

Virtual Conducting

6.111: Introductory Digital Systems Laboratory

Andy Lin and Brandon Yoshimoto

December 11, 2006

Abstract

The purpose of this project was to design and implement an interactive music
player which allows the user to control the sound of a composition through hand
movements. The idea is to emulate the experience of a conductor directing the flow of
a musical performance. The design uses a camera to detect hand movements of the
user which are then analyzed to adjust musical qualities of tempo, dynamics, and
articulation in response to these motions.

The volume of high frequency audio content is controlled by the user's right hand,
while the volume of low frequency content is controlled by the user's left hand to allow
control over the balance of the playback. The design includes a screen which displays
a visualization of the hand movements, including colored squares following the path of
the conductor�s hands. The screen also displays current tempo, volume, and
acceleration magnitudes to provide feedback for the user as he conducts.

 2

Contents

1. Overview.����������������..5
2. Module Description and Implementation��..��������������...8

2.1. Video Component Overview (Brandon) ����..���������� ..8
2.2. Camera Input Storage and Retrieval�.��������������.....8
2.3. Color Decision Module������������������..��..... 10
2.4. Video Processor��������������������.����. 11

2.4.1. Color Detection����������������������� 11
2.4.2. Position Calculator���������������������.. 11
2.4.3. Weighted Average Calculator����������������... 13

2.5. Motion Analyzer�������������������..�����. 14
2.5.1. Beat Marker Generator�������������������.. 14
2.5.2. Qualities Generator�������������������.�� 17
2.5.3. Find Distance�����������������������... 17

2.6. Visualization Generator��������������.�������. 18
2.7. Signal Tamer. ���������.���...��..................................... 19
2.8. Audio Processing (Andy)�����.���...��................................... 20
2.9. Rom FSM���������.���...��.. 22
2.10. Beat Generator���������.���...��.................................... 23
2.11. Metronome Programmer���������.���...��..................... 23
2.12. ZBT FSM���������.���...��... 23
2.13. Beat Period Counter���������.���...��............................ 25
2.14. Tempo Modulator���������.���...��................................ 25
2.15. Volume and Articulation Modulator���������.���...��...... 28
2.16. HP/LP Filters���������.���...��....................................... 29
2.17. ROM Writer��������������������������...30

3. Testing and Debugging������������������������ 31
3.1. Video Component������������������������ 31
3.2. Audio Component������������������������ 33
3.3. Overall System������������������������.... 37

4. Conclusion�����������������������������. 38
5. Appendix ������������������������������ 40

5.1. Low Pass Filter Coefficients�������������������.. 40
5.2. High Pass Filter Coefficients�������������������. 41
5.3. Verilog Code�������������������������.... 42

 3

List of Figures

1. Organization of the Virtual Conducting System��������������..5
2. The working Virtual Conducting System����������������.....6
3. A screen capture of the visualization�������������������6
4. Block diagram overview of Video Component��������������....8
5. Camera Input Storage and Retrieval block diagram�����������... ..9
6. Video Processor block diagram��������������������..10
7. Position Calculator block diagram�������������������.. 12
8. FSM for the Position Calculator module����������������� 13
9. Motion Analyzer block diagram��������������������.. 14
10. FSM for generating beat markers�������������������.. 15
11. FSM for handling the update of beat motion qualities�����������. 16
12. Description of Screen Components������������������... 18
13. The volume fading feature of the signal tamer��������������. 20
14. The block diagram for the entire audio system�������������� 21
15. The ROM FSM diagram�����������������������... 22
16. The ZBT FSM���������������������������� 24
17. Note extend operation������������������������.. 24
18. Concept behind the tempo modulator������������������ 25
19. The state transition diagram for Division Converter������������ 27
20. Different cases for the Division Converter���������������� 27
21. Block diagram for the Tempo Modulator����������������... 28
22. The concept of articulation modulation�����������������.. 28
23. Block diagram of the Volume and Articulation Modulator���������.. 29
24. Fourier Transform of high-pass filter with a cut-off frequency of 750 Hz���..30
25. Fourier Transform of low-pass filter with a cut-off frequency of 750 Hz���.. 30
26. ModelSim simulation of Beat Generator Module�������������. 34
27. Matlab simulation of low-pass filter on a sample of audio���������.. 35
28. Matlab simulation of high-pass filter on a sample of audio���������.36

 4

List of Tables

1. Parameter values used in beat_markers module for best operation����� 16

 5

1. Overview

The Virtual Conducting system is an interactive music player which allows the
user to control the sound of a composition through hand movements. The user stands
in front of a camera with two bright blue LEDs, one in each hand. As the user moves
his hands, he divides the music into different beats which are matched with the audio to
allow control over tempo. Additionally, volume of the high frequency audio is controlled
by the size of the right hand's movement, while the volume of low frequencies are
controlled by the left hand. The system is divided into two main components: video and
audio, as seen in Figure 1.

Figure 1: Organization of the Virtual Conducting System

For video, a camera is used to detect the position of the two bright blue LEDs

held by the user. The position of each hand in the 1024x768 VGA coordinate system is
determined for each frame of the video display. These coordinates are analyzed over
time to determine when a user has started and ended each beat. Beats are determined
by the user's right hand only. A beat starts when the current right hand position moves
out of a bounded area surrounding the coordinates registered upon a beat end. A beat
end is registered if the user's hand remains within certain bounds on the screen for a
certain amount of time. This condition essentially examines the speed of the user's
motion and detects the end of a beat when the user's motion is too slow. Once the
user's motion is divided in to beats, qualities of amplitude, period, and acceleration of
each beat are calculated for output to the audio component. While beat period is
calculated based on just the right hand, amplitude and acceleration calculations are
done for both the left and right hand to control the volume of low and high frequencies
respectively.

 6

Figure 2: The working Virtual Conducting System

The monitor is used to display the current position of the user's hands,

coordinates upon a beat start and end, as well as a motion analyzer display which
contains bars that change width in proportion to the magnitude of each motion
quality. Figure 3 is a sample image of the visualization. A more detailed description of
each part of the display follows in the Module Description section.

Figure 3: A screen capture of the visualization

The audio component uses qualities of the user's motion generated in the video

component to adjust the playback of the audio. If a fast beat period is specified by the
user through the Video Component, there will be a fast playback; conversely, if a slow

 7

beat period is specified by the user, there will be a slow playback. Moreover, the
gesture amplitude of both hands will determine the loudness and articulation of the
audio playback. Also, the left hand will control the volume and articulation of the bass,
while the right hand will control the treble. Between the video and audio components is
a module which translates the values from the video component into valid scaled input
values for the audio component.

The audio source is from the flash ROM. The natural beat period of this music
can be programmed using the buttons on the FPGA�s. In order to program the beat
period, button3 must be depressed, while the 8-bit switches are set to their intended
positions. In order to program the initial offset, button2 and button3 must be depressed,
while the 8-bit switches are set to their intended positions. To reset the beat period and
offset to their default values, button1 is pressed. To reset the audio back to the first
sample in the flash ROM, button0 is pressed. The output from the Audio Component is
through an AC �97 interface; the audio is 8-bit 24 KHz audio.

 8

2. Module Description and Implementation

Figure 4: Block diagram overview of Video Component

2.1 Video Component Overview (Brandon)
 The Video Component of the project consists of five main parts: the camera input
storage and retrieval, color_decision, video_processor, motion_analyzer, and
generate_visualization modules, as arranged in Figure 4. On a general level, this
portion of the project first analyzes data from the camera input to determine the user�s
hand positions. Once this information is found in the video_processor, the
motion_analyzer examines the movement of the hands over time to determine the start
and end of a beat. It also determines qualities of the motion for sending to the Audio
Component of the project. Finally, the generate_visualization module takes in
information from the other modules to create the video for display on the monitor. Each
module is described in further detail below.

2.2 Camera Input Storage and Retrieval (Brandon)
 The Camera Input Storage and Retrieval block encompasses the modules which
are used for storing the incoming stream of camera data in the ZBT and reading out the
contents for use in video processing and visualization. The modules in this component
were taken from the sample code on the 6.111 website and modified for this project.
The block diagram is outlined in Figure 5.

 9

Figure 5: Camera Input Storage and Retrieval block diagram

Firstly, the ntsc_decode module uses the tv_in_ycrcb[19:0] signal to generate the
ycrcb[29:0] signal. The ycrcb[29:0] signal contains a full 30-bit representation of the
camera input steam in YCrCb format. The ntsc_to_zbt takes this stream of incoming
data and stores 16 bits of information for each incoming pixel in the ZBT in the following
format: {4�b0, highest 6 Y bits, highest 5 Cr bits, highest 5 Cb bits}. The sample code
was modified from four 8-bit pixels per location to handle the storage of two 16-bit
blocks of pixel data per location instead. This amount of information is sufficient for
color detection and for display of fairly accurate color video. Addresses for storage are
generated such that each encodes a pixel�s x and y position, allowing for easy lookup of
any particular pixel for display on the monitor. Reading and writing from the ZBT is
handled by the ntsc_we output from the ntsc_to_zbt module.

The xvga module generates the necessary hcount[10:0], vcount[9:0], vsync,
hsync, and blank signals for use in the display of 1024x768 video. These signals are
used in the vram_display module which reads raw data from the ZBT and parses it into
a stream of 16-bit pixel data in YCrCb format suitable for use in video display. Since
two pixels are stored per location, the module holds on to data from the same location
for two clock cycles and separates the two pixels� color information to produce the
vr_pixel[15:0] output. Another necessary modification of the sample code was to flip the
camera image along the y-axis to display the video as if looking into a mirror. This is
done in the accessing stage of the pixel data by negating the hcount bits used in

 10

constructing the read address. The flipped image allows for better visual feedback for
the user in controlling movement.

All modules used in this storage and retrieval operate on a 65 MHz clock except
the ntsc_decode module, which operates on the clock from the camera, denoted as
tv_in_line_clock1. The ntsc_to_zbt module handles the interaction between the camera
clock and the 65 Mhz clock, ensuring that the correct information from the camera is
stored in the ZBT.

2.3 Color Decision Module (color_decision.v) (Brandon)
 The color_decision module determines whether or not a pixel from the camera is
of the desired blue color. It also outputs a 24-bit RGB representation of the current pixel.
 To determine if a pixel is of the desired blue color, the module does threshold
tests on the stored Cb and Cr data. If Cb[4:0] is greater than or equal to 18 and Cr[4:0]
is less than or equal to 16, the color_found signal will go high. Otherwise, the signal will
be low, indicating the blue color is not detected. This threshold was tested to be the
best for filtering out dark blues and optimizing detection of the bright blue lights held by
the user. The color_found signal is tied to the output pixel_video for use in the
video_processing module to display detected blue areas on the monitor.

