:0] hueOut; //hue will be value between 0 and 360

 output [6:0] satBuffered; //saturation will be value between 0 and 100

 //HUE PIPELINE REGISTERS AND WIRES

 ////////////

 //STAGE 1:

 reg signed [8:0] Rd=0, Gd=0, Bd=0; //signed RGB delayed by 1

 reg signed [8:0] max=0, min=0; //Max and min RGB values

 reg [2:0] mode = 0; //notes which value was the maximum

 parameter MAXeqMIN = 0 ;

 parameter MAXisR_GgB = 1;

 parameter MAXisR_GlB = 2;

 parameter MAXisG = 3;

 parameter MAXisB = 4;

 wire [8:0] num_a, num_b; //These go into numerator subtractor.

Combinational logic selects which RGB values go into these.

 //STAGE 2:

 wire [8:0] denominator; //Denom[0] is used in stage 2, then delayed 2

cycles while the numerator is being multiplied

 wire [8:0] denominatorD;

 wire [8:0] numerator;

 //STAGE 3:

 wire [2:0] modeD; //mode is used in stage 1, then gets delayed 22

cycles to middle of stage 3

 wire [14:0] numeratorX60; //Numerator from STAGE 2 multiplied by 6

 wire hueUndefined;

 //STAGE 4:

 wire [14:0] quotient;

 wire [8:0] addTerm;

 //STAGE 5:

 wire [16:0] hue; //Hue before checking for undefined (gray) condition

 wire [8:0] hueOut;

 reg hueUndefinedD; //hueUndefined delayed by 2 cycles

 //STAGE 6:

 reg [8:0] hueBuffered = 0; //adder takes too long to be accurate. Make

the output a buffered register.

 //SAT PIPELINE REGISTERS AND WIRES

 ////////////

 wire [14:0] minX100;

 wire [7:0] maxD;

 wire [14:0] satDivisionResult;

 wire [6:0] satSubtractionResult;

 wire [6:0] satChecked;

 wire [6:0] satOut;

 reg [6:0] satBuffered;

 //PIPELINE DELAYS

 ////////////////////

 //HUE

 ////

 //delayN d1[2:0];

 delayNxM d1(clk, mode, modeD); //Which formula we're using (to select

which number we add in stage 3

 defparam d1.MSIZE = 3;

 defparam d1.dn[2].NDELAY = 22;

 defparam d1.dn[1].NDELAY = 22;

 defparam d1.dn[0].NDELAY = 22;

 delayNxM d2(clk, denominator, denominatorD);

 defparam d2.MSIZE = 9;

 defparam d2.dn[8].NDELAY = 2;

 defparam d2.dn[7].NDELAY = 2;

 defparam d2.dn[6].NDELAY = 2;

 defparam d2.dn[5].NDELAY = 2;

 defparam d2.dn[4].NDELAY = 2;

 defparam d2.dn[3].NDELAY = 2;

 defparam d2.dn[2].NDELAY = 2;

 defparam d2.dn[1].NDELAY = 2;

 defparam d2.dn[0].NDELAY = 2;

 //delayN d3(clk, hueUndefined, hueUndefinedD);

 //defparam d3.NDELAY = 1;

 //Note: can't delay by 1 using NDELAY. So just doing it in sequential

area.

 //SAT

 ////

 delayNxM d4(clk, max[7:0], maxD);

 defparam d4.MSIZE = 8;

 defparam d4.dn[7].NDELAY = 2;

 defparam d4.dn[6].NDELAY = 2;

 defparam d4.dn[5].NDELAY = 2;

 defparam d4.dn[4].NDELAY = 2;

 defparam d4.dn[3].NDELAY = 2;

 defparam d4.dn[2].NDELAY = 2;

 defparam d4.dn[1].NDELAY = 2;

 defparam d4.dn[0].NDELAY = 2;

 delayNxM d5(clk, satChecked, satOut);

 defparam d5.MSIZE = 7;

 defparam d5.dn[6].NDELAY = 3;

 defparam d5.dn[5].NDELAY = 3;

 defparam d5.dn[4].NDELAY = 3;

 defparam d5.dn[3].NDELAY = 3;

 defparam d5.dn[2].NDELAY = 3;

 defparam d5.dn[1].NDELAY = 3;

 defparam d5.dn[0].NDELAY = 3;

 //ANY COMBINATIONAL LOGIC

 /////////////////////

 assign num_a = (mode == MAXeqMIN ?

 8'b0 :

 (mode == MAXisR_GgB || mode ==

MAXisR_GlB ?

 Gd :

 (mode == MAXisG ?

 Bd :

 Rd)));

 assign num_b = (mode == MAXeqMIN ?

 8'b0 :

 (mode == MAXisR_GgB || mode ==

MAXisR_GlB ?

 Bd :

 (mode == MAXisG ?

 Rd :

 Gd)));

 assign addTerm = (modeD == MAXisR_GlB ?

 9'd360 :

 (modeD == MAXisG ?

 9'd120 :

 (modeD == MAXisB ?

 9'd240 :

 9'b0)));

 assign hueUndefined = (modeD == MAXeqMIN);

 assign hueOut = hueUndefinedD ? //If the hue is undefined, we

want to ultimately output 0.

 9'b0 : hue[8:0]; //Otherwise, we

want to output the low 8 bits of the adder

 assign satChecked = (satSubtractionResult > 100) ? //Rounding bugs

in subtractor sometimes give us values more than 100. Don't let that.

 7'd100 :

satSubtractionResult;

 //WIRE UP ALL THE MATH-ERS

 /////////////////////

 //HUE

 hsv_subtractor sub1(max, min, denominator, clk); //Denominator <= max-

min

 hsv_subtractor sub2(num_a, num_b, numerator, clk);

 hsv_multiplier mult1(clk, numerator, numeratorX60);

 hsv_divider div1(numeratorX60, denominatorD, quotient, junk1, clk,

junk2, junk3, junk4, junk5);

 hsv_adder add1(quotient, addTerm, hue, clk);

 //SAT

 hsv_s_multiplier mult2(clk, min[7:0], minX100); //min[7:0] b/c min was

designed to be signed, so it's actually 8. Its always positive, though, so

drop the sign

 hsv_s_divider div2(minX100, maxD, satDivisionResult, junk6, clk,

junk7, junk8, junk9, junk10);

 wire [6:0] hsv_subtractor_a = 7'd100;

 hsv_s_subtractor sub3(hsv_subtractor_a, satDivisionResult[6:0],

satSubtractionResult, clk); //We set it up so division result is no more than

100, so use only [6:0]

 always @ (posedge clk) begin

 //

 //STAGE 1: MIN/MAX SELECTOR and RGB DELAY

 //Length: 1 clock cycle

 //First step: sort out the min and max values

 //Red is max or max=min

 if (R >= G && R >= B) begin

 max <= R;

 if (G > B) begin

 min <= B;

 if (R == B)

 mode <= MAXeqMIN;

 else

 mode <= MAXisR_GgB; //...and green is

greater than blue

 end else begin

 min <= G;

 if (R == G)

 mode <= MAXeqMIN;

 else

 mode <= MAXisR_GlB; //...and green is less

than blue

 end

 //Green is max

 end else if (G > R && G > B) begin

 mode <= MAXisG;

 max <= G;

 if (R > B)

 min <= B;

 else

 min <= R;

 //Blue is max

 end else begin

 mode <= MAXisB;

 max <= B;

 if (R > G)

 min <= G;

 else

 min <= R;

 end

 //Next delay R, G, B to fit with pipeline and get ready for signed

arithmitic

 // hopefully R = 100 will be Rd = +100

 Rd <= R;

 Gd <= G;

 Bd <= B;

 //

 //STAGE 2: NUMERATOR AND DENOMONATOR GENERATION

 // Latency: 1 (a 9-bit signed subtractor w/ 9-bit signed

output)

 //

 //STAGE 3: MULTIPLIER

 // Multiply numerator by 0d60

 // Latency: 2 (9-bit signed multiplier by constant 0d60,

output is 15-bit signed)

 //

 //STAGE 4: DIVIDER and ADDING SELECTOR

 // Divide the numerator*60 by denominator

 // Latency: 15+4=19 (15-bit-signed-numerator divider)

 hueUndefinedD <= hueUndefined;

 hueBuffered <= hueOut;

 satBuffered <= satOut;

 end

endmodule

///

//

// Pushbutton Debounce Module (video version)

//

///

module debounce (reset, clock_65mhz, noisy, clean);

 input reset, clock_65mhz, noisy;

 output clean;

 reg [19:0] count;

 reg new, clean;

 always @(posedge clock_65mhz)

 if (reset) begin new <= noisy; clean <= noisy; count <= 0; end

 else if (noisy != new) begin new <= noisy; count <= 0; end

 else if (count == 650000) clean <= new;

 else count <= count+1;

endmodule

Game Engine
///

//

// Game: game engine

//

///

module Game

(clock,reset,hCount,vCount,hsync,vsync,blank,AICrosshairX,AICrosshairY,AIFire,p

layerCrosshairX,playerCrosshairY,playerFire,calibrate,startPlaying,leaveCalibra

te,phsync,pvsync,pblank,pixel,duckX,duckY,duckAlive,AIShotsLeft,playerShotsLeft

,roundOver,roundStart,dir,inCalibrate);

 input clock; //system clock

 input reset; //global reset, active high

 input [10:0] hCount; //horizontal position of the pixel

being requested;

 input [9:0] vCount; //vertical position of the pixel being

requested;

 input hsync, vsync; //horizontal and vertical sync, active low

 input blank; //xvga blanking, 1 means output black pixel

 input [10:0] AICrosshairX; //x coordinate of the AI's crosshair

 input [9:0] AICrosshairY; //y coordinate of the AI's crosshair

 input AIFire; //high when AI firing

 input [10:0] playerCrosshairX; //x coordinate of the player's

crosshair

 input [9:0] playerCrosshairY; //y coordinate of the player's

crosshair

 input playerFire; //high when player firing

 input calibrate; //1 to enter calibration mode

 input startPlaying; //1 to start playing

 input leaveCalibrate; //1 to leave calibration mode

 output phsync,pvsync,pblank; //outputted horizontal and vertical

syncs, and blank, with appropriate delay

 output [7:0] pixel; //rgb coloring of pixel

 output [10:0] duckX; //duck's x coordinate

 output [9:0] duckY; //duck's y coordinate

 output duckAlive; //1 if duck is alive

 output [1:0] AIShotsLeft; //number of remaining shots for AI

 output [1:0] playerShotsLeft; //number of remaining shots for player

 output roundOver; //asserted high for one clock cycle if round

expired due to time elapsing

 output roundStart; //high for one clock cycle when round starts

 output [1:0] dir; //direction that duck is travelling

 output inCalibrate; //high when device is in calibration mode

 reg [7:0] pixel;

 reg oldvsync; //stores value of vsync from one clock cycle

ago, used for edge detection

 reg [10:0] duckX; //duck's x coordinate

 reg [9:0] duckY; //duck's y coordinate

 reg duckAlive; //1 if duck is alive

 reg [2:0] duckState; //specifies which image of the duck

should be displayed

 reg [1:0] dir; //duck's current heading

 reg [3:0] duckSpeed; //duck's speed

 reg [4:0] playerScore; //player's score

 reg [4:0] AIScore; //AI's score

 reg [3:0] roundNumber; //round number

 reg startTimer; //asserted to start timer running

 reg signed [4:0] duckXAdj, duckYAdj; //equal to the change in x and y per

frame, signed since x and y could increase or decrease

 //these are equal to +/- duckSpeed,

with the sign determined by current direction

 reg [4:0] animCount; //used to make each frame of duck animation

last for several frames of video output

 reg duckHit; //1 when duck is shot

 reg [1:0] AIShotsLeft; //number of remaining shots for AI

 reg [1:0] playerShotsLeft; //number of remaining shots for player

 reg [7:0] respawnCount; //used to count frames between duck respawn

 reg [19:0] ducksHit; //specifies state of all ducks in round (is alive or

which player killed)

 reg [10:0] popupX; //x coordinate of popup

 reg [9:0] popupY; //y coordinate of popup

 reg justRespawned; //high for one cycle when the duck just respawned

 reg [10:0] roundX; //x coordinate of top left corner of round display

 reg [9:0] roundY; //y coordinate of top left corner of round display

 reg [23:0] roundString; //string to display in round display

 reg resetTimer; //asserted to reset timer

 reg playerWin; //1 if player killed duck in last round

 reg oldPlayerFire1; //player fire delayed by one update cycle

 reg oldPlayerFire2;

 reg oldPlayerFire3;

 reg oldPlayerFire4;

 reg oldPlayerFire5;

 reg oldPlayerFire6;

 parameter hDim=1024; //horizontal dimension of screen

 parameter vDim=768; //vertical dimension of screen

 parameter horiz=450; //distance of horizon from top of

screen

 parameter duckWidth=64; //width of duck

 parameter duckHeight=64; //height of duck

 parameter animPeriod=5'b01010; //duration in frames of duck animation

 parameter fallSpeed=4'b0110; //speed of fall

 //enum of directions, north east, north west, and so on

 parameter dirNE = 2'b00;

 parameter dirNW = 2'b01;

 parameter dirSE = 2'b10;

 parameter dirSW = 2'b11;

 //enum of all possible states that the duck could be in, each state

corresponds to a different image

 parameter fly1=3'b000;

 parameter fly2=3'b001;

 parameter fly3=3'b010;

 parameter fly4=3'b011;

 parameter hit=3'b100;

 parameter fall1=3'b101;

 parameter fall2=3'b110;

 parameter dead=3'b111;