Additionally, the color_decision module uses the YCrCb2RGB module provided
by Xilinx to convert from the YCrCb color space to the RGB color space. Since the
VGA display requires RGB content, this component was necessary for displaying color
video. This information is encoded in the cam_image output as {8 bits of R, 8 bits of G,
8 bits of B}.

Figure 6: Video Processor block diagram

 11

2.4 Video Processor Module (video_processor.v) (Brandon)
 The video_processor module takes in the pixel_video input from the
color_decision module and outputs the average coordinates of each hand as 11-bit x
and 10-bit y coordinates. The outputs are defined as left_x[10:0] for the x-position of
the left hand and left_y[9:0] for the y-position of the left hand. This same notation is
used for the right hand. Calculation of these positions is divided into two modules:
color_detection and position_calculator. The organization of this module is described in
Figure 6.

2.4.1 Color Detection Module (color_detection.v) (Brandon)

The color_detection module determines if a pixel should be used in the
calculation of a hand�s position. This module has two main functions: one is to decide
which half of the screen the detected pixel is in, and the other is to reduce the noise of
random pixels detected by the color_decision module that should not be included as
part of the hand.

The error reduction function is implemented using shift registers to compare the
pixel_video values across three consecutive samples. The temporary wire
desired_color_temp will be high only if pixel_video is high for two consecutive pixels.
This method detects the user�s blue lights quite well while reducing the amount of noisy
pixels which could affect average position calculations.

Additionally, left_side and right_side signals are used to determine if the current
pixel is inside the left or right half of the region of display, divided along its center. The
display region includes only the camera display window as defined in Figure 12.
Combining these two tests, the left_en output is high only if both left_side and
desired_color_temp are high, corresponding to a pixel which withstands the error
correction test and is in the left hand plane of the screen. The right_en output is
generated in the same way, but uses the right_side signal. The desired_color output is
tied to the desired_color_temp signal for use in displaying the detected pixels in the
visualization module.

2.4.2 Position Calculator (position_calculator.v) (Brandon)

The position_calculator module uses the left_en and right_en signals from the
color_detection module to calculate of the weighted average hand positions. On a basic
level, the module uses four weighted_average modules to compute the average x and y
positions for each hand, as seen in Figure 7. However, the position_calculator first
applies some tests to the averages calculated by the weighted_average modules before
updating the positions for output.

 12

Figure 7: Position Calculator block diagram

The left_in_left_side, and right_in_right_side signals are used to prevent the left

and right hand positions from going out of their respective halves of the camera display.
The left_in_left_side signal is high when the calculated weighted average coordinates
for the left hand are within the appropriate bounds for the left half. The
right_in_right_side signal is similarly high when the right hand is within the appropriate
bounds for the right side.

A second test checks if the new coordinates are sufficiently close to the currently
stored coordinates. This test prevents large jumps in the coordinate positions to provide
smoother motion. If the new coordinates are within a 150 x 150 pixel square centered
at the current left hand coordinates, no_left_jump will be high. The same applies for
no_right_jump on the right hand.

The third test detects if the current pixels are outside of the camera video frame.
The coordinates upon starting the system are all initialized to 0, so both
outside_frame_left and outside_frame_right will start off high.

Using these three test signals, the coordinates for the registers holding the output
coordinates for the left hand will only update if the new coordinates are in the left hand
plane and there is either no large jump in position or the current coordinates are outside
of the frame. This is summarized as the condition: (left_in_left_side && (no_left_jump ||

 13

outside_frame_left)). The same applies to the equivalent right hand signals for updating
the right hand coordinates.
 The potential coordinate update occurs only when a new frame starts at the
rising edge of the vsync signal. Figure 8 shows the two-state FSM used for
coordinating the update of coordinates.

Figure 8: FSM for the Position Calculator module

2.4.3 Weighted Average Calculator (weighted_sum.v) (Brandon)
 The weighted_average module takes signals enable and count[10:0] as inputs to
calculate the average of the count values received when enable is high. The sum[27:0]
registers are used to hold a running sum of the count values, only adding new value if
enable is high. This running sum calculation begins as soon as vsync goes high.
Pixel_count[17:0] keeps track of how many times enable goes high.
 To calculate the average, sum/pixel_count is calculated using the Xilinx Pipelined
Divider v3.0. The lower 11 bits of the divider result are tied to the output avg.

Since divider module requires 28 clock cycles to compute, the module is enabled
as soon as the current vcount is beyond the lower border of the camera image, defined
as when vcount > BOTTOM_BORDER. The clear is done through changing the sclr
input to the divider. This timing provides more than enough clocks at 27 MHz to
complete the divide calculation before a new frame starts.

 14

Figure 9: Motion Analyzer block diagram

2.5 Motion Analyzer Module (motion_analyzer.v) (Brandon)
 The motion_analyzer module generates the qualities of beat amplitude, period,
and acceleration by analyzing the movement of each hand's x and y hand coordinates
over time. The computations are divided into two submodules: the beat_markers and
qualities_generator modules, as seen in Figure 9.
 The beat_markers module decides when a beat starts and end. The
qualities_generator uses this beat marker information to determine the amplitude,
period, and acceleration calculations for each beat. More detailed descriptions of these
modules are in their respective sections that follow.

The other outputs of the motion_analyzer module are the x and y coordinates of
each hand at the start and end of a beat. These coordinates are used for displaying the
beat start and end points in the generate_visualization module. The beat start
coordinates are stored in registers that are updated whenever beat_start goes high.
Similarly, the end coordinates are held in registers updated when beat_end goes high.

2.5.1 Beat Marker Generator (beat_markers.v) (Brandon)
 The beat_markers module determines the start and end of a beat based on the
movement of the right hand over time. Since beats are only formed by the motion of the
right hand, right_x[10:0] and right_y[9:0] are the only inputs to this module. There are
two outputs: beat_start, and beat_end. Beat_start will go high for one clock cycle upon
detection of the start of a beat, while beat_end will go high for one clock cycle at the end
of a beat.

 15

Figure 10: FSM for generating beat markers

 Management of the start and end states of a beat is handled by a three state
FSM diagrammed in Figure 10. State 00 is when a beat already started and the system
is waiting for a stop signal. The stop signal is called within_bounds. This signal goes
high when the current pixel coordinates are within a centered box of 2*TOLERANCE_X
and 2*TOLERANCE_Y of the previous pixel. Assertion high indicates a potential beat
stop and changes the FSM to state 01.

In state 01, the module tests if the potential beat stop should be registered as an
actual stop. Upon transition to this state, the FSM stored the x and y coordinates of the
right hand in registers for use in the next test called stationary_test. Stationary_test
goes high if the current frame�s coordinates remain for several clocks within a centered
box of 2*TOLERANCE_END_X and 2*TOLERANCE_END_Y of the coordinates stored
upon transition. The length in time that this wait test must remain active is a parameter
which affects sensitivity towards how long the hand must remain within appropriate
bounds to be registered as a beat end. In this implementation, stationary_test must be
valid for 1,048,575 clock cycles at 27 MHz to move to state 10 and detect a beat end.
This corresponds to a wait of about 0.039 seconds. If the coordinates go outside of this
bound within that time frame, the FSM will return to state 00 to wait for the next potential

 16

beat end. If the test holds, the beat_end output will go high for one clock cycle upon
transition to state 10.

In state 10, a stop has already been detected, so the FSM will remain in this
state until a new beat is detected. A new beat is detected if the start_test signal goes
low. Start_test goes low when the current coordinates are outside an area bounded by
the centered box of 2*TOLERANCE_START_X by 2*TOLERANCE_START_Y around
the stored coordinates upon leaving state 01. The coordinates leaving this bound
means the hand has moved enough to be considered the start of a new beat. Upon
start_test, the FSM will transition to state 00 and the beat_start output will go high for
one clock cycle.

The parameters in this module were tested and set for the user to have best
control over generating beats while conducting. The values used in the final
implementation are listed in Table 1.

Parameter: Value:
TOLERANCE_X 2
TOLERANCE_Y 2

TOLERANCE_END_X 5
TOLERANCE_END_Y 5

TOLERANCE_START_X 25
TOLERANCE_START_Y 25

Table 1: Parameter values used in beat_markers module for best operation

Figure 11: FSM for handling the update of beat motion qualities

 17

2.5.2 Qualities Generator Module (qualities_generator.v) (Brandon)
 The qualities_generator module uses the beat_start and beat_end signals
determined by the beat_markers module to calculate amplitude, time duration, and
acceleration values of the motion every beat. A two-state FSM is used in this module to
coordinate the update of these qualities with the video display as seen in Figure 11.
 In state 0, a beat has ended and the system is waiting for a new beat to start,
corresponding to when beat_start goes high. Upon receiving a beat start signal, FSM
transitions to state 1 and stores the start coordinates of each hand in registers. In state
1, the system is now waiting for a beat to end. When beat_end goes high, the FSM
transitions back to state 0 and stores the coordinates upon transition into registers.
These registers are used to calculate the distance in pixels between the start and end of
a beat. This calculation is done for each hand. The left hand distance is used for
updating the amp_left[10:0] output, while the right hand distance is used for updating
the amp_right[10:0] output. Distance calculation is done in the find_distance module
described in the section that follows.
 For beat period and acceleration calculation, a signal called count[18:0] is used
to divide the clock into roughly 0.02 second divisions, or 2^19 clock cycles at 27 Mhz.
Every time this time period passes, the time_count[10:0] registers will increment by one
to count the time spent in state 1 waiting for a beat to end.
 For acceleration calculation, shift registers are used to compute the difference of
distances between three successive coordinate samples. These three coordinate
points are roughly 0.02 seconds apart from each other and are stored only when the
time_count[10:0] signal is less than or equal to 6. This means that only coordinates at
the beginning of a new beat are used for calculations of a single beat's acceleration.
The stored values in the shift registers are used to find the difference in distances for
each hand using a total of four find_distance modules (two for each hand). The results
are rough acceleration approximations for each hand.
 Each of these calculated qualities are only updated for output upon the start of a
new beat, as detected in the FSM when beat_start goes high while in state 0.

2.5.3 Find Distance Module (find_distance.v) (Brandon)
 The find_distance module takes in two coordinates and outputs the distance in
pixels between the two points. This calculation is done by first calculating the difference
in x coordinates and y coordinates between the two points, ensuring that the difference
is positive. Next, each difference is multiplied by itself to get the squared values. The
two results are added together to form the sum_of_squares[19:0] wire. The Xilinx
square root Core module is used to calculate the square root of this value to produce
the distance[10:0] output.

 18

Figure 12: Description of Screen Components

2.6 Generate Visualization Module (generate_visualization.v) (Brandon)
 The generate_visualization module takes in number of signals from the
color_decision, video_processor, and motion_analyzer modules to output three signals
of R, G, and B data for display on the monitor. Figure 12 is a sample display generated
by this module.