 //number of frames before duck respawns

 parameter respawnDelay=120; //1 second at 60 hZ refresh rate

 //used to specify entries of ducksHit, which holds state of ducks for

score overlay

 parameter playerKilledDuck=2'b10;

 parameter AIKilledDuck=2'b01;

 parameter popupHide=1000;

 parameter popupDisplay=338;

 parameter borderPixels=30; //number of pixels in border

 //connections to game objects

 wire [10:0] hCount;

 wire [9:0] vCount;

 wire [7:0]

backgroundPixel,duckPixel,treePixel,crosshairPixel,AICrosshairPixel,roundPixel,

scorePixel,roundOverPixel,titlePixel;

 wire

duckHasPixel,treeHasPixel,crosshairHasPixel,AICrosshairHasPixel,roundOver,score

1,score2,scoreHasPixel,roundOverHasPixel,titleHasPixel,doneTitle,calibrateMode;

 //outputted syncs and blank are same as input

 assign phsync=hsync;

 assign pvsync=vsync;

 assign pblank=blank;

 assign roundStart=startTimer; //round starts when timer starts

 assign inCalibrate=calibrateMode;

 always @ (posedge clock) begin

 oldvsync<=vsync;

 if ((reset) || (roundNumber>=10)) begin

 duckX<=hDim/2;

 duckY<=horiz+1;

 dir<=dirNE;

 duckSpeed<=4'b0110;

 duckState<=fly1;

 animCount<=5'b00000;

 duckHit<=0;

 AIShotsLeft<=2'b11;

 playerShotsLeft<=2'b11;

 AIScore<=5'b00000;

 playerScore<=5'b00000;

 duckAlive<=1'b1;

 roundNumber<=4'b0000;

 startTimer<=1'b1;

 respawnCount<=8'b00000000;

 resetTimer<=1'b0;

 ducksHit<=20'b0;

 popupX<=hDim/2;

 popupY<=popupHide; //offscreen

 playerWin<=1'b0;

 oldPlayerFire1<=1'b0;

 oldPlayerFire2<=1'b0;

 oldPlayerFire3<=1'b0;

 oldPlayerFire4<=1'b0;

 oldPlayerFire5<=1'b0;

 oldPlayerFire6<=1'b0;

 end

 //if vsync just stepped low, and title screen is done, update

state

 else if (((oldvsync == 1) && (vsync==0)) && (doneTitle==1)) begin

 oldPlayerFire1<=playerFire;

 oldPlayerFire2<=oldPlayerFire1;

 oldPlayerFire3<=oldPlayerFire2;

 oldPlayerFire4<=oldPlayerFire3;

 oldPlayerFire5<=oldPlayerFire4;

 oldPlayerFire6<=oldPlayerFire5;

 //increment animCount each frame

 if (animCount==animPeriod-1)

 animCount<=5'b00000;

 else

 animCount<=animCount+1;

 //increment animation state

 if (animCount == 5'b00000) begin

 case (duckState)

 fly1: duckState<=duckHit ? hit : (roundOver ?

dead : fly2);

 fly2: duckState<=duckHit ? hit : (roundOver ?

dead : fly3);

 fly3: duckState<=duckHit ? hit : (roundOver ?

dead : fly4);

 fly4: duckState<=duckHit ? hit : (roundOver ?

dead : fly1);

 hit: duckState<=fall1;

 fall1:

duckState<=(duckY+fallSpeed+duckHeight>=horiz) ? dead : fall2;

 fall2:

duckState<=(duckY+fallSpeed+duckHeight>=horiz) ? dead : fall1;

 dead: duckState<=(respawnCount>=respawnDelay)

? fly1 : dead;

 default: duckState<=fly1;

 endcase

 end

 //duck respawning, start of new round

 if(duckState==dead) begin

 duckX<=hDim/2;

 duckY<=horiz-10;

 if(respawnCount>=respawnDelay) begin

 respawnCount<=0;

 AIShotsLeft<=2'b11;

 playerShotsLeft<=2'b11;

 dir<=(roundNumber==((roundNumber/2)*2)) ?

dirNE : dirNW;

 duckAlive<=1'b1;

 duckHit<=0;

 duckState<=fly1; //just in case, already set

above, but done again to avoid any chance of glitch

 startTimer<=1'b1;

 popupY<=popupHide;

 end

 else begin

 popupY<=popupDisplay;

 respawnCount<=respawnCount+1;

 startTimer<=1'b0;

 end

 end

 else begin

 startTimer<=1'b0;

 end

 //determines the Adjustment to duck's x and y coordinates

 //if flying, move in given direction

 if(duckState==fly1 || duckState==fly2 || duckState==fly3 ||

duckState==fly4) begin

 case (dir)

 dirNE: begin

 duckXAdj<=duckSpeed-

2*(roundNumber-((roundNumber/2)*2));

 duckYAdj<=-duckSpeed;

 end

 dirNW: begin

 duckXAdj<=(-

duckSpeed)+2*(roundNumber-((roundNumber/2)*2));

 duckYAdj<=-duckSpeed;

 end

 dirSE: begin

 duckXAdj<=duckSpeed-

2*(roundNumber-((roundNumber/2)*2));

 duckYAdj<=duckSpeed;

 end

 dirSW: begin

 duckXAdj<=(-

duckSpeed)+2*(roundNumber-((roundNumber/2)*2));

 duckYAdj<=duckSpeed;

 end

 endcase

 end

 //after being hit

 else begin

 //if dead, don't move

 if(duckState==dead) begin

 duckXAdj<=0;

 duckYAdj<=0;

 end

 else begin

 //when first hit don't move

 if(duckState==hit) begin

 duckXAdj<=0;

 duckYAdj<=0;

 end

 //then fall down

 else begin

 duckXAdj<=0;

 duckYAdj<=fallSpeed;

 end

 end

 end

 //if adjustments to x and y coordinate keep the duck in the

sky or behind the grass, just move the duck

 if ((duckX+duckXAdj>=borderPixels) &&

(duckX+duckXAdj+duckWidth<=hDim-borderPixels) && (duckY+duckYAdj>=borderPixels)

&& (duckY+duckYAdj<=horiz) &&(~(duckState==dead))) begin

 duckX<=duckX+duckXAdj;

 duckY<=duckY+duckYAdj;

 end

 else begin

 if(~(duckState==dead)) begin

 case (dir)

 dirNE: dir <= (duckX+duckXAdj+duckWidth

< hDim-borderPixels) ? dirSE : (((duckX+duckXAdj+duckWidth == hDim-

borderPixels) && (duckY+duckYAdj ==borderPixels)) ? dirSW : dirNW);

 dirNW: dir <= (duckX+duckXAdj >

borderPixels) ? dirSW : (((duckX+duckXAdj == borderPixels) && (duckY+duckYAdj

== borderPixels)) ? dirSE : dirNE);

 dirSE: dir <= (duckX+duckXAdj+duckWidth

< hDim-borderPixels) ? dirNE : (((duckX+duckXAdj+duckWidth == hDim-

borderPixels) && (duckY+duckYAdj == horiz)) ? dirNW : dirSW);

 dirSW: dir <= (duckX+duckXAdj >

borderPixels) ? dirNW : (((duckX+duckXAdj == borderPixels) && (duckY+duckYAdj

== horiz)) ? dirNE : dirSE);