The cam_image[23:0] signal from the color_decision module is used to display
the raw camera input video in RGB format. The desired_color input from the
video_processor module is used to display a pixel as white if high and black if low.
Switching between these two display modes for the camera image area is handled by
an FSM which keeps track of the current display mode. Mode 0 is the default that
corresponds to the black and white desired_color display. Mode 1 is entered after
pressing the down button on the lab kit and corresponds to color display of the camera
input.

Additionally, the left_x[10:0], left_y[9:0], right_x[10:0], and right_y[9:0] signals are
used as inputs to centered_block modules to display squares at each hand�s current
coordinates. The centered_block module is a sprite which generates a color block on
screen with its center at the input coordinates. For example, the block following the left
hand will have input coordinates at left_x[10:0] and left_y[9:0], with width and height of

 19

20 pixels. The right hand has similar structure but with right_x[10:0] and right_y[9:0] as
inputs. For color, the left hand block is green, while the right hand block is red to
differentiate between the two. To add to the visualization, two sprites of darker hue for
each hand follow the path of the hand blocks at positions delayed by around 0.2 second
intervals. This is accomplished using the count[18:0] registers to count clock cycles at
27 Mhz such that each time count == 0 the current hand coordinates are stored in
registers. These blocks are displayed on screen to add a slight trailing effect to the
hand motion.
 Another set of sprites is used to display the coordinates at which a beat begins
and ends. Since beats are dictated by just the right hand, only two sprites are needed:
one to remain at the start coordinates, and the other to remain at the end coordinates.
These blocks are smaller in size, with a height and width of 10 pixels. The block at the
start of a beat is green, while the block at the end of a beat is red.
 Since all the above display signals are within the same area on screen, logic is
used to determine which pixel data should be displayed over others. This layering is
important to prevent odd colors from arising when adding together two different pixel
streams. The order of precedence as described by the logic is as follows, from the
uppermost to lower layer: hand position blocks, hand trailing blocks, beat start and beat
end blocks, then finally the cam_image[23:0] or desired_color display depending on the
current mode.
 Other features of the display include the 1-pixel wide white border around the
camera video, as well as the white line dividing the two halves of the screen. Around
the thin white border is a blue border to fill the space of the upper half of the screen.
These colored areas are generated using logic to divide up the screen into parts using
the hcount[10:0] and vcount[9:0] inputs.
 Below the camera display are motion analyzer bars which indicate relative
amplitude, beat period, and acceleration values from the motion_analyzer over time.
There are two of each the amplitude and acceleration values (one for each hand) and
one beat period value, for a total of five bars on the screen.

The magnitude of each motion quality scales with the width of its respective bar
on screen. These sprites were generated using the analyzer_bar module which takes
the bar width and upper left hand corner coordinates as parameters. The positioning of
the five bars are, in order from top to bottom of the screen: left hand amplitude, right
hand amplitude, beat period, left hand acceleration, and right hand acceleration. All
qualities for the right hand are colored red to match the block following the right hand,
while qualities for the left hand are colored green to match the block following the left
hand. This display allows the user to clearly see how his motions are affecting the
playback of the music.
 The button display on the bottom right of the screen is used to keep track of what
display to show in the camera video frame. The upper button with the �I� label is the
default mode for display of detected blue areas. The lower button with the �II� label is
the mode for viewing a dimmed version of the camera input video.

2.7 Signal Tamer (Andy)
 The Signal Tamer module is placed between the Video and Audio Processing
parts of the system. The basic function of this module is to take the raw inputs of

 20

velocity and acceleration, and to scale them and/or bit-shift them to make them
compatible and within the range needed for the Audio Processing Module. Moreover,
the module also �tames� the signals, meaning it low-pass filters the acceleration signals
and allows for gradual volume transitions.
 The low-pass filter for the acceleration signals is merely an average of the
acceleration values of the last two beats. To achieve a gradual volume transition
between two beats, interpolation is required. An audio beat is divided into 32 sections,
each of which has a different volume value. Division 0 will have the volume of the
previous beat and Division�s 15-31 will have the volume of the new beat. There will be
a linear transition between divisions 0 and 15. Figure 13 illustrates this point. See
Verilog code in the Appendix for details.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Division

Volume

Figure 13: The volume fading feature of the signal tamer steps the volume between the
previous and new volumes by using linear interpolation of the first 16 divisions of the
new beat.

2.8 Audio Processing (Andy)

The Audio Processing Unit of the Virtual Conducting Project interprets the signals,
acceleration_left_fixed[1:0], acceleration_right_fixed[1:0], VelL_fixed[6:0], and
VelR_fixed[6:0] to produce audio, stored in the flash ROM, to correspond to these
characteristics. The Audio Processing Component takes audio stored from the flash
ROM, and outputs it one beat at a time. The audio is also modulated in tempo, volume,
and articulation.

The data flow begins at the ROM FSM. Interacting with the ZBT FSM and Beat
Generator, the ROM FSM reads audio data from the flash ROM at 4 clock cycles per
address (6.75 MHz). The ROM FSM will read data and pass it onto the ZBT FSM one
beat at a time with help from Beat Generator. The data read in from the ROM FSM will
be written into the ZBT SRAM at 4 clock cycles per address.

This is performed by reading in data from flash ROM and storing it into the ZBT
RAM until a musicbeat signal is declared, demarking the end of a beat. After the
musicbeat signal is declared, the ZBT FSM will allow the same beat of music stored in

 21

the RAM to be read out at 24 KHz to the AC �97 interface. Since the writing in to ZBT
RAM is done at 6.75 MHz, the pause in between beats is barely noticeable by human
ear.

The ZBT RAM allows for the writing and reading of different addresses in the
ZBT RAM. During the writing cycle, it gives access only to the ROM FSM to write data
into the RAM. After the write cycle, the read cycle begins, and the ZBT RAM with help
from the Tempo Modulator reads data from the ZBT RAM.

The Tempo Modulator takes in the original beat period (from the music), and the
user specified beat period and helps change the audio output speed. The main output
from the Tempo Modulator will be addrmod[15:0] which will interact with the ZBT FSM
to change the address accessed from the ZBT SRAM at the right times to change the
tempo. If the user specified tempo is greater than the original tempo, addresses are
added, if the specified tempo is slower, then addresses are subtracted.

The output from the ZBT FSM will be 24 KHz 8-bit PCM data. This audio data is
fed to low pass and high pass filters. The outputs from the filters are the inputs for the
Volume and Articulation Modulator.

Flash ROM

Beat Generator

Audio[7:0]

ZBT SRAM

Tempo Modulator

Articulation and Volume
Modulator

AC 97
Interface

MusicBeat

Flash_reset_b

Flash_addess[23:0]

Flash_data[15:0]

Flash_byte_b

FinalAudio[7:0]

Ram_data[35:0]

beat_start

acceleration_left[10:0]

amp_left [10:0]

AC 97

Command_data

ac97_ready

Ac97_synch
Ac97_bit_clock

Ac97_sdata_out

Command_address

Command_valid

BeatPeriod[10:0]

ROM FSM

ZBT FSM

Ram_address[18:0]

We_b

Ram_cen_b

acceration_right[10:0]

amp_right[10:0]

** Note: all modules will
include a 27 Mhz CLK and
RESET inputs

beat_start

Metronome Programmer

Value[7:0] program Program_select

musicbeatperiod[15:0]

ZBTaddr[15:0]

LPF HPF

AddrMod[15:0]

beat_start

offset[15:0]

firstbeat

firstbeat

BeatAudio[7:0]

Musicbeat

LPAudio[7:0]

HPAudio[7:0]

ZBTOutAudio[7:0]

Beat Period
Counter

offset[15:0]

beat-start

offset[15:0]

BeatAudio[7:0]

MusicBeat

MusicBeat

beginning

Flash_int

fbusy

faddress[23:0]

frdata[15:0]

fwdata

fop

ZBT SRAM

ready

ZBTaddress[18:0]

ZBTwrite_data[35:0]

ZBTread_data[35:0]
we

Access_enable

musicbeatperiod[10:0]

Figure 14: The block diagram for the entire audio system. User inputs are Value[7:0],
program, and program_select in order to reprogram musicbeatperiod[15:0] and
offset[15:0]

 22

The Volume and Articulation Modulator simply multiplies the existing audio by a

preset function. If the articulation is weak (the acceleration is weak), the function to be
multiplied is simply a constant throughout the beat. However, if the articulation is strong,
the function is low initially, quickly climbs to a maximum, and slowly decays.
The output from the Volume and Articulation Modulator is finally fed into the AC �97
interface for audio output. See Figure 14 for the overall Audio Component block
diagram.

2.9 ROM FSM (Andy)

The ROM FSM reads from the flash ROM and interacts with the ZBT FSM, and
beat generator to allow output of one musical beat at one time. Initially starting at zero,
an address counter increments in order to read from ROM sequentially. In this
implementation, it takes four clock cycles to read from ROM. The first clock cycle
declares a write operation. It was chosen to wait three more clock cycles to insure that
the FPGA has correctly read one word of data from the flash RAM.

The ROM FSM has 4 states. The first state declares a read operation; the next
two states are dedicated to allow for a delay before actually reading data. The last state
reads the data from the flash, increments the address to read from, and returns the
state to state 0. If the address to read from exceeds the number of addresses stored in
ROM, the address will loop to 0. This cycle will not occur unless if readcontinue is true.
Readcontinue turns high when beat is declared, and remains high until musicbeat is
declared. Since beat represents when the user wants another beat to be played, and
musicbeat declares the end of this beat, this allows audio data to be read out one beat
at a time. See Figure 15 for details.

Moreover, the ROM FSM is responsible for letting the rest of the system know
when the first beat occurs. The first beat contains a different beat period, and a
different note extension technique, and is a signal other modules must use. Refer to the
Appendix for details.

State 0 (declare
read operation)

State 1 (waiting
time)

State 2 (waiting
time)

State 3
(increment

address

1 clock cycle

1 clock cycle

1 clock cycle1 clock cycle

State
wait

readcontinue

~readcontinue

 23

Figure 15: The ROM FSM has 4 real states, and one �wait state.� The FSM is used to
read data from the ROM at 6.75 MHz (4 clock cycles per address). Readcontinue turns
high when beat is declared, and remains high until musicbeat is declared.

2.10 Beat Generator (Andy)

The Beat Generator module generates musicbeat signals that indicate the
division between beats. This module uses a set beat period � given by the user- in
order to generate this signal. The sample_count[15:0] register counts the number of
times that the ROM FSM accesses memory. The number of times a different address in
flash memory is accessed will be the unit of measure for the Beat Generator. When
sample_count[15:0] reaches the beat period of the audio data, musicbeat will go high
and sample_count[15:0] will reset to zero.

The Beat Generator interacts with the Metronome Programmer, which stores the
value of musicbeatperiod[15:0] and offset[15:0]. Musicbeatperiod[15:0] specifies the
regular beat period in flash ROM address accesses, and offset[15:0] specifies the offset
to initially assign sample_count[15:0]. The use of Metronome Programmer allows
musicbeatperiod[15:0] and offset[15:0] to be reprogrammed by the user if desired.

2.11 Metronome Programmer (Andy)

Metronome Programmer is a small reprogrammable ROM that stores the
constant values for musicbeatperiod[15:0] and offset[15:0]. Musicbeatperiod[15:0]
represents the time period between musical beats in the audio that is loaded in the
ROM. This time period will vary from song to song. By keeping program high, selecting
which value to program with program_select, and setting the FPGA buttons to the
intended value, musicbeatperiod[15:0] and offset[15:0] can be reprogrammed. Note
that since the FPGA only has 8 buttons, the input will be an 8-bit number, but the
needed value is a 16-bit number. The input is multiplied by 100 to solve this problem.

2.12 ZBT FSM (Andy)

The ZBT FSM interacts with the ROM FSM, the ZBT SRAM, and the Tempo
Modulator. Inputs for the ZBT FSM are musicbeat, first, beataudio[15:0], offset[15:0],
beat_start, addr_mod[15:0], ZBTreaddata[35:0], and ready. Outputs for this module are
access_enable, ZBTaddress[18:0], ZBTwrite_data[35:0], we, and ZBTOutAudio[7:0].
The ZBT FSM interacts closely with the ROM FSM; when the ROM FSM is reading out
data, the ZBT FSM fetches the data from beataudio[15:0] and writes it into the ZBT
SRAM simultaneously. Like the ROM FSM, the ZBT FSM writes a sample once every 4
clock cycles. When the ROM FSM is not reading out data, the ZBT FSM reads out the
data that was just stored at 24 KHz. See Figure 16 for the state transition diagram.

The transition between writing and reading from RAM is dictated by the continue
signal. When continue is high, the ZBT FSM will write data into the RAM. When
continue is low, the ZBT FSM will read data and play it at 24 KHz. Continue is high
when a user beat is specified. Continue goes low when musicbeat goes high,
specifying the end of the beat stored in the ROM.

When the ZBT FSM has reached the end of the beat, and a new beat has not
been specified yet, it will replay back sections of the end of the beat to allow for note

 24

extension. Note extension allows the music playback to appear fluent and without any
gaps in playback. After exceeding the musicbeatperiod[15:0] length, the FSM will
reverse playback until it reaches address musicbeatperiod[15:0] � 2000. Upon reaching
this point, it will reverse playback again, until reaching musicbeatperiod[15:0] � 500, in
which case it reverse direction again. This loop continues indefinitely until the next beat
is specified by the user. See Figure 17 for a diagram of this loop. If beat is specified
before the end of the beat in the flash ROM, the existing beat is truncated, and the next
beat is read from the flash ROM, written into the ZBT SRAM, and then read out from the
ZBT SRAM.

State 0 (write
into ZBT
SRAM)

State 1 (waiting
time)

State 2 (waiting
time)

State 3 (waiting
time)

1 clock cycle

1 clock cycle

1 clock cycle

continue

State 4
(playback, read

from ZBT
SRAM)

continue

~continue

~continue

Figure 16: The ZBT FSM. The ZBT FSM alternates between writing into the ZBT SRAM,
and reading out from it. This alternation is controlled by the continue signal.

musicbeatperiod[15:0]musicbeatperiod[15:0] - 3000

musicbeatperiod [15:0] - 500

Figure 17: Note extend works by reversing the playback once the address reaches
musicbeatperiod[15:0]. Playback will reverse again after reaching musicbeatperiod[15:0]
� 3000. After reaching musicbeatperiod[15:0] � 500, playback will reverse again. Thus,
playback is contained within musicbeatperiod[15:0] � 3000 and musicbeatperiod[15:0] �
500.

 25

2.13 Beat Period Counter (Andy)
 The Beat Period Counter is a very simple module which merely counts the time
period between user specified beats. The module consists of a sample access counter
which increments every 100 accesses of a sample. The counter resets every time beat
is high, and immediately outputs the resulting beat period. This module is particularly
important for the Tempo Modulator Module.

2.14 Tempo Modulator (Andy)

The theory behind the Tempo Modulator is simple. Audio is divided into
segments of 800 segments; these segments are then added or subtracted to change
the tempo of the music output. See Figure 18 for an illustration of this concept. The
Tempo Modulator is divided into two sub-modules: the Division Converter and the
Division Counter.

Figure 18: This illustrates the basic concept behind the tempo modulator. Audio data is
grouped into segments of 800 samples and are added or subtracted in order create a
slower or faster playback.

 The Division Converter converts a ratio between the original and the intended
beat periods into signals that are easier to use � interval[2:0], skip [2:0], and add.
These signals instruct the Division Counter to add or subtract skip[2:0] amount of
divisions every interval[2:0] of divisions. These signals are fed into the Division Counter
to produce an addrmod[15:0] signal when interval[2:0] amounts of divisions has been

 26

read. Addrmod[15:0] instructs the ZBT FSM to change the address by addrmod[15:0] in
order to add or subtract samples, and thus change the speed of playback.
 The concept behind Division Converter is simple, but the implementation is a
harder than suspected. Division Converter is an FSM. In state 0, the initial state, initial
values are assigned to registers NewBeatPeriod[10:0] and NewOriginalBeatPeriod[10:0].
In state 1, these values are shifted right until the values of both NewBeatPeriod[10:0]
and NewOriginalBeatPeriod[10:0] are less than 7 (which means both values are 3 bits
or less). When the values are 7 or less, then the state machine goes to state 2. State 2
determines interval and skip on a case by case basis. Refer to Figure 19 for a state
transition diagram.
 There are 3 basic cases, when BeatPeriod[10:0] is greater than
OriignalBeatPeriod[10:0], when they are equal, and when BeatPeriod[10:0] is less than
OriginalBeatPeriod[10:0]. In the first case, interval is set to equal
NewOriginalBeatPeriod[2:0], interval[2:0] is set to 1, and add is set to equal to 0; in the
2nd case, all three signals are set to 0 � this reproduces the original tempo; in the 3rd
case, interval is set to NewBeatPeriod[2:0], skip[2:0] is set to
NewOriginalBeatPeriod[2:0]. The result of this is that the playback will be at a
proportional speed to the ratio between BeatPeriod[10:0] and OriginalBeatPeriod[10:0].
Refer to Appendix and Figure 20 for details on special cases of these three cases. Note
that this calculation is merely an estimate of how fast the playback should be. If there
is a large difference between intended playback speed and actual playback speed, the
difference is not a problem because of note extension and beat truncation, which keeps
the playback smooth.
 The second part of this module, Division Counter takes the outputs from Division
Converter and converts the inputs into the addrmod[15:0] signal. Division Converter
interacts with the ZBT FSM to count the number of divisions accessed. When
interval[2:0] divisions has been accessed, addrmod[15:0] will indicate the number of
addressed to add. Note that addrmod[15:0] is signed, so when addressed must be
subtracted to slow down the playback, addrmod[15:0] will be negative. Refer to Figure
21 for the block diagram for Tempo Modulator.

 27

State 0
(set initial
settings)

State 1
(find 3 bit versions of
NewBeatPeriod[10:0]

and
NewOriginalBeatPeri

od[10:0])

State 2
(finding

interval[2:0] and
skip[2:0] and

add)

1 clock cycle

(NewOriginalBeatPeriod <= 7) & (NewBeatPeriod <= 7))

beat

~(NewOriginalBeatPeriod <= 7) &
 (NewBeatPeriod <= 7))

~beat

Figure 19: The state transition diagram for Division Converter. Division Converter
converts BeatPeriod[10:0] and MusicBeatPeriod[15:0]/100 into interval[2:0], skip[2:0]
and add.

BeatPeriod [10:0] > OriginalBeatPeriod [10:0] BeatPeriod[10:0] < OriginalBeatPeriod [10:0]

add <= 0;
 interval <= 2;

skip <=1;

add <= 0;
 interval <= 0;

skip <=0;

add <= 0;
 interval <=

NewOriginalBeatPeriod[
2:0];
skip <=1;

BeatPeriod >> 1 >= OriginalBeatPeriod

NewBeatPeriod == NewOriginalBeatPeriod

Everything else

BeatPeriod[10:0] =
OriginalBeatPeriod

[10:0]

Add <= 1;
Interval <=

NewBeatPeriod[2:0];
skip <=

NewOriginalBeatPeri
od[2:0] -

NewBeatPeriod[2:0];

NewBeatPeriod[10:0] ==0

NewBeatPeriod == NewOriginalBeatPeriod

Everything else

interval <=1;
skip <= 7;
add <= 1;

add <= 0;
 interval <= 0;

skip <=0;

BeatPeriod[10:0] = OriginalBeatPeriod [10:0]

Figure 20: These are the different cases for the Division Converter for BeatPeriod[10:0]
and OriginalBeatPeriod[10:0]. Note that the Division Converter will make the maximum
speed 8X and the minimum speed ½ X.

 28

Division
Converter

BeatPeriod[10:0]

OBeatPeriod[10:0]

skip[2:0]

interval[2:0]

add

Division counter

Access_enable AddrMod[15:0]

Figure 21: Block diagram for the Tempo Modulator. Access_enable and AddrMod[15:0]
interact with ZBT FSM above (refer to Figure 14 for details).

2.15 Volume and Articulation Modulator (Andy)
 The Volume and Articulation Modulator simply multiplies one beat of audio by a
function to achieve the results. In theory, multiplying each beat by an envelope function
(coefficient function) will replicate articulation effects such as staccato. This module is
split into two units, one for the treble, and one for the bass. Each Volume and
Articulation Unit divides each existing beat of audio into 16 divisions. Each one of the
16 divisions is multiplied by a coefficient (a function of which is stored in a small ROM).
There are 4 settings of articulation; when Acc[1:0] is 0, this corresponds to the
smoothest playback and coefficients which are constant at 255; when Acc[1:0] is 3, this
corresponds to the choppiest playback and coefficients which change the most. See
Figure 22 for an illustration of this concept.

A(t)

t

(One beat duration)

Figure 22: This figure illustrates the concept of articulation modulation. A smooth
playback corresponds to an envelope such as the blue one, a medium articulation
playback corresponds to an envelope like the red one, and a staccato playback
corresponds to something like the black envelope.

 For volume modulation, each sample of audio is simply multiplied by an
appropriate constant. Note that if the audio is scaled down too much to correspond to a

 29

soft sound, the resolution will deteriorate (imagine shifting audio to the right until there is
only 1 bit). This problem is solved by having the volume data scale not only the raw
audio signal, but the AC�97 volume level as well. The Volume and Articulation
Modulator uses the greater of the two (left and right) inputs to determine the AC�97
volume level. See Figure 23 for the block diagram for the Volume and Articulation
Modulator. The results of the audio data from the two units (left and right)
corresponding to bass and treble are then added together to produce the final result.