 endcase

 //moves the duck during reflection

 duckX<=((duckX+duckXAdj+duckWidth < hDim-

borderPixels) && (duckX+duckXAdj>borderPixels)) ? duckX+duckXAdj : duckX-

duckXAdj;

 duckY<=((duckY+duckYAdj < horiz) &&

(duckY+duckYAdj>borderPixels)) ? duckY+duckYAdj : duckY-duckYAdj;

 end

 end

 //handles player shooting

 if(oldPlayerFire5 && (~(oldPlayerFire6)) &&

(playerShotsLeft>0)) begin

 playerShotsLeft<=playerShotsLeft-1;

 if((playerCrosshairX>=duckX)&&(playerCrosshairX<duckX+duckWidth)&&(player

CrosshairY>=duckY)&&(playerCrosshairY<duckY+duckHeight)) begin

 duckHit<=1;

 duckAlive<=1'b0;

 roundNumber<=roundNumber+1;

 resetTimer<=1'b1;

 playerWin<=1'b1;

 if(score2) begin

 playerScore<=playerScore+1;

 end

 else begin

 if(score1) playerScore<=playerScore+2;

 else playerScore<=playerScore+3;

 end

 case (roundNumber)

 0:ducksHit[1:0]<=playerKilledDuck;

 1:ducksHit[3:2]<=playerKilledDuck;

 2:ducksHit[5:4]<=playerKilledDuck;

 3:ducksHit[7:6]<=playerKilledDuck;

 4:ducksHit[9:8]<=playerKilledDuck;

 5:ducksHit[11:10]<=playerKilledDuck;

 6:ducksHit[13:12]<=playerKilledDuck;

 7:ducksHit[15:14]<=playerKilledDuck;

 8:ducksHit[17:16]<=playerKilledDuck;

 9:ducksHit[19:18]<=playerKilledDuck;

 default:ducksHit<=ducksHit;

 endcase

 end

 end

 else begin

 //handles AI shooting

 if(AIFire && (AIShotsLeft>0)) begin

 AIShotsLeft<=AIShotsLeft-1;

 if((AICrosshairX>=duckX)&&(AICrosshairX<duckX+duckWidth)&&(AICrosshairY>=

duckY)&&(AICrosshairY<duckY+duckHeight)) begin

 duckHit<=1;

 duckAlive<=1'b0;

 roundNumber<=roundNumber+1;

 resetTimer<=1'b1;

 playerWin<=1'b0;

 if(score2) begin

 AIScore<=AIScore+1;

 end

 else begin

 if(score1) AIScore<=AIScore+2;

 else AIScore<=AIScore+3;

 end

 case (roundNumber)

 0:ducksHit[1:0]<=AIKilledDuck;

 1:ducksHit[3:2]<=AIKilledDuck;

 2:ducksHit[5:4]<=AIKilledDuck;

 3:ducksHit[7:6]<=AIKilledDuck;

 4:ducksHit[9:8]<=AIKilledDuck;

 5:ducksHit[11:10]<=AIKilledDuck;

 6:ducksHit[13:12]<=AIKilledDuck;

 7:ducksHit[15:14]<=AIKilledDuck;

 8:ducksHit[17:16]<=AIKilledDuck;

 9:ducksHit[19:18]<=AIKilledDuck;

 default:ducksHit<=ducksHit;

 endcase

 end

 end

 else begin

 resetTimer<=1'b0;

 end

 end

 end

 end

 Background aBackground(hCount,vCount,backgroundPixel);

 defparam aBackground.horizon = horiz;

 Duck aDuck(clock, duckX, duckY, hCount, vCount, duckState,

duckHasPixel, duckPixel);

 defparam aDuck.flyWidth = duckWidth;

 defparam aDuck.fallWidth = duckWidth/2;

 defparam aDuck.height= duckHeight;

 TreeGrass aTree(clock,hCount,vCount,treeHasPixel, treePixel);

 //player's crosshair

 Crosshair aCrosshair(clock, playerCrosshairX, playerCrosshairY, hCount,

vCount, crosshairHasPixel, crosshairPixel);

 defparam aCrosshair.color = 8'b00011100;

 //ai's crosshair

 Crosshair bCrosshair(clock, AICrosshairX, AICrosshairY, hCount, vCount,

AICrosshairHasPixel, AICrosshairPixel);

 defparam bCrosshair.color = 8'b11100000;

 //round timer

 RoundTimer aRoundTimer(clock,reset,startTimer,resetTimer,roundOver);

 defparam aRoundTimer.numSeconds = 10;

 //one second score timer

 RoundTimer scoreTimer1(clock,reset,startTimer,resetTimer,score1);

 defparam scoreTimer1.numSeconds = 1;

 //three second score timer

 RoundTimer scoreTimer2(clock,reset,startTimer,resetTimer,score2);

 defparam scoreTimer2.numSeconds = 3;

 //score overlay

 ScoreOverlay

aScoreOverlay(clock,reset,hCount,vCount,playerScore,playerShotsLeft,ducksHit,sc

oreHasPixel,scorePixel);

 //round over overlay

 RoundOverOverlay

aRoundOverOverlay(clock,reset,roundOver,hCount,vCount,popupX,popupY,playerWin,r

oundOverHasPixel,roundOverPixel);

 wire compoundReset;

 assign compundReset=(roundNumber>=10);

 //title screen

 TitleScreen

aTitleScreen(clock,reset,compoundReset,hCount,vCount,calibrate,startPlaying,lea

veCalibrate,titleHasPixel,titlePixel,doneTitle,calibrateMode);

 //round display font rom, still need to implement roundX,roundY, and

roundString calculations

 //char_string_display

aChar_string_display(clock,hcount,vcount,roundString,roundX,roundY,roundPixel);

 //defparam aChar_string_display.NCHAR=4;

 //defparam aChar_string_display.NCHAR_BITS=2;

 //update pixel whenever a new location is requested, will be cleaned up

to avoid all this if/else

 always @ * begin

 if(doneTitle) begin

 if (scoreHasPixel) pixel<=scorePixel;

 else begin

 if (crosshairHasPixel) pixel<=crosshairPixel;

 else begin

 if (AICrosshairHasPixel)

pixel<=AICrosshairPixel;

 else begin

 if (treeHasPixel)

pixel<=treePixel;

 else begin

 if (roundOverHasPixel)

pixel<=roundOverPixel;

 else begin

 if (duckHasPixel)

pixel<=duckPixel;

 else

pixel<=backgroundPixel;

 end

 end

 end

 end

 end

 end

 else

 pixel<=titlePixel;

 end

endmodule

Graphics Pipeline

Background Sky
///

//

// Background:blue sky

//

///

module Background (hCount,vCount,pixel);

 input [10:0] hCount; //hCount is x coordinate of current pixel

being requested

 input [9:0] vCount; //vCount is y coordinate of the pixel being

requested

 output [7:0] pixel; //rgb value of pixel

 parameter hDim=1024; //hDim is horizontal size of screen

 parameter vDim=768; //vDim is vertical size of screen

 parameter horizon=450; //location of horizon as measured from top of

screen

 parameter topColor=8'b00000111; //color of sky

 parameter bottomColor=8'b11111010; //color of dirt, never actually

displayed, grass and dirt display over it, there just in case

 parameter blackColor=8'b00000000; //border

 parameter dBlack=30; //30 pixel black border

 assign pixel= ((hCount<=dBlack) || (hCount>hDim-dBlack) ||

(vCount<=dBlack)) ? blackColor : (((vCount >= 0) && (vCount <= horizon+50)) ?