Articulation
Function

Xcoefficient[7:0]

LowPassAudio[7:0] LowPassResult[7:0]

Articulation Modulator Unit

Articulation
Function

XCoefficient[7:0]

HighPassAudio[7:0]

Articulation Modulator Unit

+

HighPassResult [7:0]

FinalAudio[7:0]

acceleration_left [10:0]

sample_count[15:0]

acceleration_right[10:0]

sample_count[15:0]

amp_right_fixed[7:0]

amp_left_fixed[7:0]

Figure 23: This block diagram represents the Volume and Articulation Modulator.

2.16 HP/LP Filters (Andy)
 The high-pass and low-pass filters used to divide the output of the Tempo
Modulator were generated from the Xilinx Coregen Finite Impulse Response Module.
They take as input the original audio, and a processing enable, and outputs the
resulting audio and a ready signal. Two 31-segment, 16-bit finite impulse response
filters were used for the project. The coefficients for the filters are the impulse response
for a simple Hamming Window that has a cut-off at π/32. A Hamming Window
compared to a Rectangular Window trades off a sharp cut-off for a greater and non-
oscillatory attenuation of stop-band frequencies. A discrete time frequency of π/32
corresponds to a continuous time cut-off of 750 Hz (π/32) / (2π) * 48000). See
Appendix for the coefficients used for the two filters. See Figure 24 and Figure 25 for
the Fourier Transform of the two filters.

 30

H(jw)

jw

750 Hz

Figure 24: Fourier Transform of high-pass filter with a cut-off frequency of 750 Hz.

H(jw)

jw

750 Hz

Figure 25: Fourier Transform of low-pass filter with a cut-off frequency of 750 Hz.

2.17 ROM Writer (Andy)
 In order to write data onto the ROM, a ROM writer had to be built. The ROM
Writer basically unlocked the flash ROM, erased the necessary blocks, and wrote the
appropriate data onto the ROM at the correct addresses. The FSM needed to build this
was derived from the Flash ROM test example provided on the 6.111 website. Instead
of writing dummy data onto the ROM and testing if it was correct, then erasing it again,
the system was modified to write data from a BRAM, and to not erase the data. The
data from the BRAMS from .coe files. These files were obtained using Matlab to extract
and scale the audio .wav files, and the Xilinx Coregen Memory Tool was used to create
the .coe files. A total of 24 BRAMS were created, each with a depth of 65536, and a
width of 8.

 31

3. Testing and Debugging

3.1 Video Component (Brandon)

For the modules involving video, testing and debugging was mostly done on the
monitor. Since the display was such an important part of testing, retrieving the camera
input video was the first important task. The sample code on the 6.111 website was
used for interacting with the ZBT, with certain modifications for this project. The
provided code stored only 8 bits of information per pixel, while this implementation
required 16 bits. Determining how many bits to store per pixel required testing in itself,
involving changing the number of and proportion between stored Y, Cr, and Cb data to
view each modification's affect on display quality. The sample code initially stored only
8 bits of Y information per pixel, while this project required both Cr and Cb bits for color
detection and display. As the modules of the sample code were already organized
nicely, much of the debugging process involved changing parts of the ntsc_to_zbt and
vram_display modules to reflect the new storage scheme of 16 bits per pixel.

Modification of these two modules required thoroughly understanding the sample
code. For a couple of days, changing parts of code and rebuilding repeatedly led to no
good results. The video always had some problem with it, no matter what combination
of changes were tried. It was taking too long to figure out, and there were many other
modules to build, so it was important to move on. Yet, since video was such an
important part of debugging the other modules, using the sample code was
necessary. Extending the storage to 16 bits per pixel was a problem, but changing the
composition of the initial 8 bits in the sample code wasn't a problem. Thus, a storage
scheme of 5 bits of Y and 3 bits of Cb information per pixel was temporarily chosen for
use while testing the other video modules.

The next module to build was the color_decision module. This module was
tested by connecting it between the camera retrieval blocks and the VGA display. This
method of debugging proved to be much simpler than generating simulations in
Modelsim. The output of pixel_video was used to display white pixels when the desired
color was detected, and black otherwise on the monitor. This display allowed for testing
the use of different thresholds on the magnitude of Cb for adjusting sensitivity to the
blue content in a camera image. Using switches, the minimum Cb value was tuned to fit
the output with the best detection of bright blue lights. Having the detected areas
displayed on screen provided a lot of useful feedback for adjusting such color threshold
parameters.

Once this was working, the next module was the video_processor module,
consisting of its two submodules of color_detection and position_calcuator. Testing was
first done on the color_detection module to ensure the correct left_en and right_en
outputs would be sent to the position_calculator. In this case, the first round of tests
were done in Modelsim. After adjusting inputs, simulations were run until the correct
left_en and right_en outputs were displayed. As this module follows from the inputs of
the color_decision module, it was first added to the project with direct connections,
rather than through the enclosing video_processor module. Error correction of
comparing consecutive pixel_video bits was tested at this stage. Again, the results
were evident visually on the screen. Connecting the module to a switch allowed for
comparison between the cases with and without error correction. Through this process,

 32

it was found that comparing two consecutive pixels was enough to reduce noise
considerably, while the area of the user's lights still remained large enough to be useful
in position calculations.

Next, the position_calculator was tested to output the result of an average
calculation. First, this was tried in Modelsim, but the method of working directly with the
Labkit proved to be the most effective debugging tool in the end. For one, use of the
Xilinx Pipelined Divider Core was necessary in the actual implementation, so it was
important to test with this particular module included. To test if the divider worked
correctly, an instance of it was first instantiated at the top-level conducting file in Xilinx
and connected to constant inputs. The result was displayed on the 8 LEDs of the
Labkit. Since the divided results for chosen constant inputs were known beforehand,
matching expected results with the LEDs provided evidence to the correct operation of
the divider.

For testing the correct result of the position_calculator modules as a whole,
sprites at output coordinates for the left and right hands were instantiated in the top-
level file of Xilinx to track the hand motions. Initially, the outputs produced unexpected
results. The results would only sometimes match the expected location of the weighted
average positions. It turned out to be the timing of the divide calculations which led to
this problem. The divide calculation takes a total of 28 clock cycles to complete. Code
was written to time a synchronous clear input to the divider to make sure new data
would always be received at output. However, this timing allotment was done assuming
a 65 Mhz clock was used as soon as vsync went low for output results to be ready the
next time vsync asserted high. This was a mistake in that the operation of the divider
was actually on the 27 Mhz clock, so the divide results were not calculated in enough
time for capturing the correct values.

Correcting this problem still led to puzzling results, however. The problem this
time was that the sclr input to divide was disabled by default in Xilinx. As a result, none
of the clear signals were even hooked up to the module. As the module was never
synced with the video display, this led to odd results in the cases when divide results
were misaligned in time. Fixing these problems led to correct display of each hand's
position.

Once both of these submodules of the video_processor module were completed
and tested on the top-level, they were moved into the video_processor module for better
organization.
 The motion_analyzer module also consists of two submodules which were each
tested sequentially on the top-level file by viewing the monitor. To test the
beat_markers module, a square block is placed on screen at the coordinates when a
beat start was registered, as well as at the coordinates when a beat end was registered.
The placement of blocks allowed for easy adjustment of the sensitivity of the system to
beat detection. Using switches to adjust parameters described in the beat_markers
section, testing was done to find the best combination of values. No Modelsim
simulation could provide a sense of the user�s actual motion, so it was important to test
this module using the display.
 The qualities_generator module was also tested using the display. Firstly, the
find_distance module was tested with constant inputs for correct operation. Displaying
the results on the LEDs allowed for debugging of the module. Next, the

 33

qualities_genetator module was tested by displaying the amplitude, beat frequency, and
acceleration outputs as the width of bars displayed on the bottom half of the monitor.
Since amplitude calculations were based on the pixel distance between a beat start and
end, it was easiest to see the module working by these bars. The monitor provided
instant feedback for guaranteeing the calculation was correct. The original idea was to
use the logic analyzer for testing, but this proved unnecessary and even harder to do
since the tester cannot remember every set of motions he made to compare for correct
results on the analyzer. Rather, visually confirming correct calculations while
conducting provides the best feedback.
 Once all these calculations were complete, the sprites for testing were all
grouped into the generate_visualization module for better organization. When moving
large amounts of signals to other modules, problems with forgotten or mismatched
signals arose. These issues were eventually resolved, but took time to correct and
debug.
 Finally, after completing most of the video portion, the camera input and storage
portion was fixed. After careful examination of the code structure, it became much
clearer as to how to modify the code to support 16 bits per pixel of YCrCb data storage.
As this greater amount of color information became available, it was possible to
generate color video in RGB format for display on the screen. Additionally, new color
threshold tests were done using the new Cr and Cb data to find even better thresholds
for detecting the blue LEDs.
 In general, it was particularly time-consuming to debug modifications to the
camera input and display modules. Much time could�ve been saved in taking the extra
time to clearly undertand the operation of the existing code. Making changes with only
half an understanding of the code led to countless compiles which could have been
avoided.

Tuning the system to be responsive enough to the user�s motions yet not too
sensitive was also a long process. The orginal design registered a beat end as soon as
the user�s motion slowed. This led to problems, however, with conducting at a slow
tempo. If the user�s hand moved slowly, multiple beats would be registered in a row,
leading to a string of unwanted beats in a row.

To remedy this problem, the implemented FSM was used to separate a potential
stop from an actual stop. With this system, the user could move very slowly yet still
produce beat end markers within reasonable time. The many adjustable parameters in
this model were a bit overwhelming at first, but provided the freedom needed to tune the
system for our particular purpose.

3.2 Audio Component (Andy)
 Testing and Debugging of the Audio section always maintained an audio input
and output so that an audio signal could be heard at all times. Before embarking on
tackling the design head-on, it was decided that small prototypes should be developed
first. It did not take long to develop a prototype for the high-pass and low-pass filters, as
well as a simple tempo-modulator which was only able to play back the audio twice as
fast or twice as slow. However, the audio data used was directly read from a BRAM, for
simplicity sake.