topColor : bottomColor);

endmodule

Duck
///

//

// Duck: animated duck

//

///

module Duck (clk, x, y, hCount, vCount, state, hasPixel, pixel);

 input clk; //clock

 input [10:0] x, hCount; //x is the duck's x position, hCount is the x

coordinate of the pixel being requested

 input [9:0] y, vCount; //y is the duck's y position, vCount is

the y coordinate of the pixel being requested

 input [2:0] state; //specifies which of the possible images of

the duck to display, like fly or falling

 output hasPixel; //asserted high if the duck has a pixel in

that region

 output [7:0] pixel; //rgb value of the pixel

 reg hasPixel; //asserted high if the duck has a pixel in

that region

 reg [7:0] pixel; //rgb value of the pixel

 reg [11:0] addr; //addr to read from ram

 wire [7:0] dout1,dout2,dout3,dout4,dout5,dout6;

 //enum of all possible states that the duck could be in, each state

corresponds to a different image

 parameter fly1=3'b000;

 parameter fly2=3'b001;

 parameter fly3=3'b010;

 parameter fly4=3'b011; //same as fly2 in terms of image

 parameter hit=3'b100;

 parameter fall1=3'b101;

 parameter fall2=3'b110;

 parameter dead=3'b111;

 parameter flyWidth=64;

 parameter fallWidth=32;

 parameter height=64;

 wire [6:0] width;

 //these roms contain the bitmaps of the duck in various positions

 fly1rom aFly1Rom(addr, clk, dout1);

 fly2rom aFly2Rom(addr, clk, dout2);

 fly3rom aFly3Rom(addr, clk, dout3);

 hitrom aHitRom(addr, clk, dout4);

 fall1rom aFall1Rom(addr, clk, dout5);

 fall2rom aFall2Rom(addr, clk, dout6);

 //width of duck sprite different when flying or falling

 assign width=(state==fly1 || state==fly2 || state==fly3 || state==fly4 ||

state==hit) ? flyWidth : fallWidth;

 always @ (posedge clk) begin

 //check to see if requested pixel is within boundary

 if ((hCount >= x) && (hCount < x+width) && (vCount >= y) &&

(vCount < y+height)) begin

 hasPixel<=1;

 //determine which address to read

 addr<=width*(vCount-y)+(hCount-x);

 //determine which output to use

 case (state)

 fly1:pixel<=dout1;

 fly2:pixel<=dout2;

 fly3:pixel<=dout3;

 fly4:pixel<=dout2;

 hit:pixel<=dout4;

 fall1:pixel<=dout5;

 fall2:pixel<=dout6;

 default:pixel<=dout1;

 endcase

 end

 else begin

 hasPixel<=0;

 end

 end

endmodule

Tree and Grass
///

//

// TreeGrass: tree and grass layer

//

///

module TreeGrass (clk, hCount, vCount, hasPixel, pixel);

 input clk; //clock

 input [10:0] hCount; //horizontal location of the

pixel being requested

 input [9:0] vCount; //vertical location of the pixel being

requested

 output hasPixel; //asserted high if this object

has a pixel at hCount, vCount

 output [7:0] pixel; //rgb value of pixel

 reg hasPixel;

 reg [7:0] pixel;

 reg [12:0] addr1;

 reg [14:0] addr2;

 wire [7:0] dout1,dout2;

 wire [10:0] hCountPrime;

 wire [9:0] vCountPrime;

 parameter height=460;

 parameter width=276;

 parameter x=100; //x coordinate of top left corner of tree

 parameter y=30; //y coordinate of top left corner of tree

 parameter horizon=450; //location of horizon

 parameter grassDirtHeight=360; //height of grass and dirt

 parameter screenHeight=768;

 parameter screenWidth=1024;

 parameter hBlack=30; //leftmost and rightmost hBlack pixels are

black in grass and dirt section

 assign hCountPrime=hCount/4;

 assign vCountPrime=vCount/4;

 //roms that store tree, grass, dirt

 treerom aTreeRom(addr1,clk,dout1);

 grassdirtrom aGrassDirtRom(addr2,clk,dout2);

 always @ (posedge clk) begin

 //check if pixel is within boundary of grass, divisions by 4 are

due to compression of grass bitmap

 if ((vCount>(screenHeight-grassDirtHeight)) &&

(vCount<=screenHeight)) begin

 if((hCount<hBlack) || (hCount>(screenWidth-hBlack))) begin

 pixel<=8'b00000000;

 hasPixel<=1'b1;

 end

 else begin

 addr2<=(screenWidth/4)*(vCountPrime-(screenHeight-

grassDirtHeight)/4)+hCountPrime; //bitmap for grass and dirt is compressed by 4

 if(dout2==8'b0000111) begin //if pixel is blue,

don't display so duck will be on top of blue sky but behind grass

 //check to see if requested pixel is within

boundary of tree, division by 4 due to compression of tree bitmap

 if ((hCount >= x) && (hCount < x+width) &&

(vCount >= y) && (vCount < y+height)) begin

 //determine which address to read

 addr1<=width/4*(vCount/4-

y/4)+(hCount/4-x/4);

 pixel<=dout1;

 hasPixel<=1'b1;

 end

 else

 hasPixel<=1'b0;

 end

 else begin

 pixel<=dout2;

 hasPixel<=1'b1;

 end

 end

 end

 else begin

 //check to see if requested pixel is within boundary of

tree, division by 4 due to compression of tree bitmap

 if ((hCount >= x) && (hCount < x+width) && (vCount >= y) &&

(vCount < y+height)) begin

 //determine which address to read

 addr1<=width/4*(vCount/4-y/4)+(hCount/4-x/4);

 pixel<=dout1;

 hasPixel<=~(dout1==8'b0000111); //if pixel

is blue, don't display so duck will be on top of blue sky but behind tree

 end

 else begin

 hasPixel<=1'b0;

 end

 end

 end

endmodule

Crosshair
///

//

// Crosshair

//

///

module Crosshair (clk, x, y, hCount, vCount, hasPixel, pixel);

 input clk; //clock

 input [10:0] x; //x coordinate of

crosshair(center)

 input [9:0] y; //y coordinate of

crosshair(center)

 input [10:0] hCount; //horizontal location of the

pixel being requested

 input [9:0] vCount; //vertical location of the pixel being

requested

 output hasPixel; //asserted high if this object

has a pixel at hCount, vCount

 output [7:0] pixel; //rgb value of pixel

 reg hasPixel;