 34

In order to build the actual system, some sort of audio needed to be loaded onto
ROM. This task had proved to be harder than expected, since there was no direct
example of audio being read from the flash ROM available on the website. However,
there were examples of data being written into the flash ROM � and this example was
modified to write data from the BRAM onto the flash ROM. In order to read from the
flash ROM, Lab 4 was modified to include part of the flash ROM testing code available
on the website.
 After finally obtaining some audio output from the ROM, the ROM FSM and ZBT
FSM were implemented. This had proved to be more difficult than expected, once
again. The majority of time was spent trying to obtain some sort of output. Since the
incorrectness of a system is hard to judge without any audible output, the use of the
logic analyzer proved quite helpful. The logic analyzer helped display the data that was
read from the flash ROM, as well as the data to be written into the ZBT SRAM. Using
the logic analyzer to display the states of the two finite state machines also proved quite
helpful. At first, the data was being read from the ROM incorrectly because of the
incorrect declaration of the ROM reading commands and insufficient delay between
reads. These two problems were quickly corrected.
 The next step to the completing of the audio section of the project was to add the
Beat Generator. For reasons to keep the system simple, the Beat Generator was
originally incorporated in the ROM FSM. However, to make the implementation clean,
the Beat Generator was eventually moved to its own module. The use of ModelSim
was used to determine if Beat Generator operated correctly. See Figure 26 for a
screenshot of ModelSim.

Figure 26: ModelSim simulation of Beat Generator Module. This is one of many
ModelSim simulations performed.

 Afterwards, the Tempo Modulator was implemented. Since the Tempo
Modulator involved a tricky FSM, it was useful to debug the module by itself in
ModelSim beforehand. ModelSim proved to be a real time-saver because instead of

 35

compiling the entire project, the module was simply fed into ModelSim, shortening the
debug cycle time drastically. The use of a logic analyzer was again useful, in
determining if the system was working in actuality, not just in theory.
 The completion of the Tempo Modulator was a major milestone in for the audio
section of the project. The high-pass and low-pass filters were then added to the chain
of audio processing. Checking the correctness of these filters was done by comparing
logic analyzer results with Matlab results. See Figure 27 for a Matlab screenshot of the
theoretical results of the low-pass filter and Figure 28 for the simulation for the high-
pass filter. These Matlab results closely matched actual low-pass and high-pass data,
as displayed on the logic analyzer.

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

6

n

lo
w

 p
as

s
re

su
lt

Low Pass Filter Result

Figure 27: Matlab simulation of low-pass filter on a sample of audio.

 36

0 50 100 150 200 250
-4

-3

-2

-1

0

1

2

3

4

5
x 10

5

n

hi
gh

 p
as

s
fil

te
r

re
su

lt

High Pass Filter Theoretical Result

Figure 28: Matlab simulation of high-pass filter on a sample of audio.

The next module was the Volume and Articulation Modulator. This module was
completed rather quickly mostly because it was simpler than the rest. The scaling of the
audio as a whole required major tinkering to make sure that the audio occupied the
correct bits of the output, and made use of the 8-bit resolution to the fullest. However, it
was apparent that there was a rather grave problem: the articulation modulation
performed as intended from theory, however, did not make the music sound like it had
different articulation. Instead, it just made the beginning parts of beats sound louder
than others.

This problem was derived from the fact that the melody changed notes multiple
times during one beat; the articulation modulation implemented only accounted for 1
note-change per beat. Thus, every note-change needed to be identified to solve the
problem. A large amount of research was then performed to try to correct this problem.

However, it was later discovered that real articulation modulation was quite
difficult. Many algorithms using the Fast Fourier Transform existed to identify note
changes � but those only worked for songs that had no accompaniment (only one
instrument played at once). However, the song we decided to use, Bolero, consisted of
many instruments playing at once. Therefore, a significant change in the FFT spectrum
did not necessarily translate into a change in a note in the melody. Thus, the idea of
correct articulation modulation was abandoned, and the existing articulation modulation
was put into place for completeness.

 37

3.3 Overall System
 When the audio section was connected, it was discovered that the scaling of
audio signal in the volume modulation was problematic: when the audio signal is
reduced to too great of an extent, the resolution deteriorates and the sound quality
becomes abysmal. To solve this problem, the Volume Modulator not only scaled the
signal � it also scaled the volume of the AC �97 interface. Therefore, to create a soft
audio playback, the audio signal was scaled down � but not to the extent that playback
quality deteriorated, and the AC �97 volume was turned down as well. This resulted in a
much larger gamut of dynamic values possible from the system.
 Another problem which occurred: the playback sounded rather choppy because
particularly when there was a large difference between volume levels of neighboring
beats. At first, an averaging technique was put into place to set the current volume to
be the volume of the last 3 beats. However, the response time of volume changes
suffered, but in exchange for a smoother playback.
 To also allow for faster response time and even smoother playback, another
technique was used: interpolation. One beat was divided into 32 segments. The first 16
segments consisted of a linear change between the old volume and the new volume,
while the last 16 segments maintained the new volume. The result was an amazingly
improved playback, and a more natural-sounding system.

 38

4. Conclusion

 The goal of the Virtual Conducting System was to emulate the experience of a
conductor directing an orchestra. A real conductor usually waves his/her hands to
adjust the tempo, the dynamics, and the feelings of the orchestra. Moreover, the
conductor can choose to adjust the balance of the orchestra (how loud each instrument
plays).
 Our Virtual Conducting System achieves these objects in many ways. A gesture
given by the user, by blue LEDs in both hands is interpreted into musical qualities: the
beat period and the amplitude and acceleration of the gesture are specified by the
Video Component. The Audio Component takes these signals and reproduces audio
that is played back a different tempo, loudness, and articulation depending on what the
signals provided are. Even the smoothness of volume transitions is implemented using
the Signal Tamer module.
 However, there are many ways to improve our system. First of all, the usability
of our system is susceptible to background noise and other light sources. Moreover, the
presence of the color blue may cause our system to behave undesirably. The optimum
conditions would have been operating the system in a dark room � this would be similar
to a real conductor conducting an orchestra during a performance, but we�d prefer to
conduct in normal conditions. If available, a different motion tracking medium could had
been experimented with � for example, maybe the use of a laser-tracking system could
potentially produce better results.
 The audio playback also displayed some nondesirable behavior: for example, the
audio seemed particularly noisy for a digital system. This was primarily due to the way
the scaled audio was created: by removing and adding groups of samples, high
frequency noise was added to the system. We tried to eliminate this problem by simply
pointing the balance on the speakers towards the bass; however, a more robust solution
existed: using a low-pass filter. However, in order for this technique to work, we would
have unavoidably lost some high frequency audio since the high frequency noise was in
the same frequency range as some parts of the audio. A way around this could had
been to turn on the low-pass filter only when the division additions or subtractions
occurred, thus only turning on the low-pass filter when needed, and minimizing the
undesirable effect of the low-pass filter.
 As discussed before, if time were available, a different approach to the
articulation modulation could have been attempted, though good results do not seem so
easy to obtain. Also, if more time were available, an easier way to load audio onto the
flash ROM could had been implemented. Early on, Andy experimented with loading
audio directly from an AC �97 input to a flash ROM, but did not obtain usable results.
Such a technique could have been researched further. Moreover, other techniques
such as uploading data through the RS232 interface, or using a USB or even Ethernet
connection interface could have been attempted. Such an accomplishment would make
the system more complete, flexible and universal.

Overall, the implementation of the Virtual Conduction System was tedious, yet
enjoyable, and an excellent experience. From the project, it was valuable to understand
how important it was to plan ahead, and have a �masterplan� before the system
implementation was underway. It was also very important to understand that

 39

prototyping and experimentation is greatly necessary before creating the �masterplan.�
Working with a partner was a good way to experience real-world situations.

Moreover, the Virtual Conducting Project taught the ways to debug a very
complex system. Usually, when a component did not work, it was useful to reduce the
problem to something simpler, and to get the simpler system to work first.
Implementation of the Virtual Conducting Project required important attention to details,
without losing sight of the big picture.

In many ways, the Virtual Conducting System was a huge success: all planned
features were implemented and worked in practice. User gestures using 2 blue LEDs
due indeed result in different audio that varies in tempo, volume, balance, and
articulation. The potentials of the idea of a Virtual Conducting System are endless. For
example, more emotion can be added to the audio playback. Also, the system could
potentially detect different instruments and allow the user to control specific instruments
instead of only the bass and the treble. A supplementary display could potentially
display a �virtual orchestra� playing the song the user is conducting. No matter how
much could be added to the system, the existing features make a solid base of features
that makes it exciting to dream and aspire to create an even more innovative virtual
conducting system in the future.

 40

5. Appendix

5.1 Low Pass Filter Coefficients

Segment # Coefficient Value
0 111
1 132
2 184
3 270
4 388
5 538
6 713
7 907
8 1112
9 1318
10 1514
11 1692
12 1841
13 1954
14 2024
15 2048
16 2024
17 1954
18 1841
19 1692
20 1514
21 1318
22 1112
23 907
24 713
25 538
26 388
27 270
28 184
29 132
30 111

 41

5.2 High Pass Filter Coefficients

Segment # Coefficient Value
0 -111
1 -132
2 -184
3 -270
4 -388
5 -538
6 -713
7 -907
8 -1112
9 -1318

10 -1514
11 -1692
12 -1841
13 -1954
14 -2024
15 30720
16 -2024
17 -1954
18 -1841
19 -1692
20 -1514
21 -1318
22 -1112
23 -907
24 -713
25 -538
26 -388
27 -270
28 -184
29 -132
30 -111

 42

5.3 Verilog Code

///
//
// Conducting System
//
// Created: December 10, 2006
// Author: Andy Lin and Brandon Yoshimoto
//
///
//
// Virtual Conducting System: Uses camera video input to affect the playback of
// music. This is the top-level file which connects with the labkit

// Sample code template information:

// File: zbt_6111_sample.v
// Date: 26-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Sample code for the MIT 6.111 labkit demonstrating use of the ZBT
// memories for video display. Video input from the NTSC digitizer is
// displayed within an XGA 1024x768 window. One ZBT memory (ram0) is used
// as the video frame buffer, with 8 bits used per pixel (black & white).
//
// Since the ZBT is read once for every four pixels, this frees up time for
// data to be stored to the ZBT during other pixel times. The NTSC decoder
// runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize
// signals between the two (see ntsc2zbt.v) and let the NTSC data be
// stored to ZBT memory whenever it is available, during cycles when
// pixel reads are not being performed.
//
// We use a very simple ZBT interface, which does not involve any clock
// generation or hiding of the pipelining. See zbt_6111.v for more info.
//

// MODIFICATIONS: This design includes 16 bits per pixel, and the ZBT is read once for every two
pixels instead.