 reg [7:0] pixel;

 reg [7:0] addr;

 wire dout;

 parameter height=16; //height of crosshair

 parameter width=16; //width of crosshair

 parameter color=8'b11111111; //color of crosshair

 parameter hOff=0; //memory offset to deal with delay

 crosshairrom aCrosshairRom(addr,clk,dout);

 always @ (posedge clk) begin

 //check to see if requested pixel is within boundary, horiz offset

of 1 for timing reasons

 if ((hCount+hOff >= x-(width/2)) && (hCount+hOff < x+(width/2)) &&

(vCount >= y-(height/2)) && (vCount < (y+height/2))) begin

 //determine which address to read

 addr<=width*(vCount-(y-height/2))+(hCount+hOff-(x-

width/2));

 hasPixel<=dout;

 pixel<=color;

 end

 else begin

 hasPixel<=0;

 end

 end

endmodule

AI
///

//

// AI

//

///

module

AI(clk,reset,curDuckX,curDuckY,duckAlive,shotsLeft,roundStart,roundTimeExpired,

dir,vsync,difficulty,x,y,fire);

 input clk; //clock

 input reset; //global reset, active high

 input [10:0] curDuckX; //duck's x coordinate

 input [9:0] curDuckY; //duck's y coordinate

 input duckAlive; //1 if duck is alive

 input [1:0] shotsLeft; //number of shots left this round

 input roundStart; //high for one clock cycle at start of round

 input roundTimeExpired; //high if round timer expires

 input [1:0] dir; //direction that duck is travelling

 input vsync; //vertical sync signal

 input [1:0] difficulty; //AI difficult, 00 is very hard, 01 is medium, 10

is easy, 11 is very easy

 output [10:0] x; //x coordinate of crosshair

 output [9:0] y; //y coordinate of crosshair

 output fire; //high for one cycle when firing

 reg [10:0] x; //x coordinate of crosshair

 reg [9:0] y; //y coordinate of crosshair

 reg fire; //high for one cycle when firing

 reg justFired; //high for ten cycles after firing

 reg [3:0] fireTimeCount; //used to count time since last firing

 reg freeToShoot; //1 when AI is allowed to shoot

 reg roundOver; //1 if round is over

 reg resetTimer; //asserted to reset timer

 reg [10:0] oldDuckX; //value of curDuckX from last clock cycle

 reg [9:0] oldDuckY; //value of curDuckY from last clock cycle

 reg [10:0] duckX; //estimated value of new curDuckX

 reg [9:0] duckY; //estimated value of new curDuckY

 parameter hDim=1024; //horizontal dimension of screen

 parameter vDim=768; //vertical dimension of screen

 parameter duckWidth=64; //width of duck

 parameter duckHeight=64; //height of duck

 parameter maxMove=40; //largest distance that the crosshair can move per

update, in each of x or y

 parameter shotAdj=8+(4*difficulty); //min distance from border to

take shot

 parameter shotDelay=7; //number of seconds between start of round

before attempting shooting

 //enum of directions, north east, north west, and so on

 parameter dirNE = 2'b00;

 parameter dirNW = 2'b01;

 parameter dirSE = 2'b10;

 parameter dirSW = 2'b11;

 wire delayOver;

 //round timer

 RoundTimer shotDelayTimer(clk,reset,roundStart,resetTimer,delayOver);

 defparam shotDelayTimer.numSeconds = shotDelay+difficulty;

 always @ (posedge clk) begin

 roundOver<=((~duckAlive) || roundTimeExpired);

 oldDuckX<=curDuckX;

 oldDuckY<=curDuckY;

 duckX<=(2*curDuckX)-oldDuckX;

 duckY<=(2*curDuckY)-oldDuckY;

 resetTimer<=1'b0;

 if (reset) begin

 x<=hDim/2;

 y<=vDim/4;

 justFired<=0;

 fireTimeCount<=4'b0000;

 fire<=1'b0;

 freeToShoot<=1'b0;

 oldDuckX<=curDuckX;

 oldDuckY<=curDuckY;

 end

 else begin

 //determines when AI is free to shoot

 if(roundOver) begin

 freeToShoot<=1'b0;

 end

 else begin

 if(delayOver) begin

 freeToShoot<=1'b1;

 end

 end

 //if duck just moved

 if(~((curDuckX==oldDuckX) && (curDuckY==oldDuckY))) begin

 //if x coordinate near duck x center, only move a

little

 if ((x>=duckX+duckWidth/2-maxMove) &&

(x<duckX+duckWidth/2+maxMove)) begin

 x<=duckX+duckWidth/2;

 end

 //otherwise move a lot

 else begin

 if (x<duckX+duckWidth/2-maxMove) x<=x+maxMove;

 else x<=x-maxMove;

 end

 //if y coordinate near duck y center, only move a

little

 if ((y>=duckY+duckHeight/2-maxMove) &&

(y<duckY+duckHeight/2+maxMove)) begin

 y<=duckY+duckHeight/2;

 end

 //otherwise move a lot

 else begin

 if (y<duckY+duckHeight/2-maxMove)

y<=y+maxMove;

 else y<=y-maxMove;

 end

 //handles firing

 if ((x>=duckX+shotAdj) && (x<duckX+duckWidth-shotAdj)

&& (y>=duckY+shotAdj) && (y<duckY+duckHeight-shotAdj) && (shotsLeft>0) &&

(freeToShoot==1'b1) && duckAlive && ~justFired) begin

 justFired<=1;

 fireTimeCount<=0;

 fire<=1'b1;

 end

 else fire<=1'b0;

 //increment fireTimeCount and reset justFired to 0

when fireTimeCount reaches 10

 if (justFired) begin

 if(fireTimeCount<10)

fireTimeCount<=fireTimeCount+1;

 else justFired<=0;

 end

 end

 end

 end

endmodule

///

//

// playerInput (temporary, for test purposes only)

//

///

module

playerInput(clk,reset,moveLeft,moveRight,moveUp,moveDown,fireIn,shotsLeft,x,y,f

ireOut);

 input clk,reset,moveLeft,moveRight,moveUp,moveDown,fireIn;

 input [1:0] shotsLeft;

 output [10:0] x;

 output [9:0] y;

 output fireOut;

 reg [10:0] x;

 reg [9:0] y;

 parameter screenWidth=1024;

 parameter screenHeight=768;

 parameter posAdj=20;

 reg oldMoveLeft,oldMoveRight,oldMoveUp,oldMoveDown,oldFireIn,fireOut;

 reg [1:0] oldShotsLeft;

 always @ (posedge clk) begin

 oldMoveLeft<=moveLeft;

 oldMoveRight<=moveRight;

 oldMoveUp<=moveUp;

 oldMoveDown<=moveDown;

 oldFireIn<=fireIn;

 oldShotsLeft<=shotsLeft;

 if(reset) begin

 x<=screenWidth/2;

 y<=screenHeight/2;