`include "debounce.v"
`include "video_decoder.v"
`include "zbt_6111.v"
`include "ntsc2zbt.v"

module conducting(beep, audio_reset_b,
 ac97_sdata_out, ac97_sdata_in, ac97_synch,
 ac97_bit_clock,

 vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
 vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
 vga_out_vsync,

 tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
 tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
 tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

 tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
 tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
 tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
 tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

 ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,
 ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

 ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
 ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,

 clock_feedback_out, clock_feedback_in,

 43

 flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
 flash_reset_b, flash_sts, flash_byte_b,

 rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

 mouse_clock, mouse_data, keyboard_clock, keyboard_data,

 clock_27mhz, clock1, clock2,

 disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_in,

 button0, button1, button2, button3, button_enter, button_right,
 button_left, button_down, button_up,

 switch,

 led,

 user1, user2, user3, user4,

 daughtercard,

 systemace_data, systemace_address, systemace_ce_b,
 systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

 analyzer1_data, analyzer1_clock,
 analyzer2_data, analyzer2_clock,
 analyzer3_data, analyzer3_clock,
 analyzer4_data, analyzer4_clock);

 output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
 input ac97_bit_clock, ac97_sdata_in;

 output [7:0] vga_out_red, vga_out_green, vga_out_blue;
 output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
 vga_out_hsync, vga_out_vsync;

 output [9:0] tv_out_ycrcb;
 output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
 tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
 tv_out_subcar_reset;

 input [19:0] tv_in_ycrcb;
 input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,
 tv_in_hff, tv_in_aff;
 output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
 tv_in_reset_b, tv_in_clock;
 inout tv_in_i2c_data;

 inout [35:0] ram0_data;
 output [18:0] ram0_address;
 output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;
 output [3:0] ram0_bwe_b;

 inout [35:0] ram1_data;
 output [18:0] ram1_address;
 output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;
 output [3:0] ram1_bwe_b;

 input clock_feedback_in;
 output clock_feedback_out;

 inout [15:0] flash_data;
 output [23:0] flash_address;
 output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
 input flash_sts;

 output rs232_txd, rs232_rts;
 input rs232_rxd, rs232_cts;

 44

 input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

 input clock_27mhz, clock1, clock2;

 output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
 input disp_data_in;
 output disp_data_out;

 input button0, button1, button2, button3, button_enter, button_right,
 button_left, button_down, button_up;
 input [7:0] switch;
 output [7:0] led;

 inout [31:0] user1, user2, user3, user4;

 inout [43:0] daughtercard;

 inout [15:0] systemace_data;
 output [6:0] systemace_address;
 output systemace_ce_b, systemace_we_b, systemace_oe_b;
 input systemace_irq, systemace_mpbrdy;

 output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
 analyzer4_data;
 output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

 //
 //
 // I/O Assignments
 //
 //

 // Audio Input and Output
 assign beep= 1'b0;
 // assign audio_reset_b = 1'b0;
 // assign ac97_synch = 1'b0;
 // assign ac97_sdata_out = 1'b0;
/*
*/
 // ac97_sdata_in is an input

 // Video Output
 assign tv_out_ycrcb = 10'h0;
 assign tv_out_reset_b = 1'b0;
 assign tv_out_clock = 1'b0;
 assign tv_out_i2c_clock = 1'b0;
 assign tv_out_i2c_data = 1'b0;
 assign tv_out_pal_ntsc = 1'b0;
 assign tv_out_hsync_b = 1'b1;
 assign tv_out_vsync_b = 1'b1;
 assign tv_out_blank_b = 1'b1;
 assign tv_out_subcar_reset = 1'b0;

 // Video Input
 //assign tv_in_i2c_clock = 1'b0;
 assign tv_in_fifo_read = 1'b1;
 assign tv_in_fifo_clock = 1'b0;
 assign tv_in_iso = 1'b1;
 //assign tv_in_reset_b = 1'b0;
 assign tv_in_clock = clock_27mhz;//1'b0;
 //assign tv_in_i2c_data = 1'bZ;
 // tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
 // tv_in_aef, tv_in_hff, and tv_in_aff are inputs

 // SRAMs

/* change lines below to enable ZBT RAM bank0 */

/*
 assign ram0_data = 36'hZ;

 45

 assign ram0_address = 19'h0;
 assign ram0_clk = 1'b0;
 assign ram0_we_b = 1'b1;
 assign ram0_cen_b = 1'b0; // clock enable
*/

 //assign vga_out_red = 10'h0;
 //assign vga_out_green = 10'h0;
 //assign vga_out_blue = 10'h0;
 //assign vga_out_sync_b = 1'b1;
 //assign vga_out_blank_b = 1'b1;
 //assign vga_out_pixel_clock = 1'b0;
 //assign vga_out_hsync = 1'b0;
 //assign vga_out_vsync = 1'b0;

/* enable RAM pins */

 assign ram0_ce_b = 1'b0;
 assign ram0_oe_b = 1'b0;
 assign ram0_adv_ld = 1'b0;
 assign ram0_bwe_b = 4'h0;

/**********/

 /* assign ram1_data = 36'hZ;
 assign ram1_address = 19'h0;
 assign ram1_adv_ld = 1'b0;
 assign ram1_clk = 1'b0;
 assign ram1_cen_b = 1'b1;
 */
 assign ram1_ce_b = 1'b0;
 assign ram1_oe_b = 1'b0;
 assign ram1_adv_ld = 1'b0;
 assign ram1_bwe_b = 4'h0;

 assign clock_feedback_out = 1'b0;
 // clock_feedback_in is an input

 // Flash ROM
 /* assign flash_data = 16'hZ;
 assign flash_address = 24'h0;
 assign flash_ce_b = 1'b1;
 assign flash_oe_b = 1'b1;
 assign flash_we_b = 1'b1;
 assign flash_reset_b = 1'b0;
 assign flash_byte_b = 1'b1; */
 // flash_sts is an input

 // RS-232 Interface
 assign rs232_txd = 1'b1;
 assign rs232_rts = 1'b1;
 // rs232_rxd and rs232_cts are inputs

 // PS/2 Ports
 // mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

 // LED Displays

 assign disp_blank = 1'b1;
 assign disp_clock = 1'b0;
 assign disp_rs = 1'b0;
 assign disp_ce_b = 1'b1;
 assign disp_reset_b = 1'b0;

 46

 assign disp_data_out = 1'b0;

 // disp_data_in is an input

 // Buttons, Switches, and Individual LEDs
 //lab3 assign led = 8'hFF;
 // button0, button1, button2, button3, button_enter, button_right,
 // button_left, button_down, button_up, and switches are inputs

 // User I/Os
 assign user1 = 32'hZ;
 assign user2 = 32'hZ;
 assign user3 = 32'hZ;
 assign user4 = 32'hZ;

 // Daughtercard Connectors
 assign daughtercard = 44'hZ;

 // SystemACE Microprocessor Port
 assign systemace_data = 16'hZ;
 assign systemace_address = 7'h0;
 assign systemace_ce_b = 1'b1;
 assign systemace_we_b = 1'b1;
 assign systemace_oe_b = 1'b1;
 // systemace_irq and systemace_mpbrdy are inputs

 // Logic Analyzer
 assign analyzer1_data = 16'h0;
 assign analyzer1_clock = 1'b1;

 assign analyzer2_data = 16'h0;
 assign analyzer2_clock = clock_27mhz;

 assign analyzer3_data = 16'h0;
 assign analyzer3_clock = 1'b1;
 assign analyzer4_data = 16'h0;
 assign analyzer4_clock = 1'b1;

 // VIDEO CODE BEGINS:

 // Camera input storage and retrieval:

 //
 // Demonstration of ZBT RAM as video memory

 // use FPGA's digital clock manager to produce a
 // 65MHz clock (actually 64.8MHz)
 wire clock_65mhz_unbuf,clock_65mhz;
 DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
 // synthesis attribute CLKFX_DIVIDE of vclk1 is 10
 // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
 // synthesis attribute CLK_FEEDBACK of vclk1 is NONE
 // synthesis attribute CLKIN_PERIOD of vclk1 is 37
 BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

 wire clk = clock_65mhz;

 // power-on reset generation
 wire power_on_reset; // remain high for first 16 clocks
 SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power_on_reset),
 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
 defparam reset_sr.INIT = 16'hFFFF;

 // ENTER button is user reset
 wire reset,user_reset;
 debounce db1(power_on_reset, clk, ~button_enter, user_reset);
 assign reset = user_reset | power_on_reset;

 // generate basic XVGA video signals

 47

 wire [10:0] hcount;
 wire [9:0] vcount;
 wire hsync,vsync,blank;
 xvga xvga1(clk,hcount,vcount,hsync,vsync,blank);

 // wire up to ZBT ram

 wire [35:0] vram_write_data;
 wire [35:0] vram_read_data;
 wire [18:0] vram_addr;
 wire vram_we;

 zbt_6111 zbt1(clk, 1'b1, vram_we, vram_addr,
 vram_write_data, vram_read_data,
 ram1_clk, ram1_we_b, ram1_address, ram1_data, ram1_cen_b);

 // generate pixel value from reading ZBT memory
 wire [15:0] vr_pixel;
 wire [18:0] vram_addr1;

 vram_display vd1(reset,clk,hcount,vcount,vr_pixel,
 vram_addr1,vram_read_data);

 // ADV7185 NTSC decoder interface code
 // adv7185 initialization module
 adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),
 .source(1'b0), .tv_in_reset_b(tv_in_reset_b),
 .tv_in_i2c_clock(tv_in_i2c_clock),
 .tv_in_i2c_data(tv_in_i2c_data));

 wire [29:0] ycrcb; // video data (luminance, chrominance)
 wire [2:0] fvh; // sync for field, vertical, horizontal
 wire dv; // data valid

 ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),
 .tv_in_ycrcb(tv_in_ycrcb[19:10]),
 .ycrcb(ycrcb), .f(fvh[2]),
 .v(fvh[1]), .h(fvh[0]), .data_valid(dv));

 // code to write NTSC data to video memory

 wire [18:0] ntsc_addr;
 wire [35:0] ntsc_data;
 wire ntsc_we;
 ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, ycrcb[29:0],
 ntsc_addr, ntsc_data, ntsc_we, 1'b0);//switch[6]);

 // code to write pattern to ZBT memory
 reg [31:0] count;
 always @(posedge clk) count <= reset ? 0 : count + 1;

 wire [18:0] vram_addr2 = count[0+18:0];
 wire [35:0] vpat = ((1'b1) ? {4{count[3+3:3],4'b0}}
 : {4{count[3+4:4],4'b0}}); //switch[1]

 // mux selecting read/write to memory based on which write-enable is chosen

 wire sw_ntsc = 1; // ~switch[7];
 wire my_we = sw_ntsc ? (hcount[0]==1'd0) : blank;
 wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vram_addr2;
 wire [35:0] write_data_1 = sw_ntsc ? ntsc_data : vpat;

// wire write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we;
// assign vram_addr = write_enable ? write_addr : vram_addr1;
// assign vram_we = write_enable;

 assign vram_addr = my_we ? write_addr : vram_addr1;
 assign vram_we = my_we;
 assign vram_write_data = write_data_1;

 // select output pixel data

 48

 wire b,hs,vs;

 delayN dn1(clk,hsync,hs); // delay by 3 cycles to sync with ZBT read
 delayN dn2(clk,vsync,vs);
 delayN dn3(clk,blank,b);