 end

 else begin

 if(moveLeft && !oldMoveLeft)begin

 x<=x-posAdj;

 end

 else begin

 if (moveRight && !oldMoveRight) begin

 x<= x+posAdj;

 end

 end

 if(moveUp && !oldMoveUp)begin

 y<=y-posAdj;

 end

 else begin

 if (moveDown && !oldMoveDown) begin

 y<= y+posAdj;

 end

 end

 if((fireIn==1) && (oldFireIn==0)) begin

 fireOut<=1;

 end

 else begin

 if((fireOut==1) && ~(oldShotsLeft==shotsLeft))

 fireOut<=0;

 end

 end

 end

endmodule

Round Timer
///

//

// RoundTimer: timer to determine when round ends

//

///

module RoundTimer(clk,reset,startTimer,resetTimer,timeElapsed);

 input clk; //clock

 input reset; //global reset

 input startTimer; //high for 1 cycle when the timer should be started

 input resetTimer; //if asserted, resets timer to 0;

 output timeElapsed; //high for 1 cycle when time elapsed

 reg timeElapsed; //high when time elapsed

until next startTimer

 reg currentlyTiming; //1 when timing

 reg [0:29] count; //used to count clock

cycles, excessively large to allow larger

 //timing intervals to be implemented without danger of overflow

 parameter numSeconds=5; //number of seconds before round over

 parameter clockFreq=65000000; //clock frequency

 always @ (posedge clk) begin

 if(reset || resetTimer) begin

 count<=30'b0;

 currentlyTiming<=1'b0;

 timeElapsed<=1'b0;

 end

 else begin

 if(startTimer && !currentlyTiming) begin

 currentlyTiming<=1'b1;

 timeElapsed<=1'b0;

 end

 else begin

 if(currentlyTiming && (count>=numSeconds*clockFreq))

begin

 timeElapsed<=1'b1;

 count<=30'b0;

 currentlyTiming<=1'b0;

 end

 else begin

 count<=count+1;

 //timeElapsed<=1'b0;

 end

 end

 end

 end

endmodule

Score Overlay
///

//

// Score overlay

//

///

module

ScoreOverlay(clk,reset,hCount,vCount,playerScore,playerShotsLeft,ducksHit,hasPi

xel,pixel);

 input clk; //system clock

 input reset; //global reset

 input [10:0] hCount; //horizontal location of the

pixel being requested

 input [9:0] vCount; //vertical location of the pixel being

requested

 input [4:0] playerScore; //players score in hundreds

 input [1:0] playerShotsLeft; //number of shots remaining

 input [19:0] ducksHit; //which ducks were hit by whom, 10

pairs, 00 means not hit, 10 means hit by player, 01 means hit by AI

 output hasPixel; //asserted high if this object

has a pixel at hCount, vCount

 output [7:0] pixel; //rgb value of pixel

 reg [7:0] addr1,addr2,addr3;

 reg [3:0] selectedDuck; //duck whose pixel is currently

being requested

 reg [1:0] selectedDuckState; //state of selected duck

 reg [1:0] selectedBullet;

 reg hasPixel;

 reg [7:0] pixel;

 reg hasPixel1,hasPixel2,hasPixel3,pixel1;

 reg [7:0] fpixel1,pixel2,pixel3;

 reg [3:0] digit1, digit2; //first and second digit of score

 wire [7:0] doutB;

 wire doutA,dout0,dout1,dout2,dout3,dout4,dout5,dout6,dout7,dout8,dout9;

 parameter deadDuckX=360; //x coordinate of top left corner of

first duck

 parameter deadDuckY=628; //y coordinate of top left corner of

first duck

 parameter duckHeight=16; //height of duck

 parameter duckWidth=16; //width of duck

 parameter numDucks=10; //number of ducks per round

 parameter bulletX=112; //x coordinate of top left corner of first

bullet

 parameter bulletY=628; //y coordinate of top left corner of first

bullet

 parameter bulletWidth=16; //width of bullet

 parameter bulletHeight=15; //height of bullet

 parameter scoreX=812; //x coordinate of top left corner of first

score digit

 parameter scoreY=612; //y coordinate of top left corner of

first score digit

 parameter scoreWidth=16; //width of score digit

 parameter scoreHeight=16; //height of score digit

 parameter scoreDigits=4; //number of digits in score

 //enum of duck state and color

 parameter duckAlive=2'b00;

 parameter duckDeadPlayer=2'b10;

 parameter duckDeadAI=2'b01;

 parameter aliveColor=8'b11111111;

 parameter playerColor=8'b00011100;

 parameter AIColor=8'b11100000;

 scoreduckrom aScoreDuckRom(addr2,clk,doutA);

 scorebulletrom aScoreBulletRom(addr3,clk,doutB);

 score0rom aScore0rom(addr1,clk,dout0);

 score1rom aScore1rom(addr1,clk,dout1);

 score2rom aScore2rom(addr1,clk,dout2);

 score3rom aScore3rom(addr1,clk,dout3);

 score4rom aScore4rom(addr1,clk,dout4);

 score5rom aScore5rom(addr1,clk,dout5);

 score6rom aScore6rom(addr1,clk,dout6);

 score7rom aScore7rom(addr1,clk,dout7);

 score8rom aScore8rom(addr1,clk,dout8);

 score9rom aScore9rom(addr1,clk,dout9);

 always @ (posedge clk) begin

 if(reset) begin

 addr2<=8'b0;

 selectedDuck<=4'b0;

 end

 else begin

 //compute score digits

 if(playerScore<10)

 digit1<=0;

 else begin

 if(playerScore<20)

 digit1<=1;

 else begin

 if(playerScore<30)

 digit1<=2;

 else

 digit1<=3;

 end

 end

 digit2<=playerScore-digit1*10;

 //check if requested pixel is within boundary of any duck

 if((hCount>=deadDuckX) &&

(hCount<deadDuckX+numDucks*duckWidth) && (vCount>=deadDuckY) &&

(vCount<deadDuckY+duckHeight)) begin

 selectedDuck<=(hCount-deadDuckX)/duckWidth;

 case (selectedDuck)

 0: selectedDuckState<=ducksHit[1:0];

 1: selectedDuckState<=ducksHit[3:2];

 2: selectedDuckState<=ducksHit[5:4];

 3: selectedDuckState<=ducksHit[7:6];

 4: selectedDuckState<=ducksHit[9:8];

 5: selectedDuckState<=ducksHit[11:10];

 6: selectedDuckState<=ducksHit[13:12];

 7: selectedDuckState<=ducksHit[15:14];

 8: selectedDuckState<=ducksHit[17:16];

 9: selectedDuckState<=ducksHit[19:18];

 default: selectedDuckState<=ducksHit[1:0];

 endcase

 addr2<=hCount-deadDuckX-

(selectedDuck*duckWidth)+(vCount-deadDuckY)*duckHeight;

 hasPixel2<=doutA;

 case (selectedDuckState)

 duckAlive: pixel2<=aliveColor;

 duckDeadPlayer: pixel2<=playerColor;

 duckDeadAI: pixel2<=AIColor;

 default: pixel2<=aliveColor;

 endcase

 end

 else begin

 pixel2<=8'b0;

 hasPixel2<=1'b0;

 end

 //check if requested pixel is within boundary of bullets

 if((hCount>=bulletX) &&

(hCount<bulletX+bulletWidth*playerShotsLeft) && (vCount>=bulletY) &&

(vCount<bulletY+bulletHeight)) begin

 hasPixel3<=1'b1;

 pixel3<=doutB;

 selectedBullet<=(hCount-bulletX)/(bulletWidth);

 addr3<=hCount-bulletX-

(selectedBullet*bulletWidth)+(vCount-bulletY)*bulletHeight;

 end

 else begin

 pixel3<=8'b0;

 hasPixel3<=1'b0;

 end

 //check if requested pixel is within boundary of score

 if((hCount>=scoreX) &&

(hCount<scoreX+scoreWidth*2*scoreDigits) && (vCount>=scoreY) &&

(vCount<scoreY+scoreHeight*2)) begin

 //first digit

 if(hCount<scoreX+scoreWidth*2) begin

 hasPixel1<=1'b1;

 addr1<=(hCount-scoreX)/2+((vCount-

scoreY)/2)*(scoreHeight);

 case (digit1)

 0:pixel1<=dout0;

 1:pixel1<=dout1;

 2:pixel1<=dout2;

 3:pixel1<=dout3;

 4:pixel1<=dout4;

 5:pixel1<=dout5;

 6:pixel1<=dout6;

 7:pixel1<=dout7;

 8:pixel1<=dout8;

 9:pixel1<=dout9;

 default:pixel1<=dout0;

 endcase

 end

 else begin

 //second digit

 if(hCount<scoreX+scoreWidth*4) begin

 hasPixel1<=1'b1;

 addr1<=(hCount-scoreX-

scoreWidth*2)/2+((vCount-scoreY)/2)*(scoreHeight);

 case (digit2)

 0:pixel1<=dout0;

 1:pixel1<=dout1;

 2:pixel1<=dout2;

 3:pixel1<=dout3;

 4:pixel1<=dout4;

 5:pixel1<=dout5;

 6:pixel1<=dout6;

 7:pixel1<=dout7;

 8:pixel1<=dout8;

 9:pixel1<=dout9;

 default:pixel1<=dout0;

 endcase

 end

 else begin

 //third digit

 if(hCount<scoreX+scoreWidth*6) begin

 hasPixel1<=1'b1;

 pixel1<=dout0;

 addr1<=(hCount-scoreX-

scoreWidth*4)/2+((vCount-scoreY)/2)*(scoreHeight);

 end

 //fourth digit

 else begin

 hasPixel1<=1'b1;

 pixel1<=dout0;

 addr1<=(hCount-scoreX-

scoreWidth*6)/2+((vCount-scoreY)/2)*(scoreHeight);

 end

 end

 end

 end

 else begin

 pixel1<=8'b0;

 hasPixel1<=1'b0;

 end

 //determine output

 fpixel1<=(pixel1==1'b1)? 8'b11111111: 8'b00000000;

 pixel<=fpixel1|pixel2|pixel3;

 hasPixel<=hasPixel1|hasPixel2|hasPixel3;

 end

 end

endmodule

Round Over Overlay
///

//

// Round over overlay

//

///

module

RoundOverOverlay(clk,reset,roundOver,hCount,vCount,x,y,win,hasPixel,pixel);

 input clk; //system clock

 input reset; //global reset

 input roundOver; //asserted high when round over

 input [10:0] hCount; //horizontal location of the

pixel being requested

 input [9:0] vCount; //vertical location of the pixel being

requested

 input [10:0] x; //x coordinate of top left corner of cheney popup

 input [9:0] y; //y coordinate of top left corner of cheney popup

 input win; //1 if player killed duck this round

 output hasPixel; //asserted high if this object

has a pixel at hCount, vCount

 output [7:0] pixel; //rgb value of pixel

 reg hasPixel;

 reg [7:0] pixel;

 parameter popWidth=128;

 parameter popHeight=96;

 reg [13:0] addr;

 wire [7:0] dout,dout2;

 popuprom aPopupRom(addr,clk,dout);

 popuprom2 aPopupRom2(addr,clk,dout2);

 always @ (posedge clk) begin

 if((hCount>=x) && (hCount<x+popWidth) && (vCount>=y) &&

(vCount<y+popHeight)) begin

 hasPixel<=1'b1;

 pixel<=(win ? dout2: dout);

 addr<=hCount-x+(vCount-y)*popWidth;

 end

 else begin

 hasPixel<=1'b0;

 end

 end

endmodule

Title Screen
///

//

// title screen

//

///

module

TitleScreen(clk,reset,compoundReset,hCount,vCount,calibrate,startPlaying,leaveC

alibrate,hasPixel,pixel,done,calibrateMode);

 input clk; //system clock

 input reset; //global reset

 input compoundReset; //reset due to restarting round

 input [10:0] hCount; //horizontal location of the

pixel being requested

 input [9:0] vCount; //vertical location of the pixel being

requested

 input calibrate; //asserted to enter calibration

mode

 input startPlaying; //asserted to start playing

 input leaveCalibrate; //asserted to leave calibrate

 output hasPixel; //asserted high if this object

has a pixel at hCount, vCount

 output [7:0] pixel; //rgb value of pixel

 output done; //high when module finished

 output calibrateMode; //high when in calibration mode

 reg hasPixel,done;

 reg [7:0] pixel;

 reg [13:0] addr;

 wire [7:0] dout;

 reg calibrateMode, startPlayingMode;

 titlerom aTitleRom(addr,clk,dout);

 parameter screenWidth=1024;

 parameter screenHeight=768;

 parameter hBlack=8; //first and last 16 pixels are black

 always @ (posedge clk) begin

 if(reset || compoundReset) begin

 calibrateMode<=1'b0;

 startPlayingMode<=1'b0;

 done<=1'b0;

 end

 //latch calibrate and startPlaying

 if(calibrate) calibrateMode<=1'b1;

 if(startPlaying) startPlayingMode<=1'b1;

 if(calibrateMode) begin

 done<=1'b0;

 calibrateMode<=leaveCalibrate ? 1'b0 :1'b1;

 end

 else begin

 if(startPlayingMode) begin

 done<=1'b1;

 end

 else begin

 hasPixel<=1'b1;

 pixel<=((hCount<=hBlack)||(hCount>=screenWidth-

hBlack))? 8'b0:dout;

 //divisions by 8 are due to compression of title

bitmap

 addr<=hCount/8+((vCount/8)*(screenWidth/8));

 done<=1'b0;

 end

 end

 end

endmodule

///

// parameterized delay line

module delayN(clk,in,out);

 input clk;

 input in;

 output out;

 parameter NDELAY = 3;

 reg [NDELAY-1:0] shiftreg;

 wire out = shiftreg[NDELAY-1];

 always @(posedge clk)

 shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