 ///

 // Video Modules:

 // Modules for debouncing the button_up and button_down signals:
 wire bup, bdown;
 debounce bup_mod(reset, clock_27mhz, button_up, bup);
 debounce bdown_mod(reset, clock_27mhz, button_down, bdown);

 // MODULE (color_decision): Decides if a pixel is of the desired color. Also outputs
camera video image as RGB

 wire pixel_video; // 1 if current pixel is of the desired
color
 wire [23:0] cam_image; // Camera input image in format {R,G,B}

 color_decision color_decision1(
 clk,reset,vr_pixel,pixel_video,cam_image,switch[7:0]);

 // MODULE (video_processor): Takes in camera video and outputs coordinates of hands

 wire [10:0] left_x, right_x; // The average x positions of left and right hands
respectively
 wire [9:0] left_y,right_y; // The average y positions of left and right hands
 respectively
 wire desired_color; // desired_color = 1 if the current pixel is
registered as blue

 video_processor vp(reset, clock_27mhz,
 pixel_video,
 hcount, vcount, vsync,
 left_x, left_y,
 right_x, right_y,
 desired_color);

 // MODULE (motion_analyzer): Takes in hand positions and analyzes motion over time

 wire beat_start;
 // High for one clock cycle when beat starts, low otherwise.
 wire beat_end;
 // High for one clock cycle when beat ends, low otherwise.
 wire [10:0] beat_start_x, beat_end_x; // The
x position at the start and end of a beat respectively
 wire [9:0] beat_start_y, beat_end_y;
 // The y position at the start and end of a beat respectively
 wire [10:0] amp_left, amp_right;
 // The distance in pixels between a beat start and end
 wire [10:0] beat_period;
 // A count of how many 0.04s intervals a beat takes
 wire [10:0] acceleration_left, acceleration_right; // A measure
of the calculated acceleration for a beat

 motion_analyzer motion_analy1(clock_27mhz,reset,
 left_x,left_y,

 right_x,right_y,

 beat_start,beat_end,

 beat_start_x,beat_start_y,

 beat_end_x,beat_end_y,

 49

 amp_left,amp_right,
 beat_period,

 acceleration_left,acceleration_right,
 switch[7:6],
switch[5:4], switch[3:2], switch[1:0]);

 // MODULE (generate_visualization): Decides what to output to the screen

 // The output wires to the vga display:
 wire [7:0] display_out_r, display_out_g, display_out_b;

 generate_visualization gen_vis1(clk,clock_27mhz,reset,hcount,vcount,

 bup,bdown,cam_image,
 left_x,
left_y, right_x, right_y,

 beat_start_x, beat_start_y,

 beat_end_x,beat_end_y,

 amp_left, amp_right,

 beat_period,

 acceleration_left,acceleration_right,

 desired_color,

 display_out_r, display_out_g, display_out_b);

 // VGA Output. In order to meet the setup and hold times of the
 // AD7125, we send it ~clock_65mhz.
 assign vga_out_red = display_out_r;
 assign vga_out_green = display_out_g;
 assign vga_out_blue = display_out_b;
 assign vga_out_sync_b = 1'b1; // not used
 assign vga_out_pixel_clock = ~clock_65mhz;
 assign vga_out_blank_b = ~b;
 assign vga_out_hsync = hs;
 assign vga_out_vsync = vs;

///
 // AUDIO

 wire [7:0] from_ac97_data, to_ac97_data;
 wire ready;

 // allow user to adjust volume
 wire vup,vdown;
 reg old_vup,old_vdown;
 debounce bright(reset, clock_27mhz, ~button_right, vup);
 debounce bleft(reset, clock_27mhz, ~button_left, vdown);
 debounce bbeat(reset, clock_27mhz, ~button0, beatprelim);

// reg beat;
// reg beatprelimold;
// always @ (posedge clock_27mhz) begin
// beatprelimold <= beatprelim;
// beat <= (beatprelim != beatprelimold) & beatprelim;
// end

 wire [6:0] amp_left_fixed;
 wire [6:0] amp_right_fixed;
 wire [4:0] volume;
 // reg [4:0] volume;

 // always @ (posedge clock_27mhz) begin

 50

// if (reset) volume <= 5'd8;
// else begin
// if (vup & ~old_vup & volume != 5'd31) volume <= volume+1;
// if (vdown & ~old_vdown & volume != 5'd0) volume <= volume-1;
// end
// old_vup <= vup;
// old_vdown <= vdown;

// if (((amp_left_fixed + amp_right_fixed) >> 2) >= 5'b11111)
// volume <= 5'b11111;
// else
// volume <= (amp_left_fixed + amp_right_fixed)>>2;
 // end
// end
 // AC97 driver
 lab4audio a(clock_27mhz, reset, volume, from_ac97_data, to_ac97_data, ready,
 audio_reset_b, ac97_sdata_out, ac97_sdata_in,
 ac97_synch, ac97_bit_clock);

 // push ENTER button reset
 wire playback;
 debounce benter(reset, clock_27mhz, button_enter, playback);
 debounce bone(reset, clock_27mhz, ~button1, program);
 debounce btwo(reset, clock_27mhz, ~button2, which);
 debounce bthree(reset, clock_27mhz, ~button3, reset_metronome);
 // light up LEDs when recording, show volume during playback.
 // led is active low
 assign led = playback ? ~{3'b000, volume} : 8'h00;

 wire we, din, dout;
 wire [22:0] addr;
 wire [2:0] counter;

 wire weZBT;
 wire [18:0] addrZBT;

 defparam reset_sr.INIT = 16'hFFFF;

 wire [1:0] fop;
 wire [22:0] faddress;
 wire [15:0] fwdata, frdata;
 wire fbusy;
 wire [639:0] dots;
 wire [7:0] beataudio;
 wire [5:0] zbtState;
 wire [35:0] write_data, read_data;
 wire continue;
 wire access_enable;
 wire signed [15:0] addr_mod;
 wire [2:0] divisionCount;
 wire [2:0] skip;
 wire [2:0] interval;
 wire beginning;
 wire add;
 wire [10:0] TempBeatPeriod, BeatPeriod, NewBeatPeriod;
 //reg [15:0] offset = 5000;
 //reg [15:0] musicbeatperiod = 21900;
 wire [15:0] beatcount;
 wire tempbeatcount;

 wire nd, rdy, rfd , rdyhp, rfdhp; //hp lp stuff
 wire signed [7:0] to_filter;
 wire signed [28:0] filter_out, filter_outhp;
 wire signed [8:0] sum;
 reg signed [7:0] low_out;
 reg signed [7:0] high_out;
 wire [15:0] offset;
 wire [15:0] musicbeatperiod;
 wire firstbeat;

 51

 assign beat = beat_start;
 wire [1:0] acceleration_left_out, acceleration_right_out;

 //module test(samplecount, musicbeat);
 //test mytest(beatcount, musicbeat);

 //module BeatGenerator2(reset, clock_27mhz, beginning, offset, samplecount, access_enable,
access_reset, musicbeat, beatperiod, toggle);
 BeatGenerator2 myBeatGenerator(reset|~playback, clock_27mhz, beginning, offset, beatcount,
sample_access, access_reset, musicbeat, musicbeatperiod, switch[2]);

 //module ROMFSM(clock_27mhz, reset, playback, ready, from_ac97_data, outdata, switch, we,
din, dout, addr, counter, playbackchange, faddress, frdata, fwdata, fbusy, fop, dots, beat,
musicbeat, continue, beginning, offset, beatperiod, access_enable, access_reset, samplecount);
 ROMFSM myROMFSM(clock_27mhz, ~playback|reset, playback, ready, from_ac97_data, beataudio,
1, we, din, dout, addr, counter, playbackchange, faddress, frdata, fwdata, fbusy, fop, dots, beat,
musicbeat, continue, beginning, offset, musicbeatperiod, sample_access, access_reset, beatcount,
firstbeat);

 //module ZBTFSM(reset, clock_27mhz, inaudio, outaudio, beat, musicbeat, we, write_data,
read_data, addr, ready);
 ZBTFSM myZBTFSM(~playback|reset, clock_27mhz, beataudio, to_filter, beat, musicbeat,
weZBT, write_data, read_data, addrZBT, ready, zbtState, continue, access_enable, addr_mod,
BeatPeriod, 1, 0, musicbeatperiod, firstbeat);

 //****the Division Converter and the Division Counter make up the Tempo Modulator
"Module"
 //DivisionCounter myDivisionCounter(reset, clock_27mhz, access_enable, addr_mod,
switch[5:3], switch[2:0], switch[6], divisionCount);
 DivisionCounter myDivisionCounter(~playback|reset, clock_27mhz, access_enable, addr_mod,
skip, interval, add, divisionCount);

 //module DivisionConverter(reset, clock_27mhz, BeatPeriod, beat, access_enable,
OriginalBeatPeriod, skip, interval, add, NewBeatPeriod, NewOriginalBeatPeriod);
 DivisionConverter myDivisionConverter(reset, clock_27mhz, BeatPeriod, beat,
OriginalBeatPeriod, skip, interval, add, NewBeatPeriod, NewOriginalBeatPeriod, TempBeatPeriod,
musicbeatperiod);

 //module BeatPeriodCounter(reset, clock_27mhz, enable, beat, BeatPeriod, offset,
beginning);
 BeatPeriodCounter myBeatPeriodCounter(~playback|reset, clock_27mhz, ready, beat,
BeatPeriod, beginning);

 //lp and hp filters
 lpfilter lpf (ready, rdy, clock_27mhz, rfd, to_filter, filter_out);
 hpfilter hpf (ready, rdyhp, clock_27mhz, rfdhp, to_filter, filter_outhp);

 //module SignalTamer (reset, clock_27mhz, volume_in, volume_out, acceleration_in,
acceleration_out,
// beat, sample_count, musicbeatperiod,
interpolationswitch);

 SignalTamer SignalTamerLeft(reset, clock_27mhz, amp_left,
 amp_left_fixed, acceleration_left, acceleration_left_out, beat, addrZBT, musicbeatperiod,
switch[5]);

 SignalTamer SignalTamerRight(reset, clock_27mhz, amp_right,
 amp_right_fixed, acceleration_right, acceleration_right_out, beat, addrZBT,
musicbeatperiod, switch[5]);

// ArticulationVolumeModulator myArticulationVolumeModulator(clock_27mhz, reset, filter_out,
filter_outhp,
// to_ac97_data, {9'b0, switch[1:0]}, {9'b0, switch[3:2]},
amp_left_fixed,
//
amp_right_fixed, musicbeatperiod, rfd, rfdhp, {7'b0, switch[1]}, switch[0], addrZBT, switch[7],
volume);
//

 52

 ArticulationVolumeModulator myArticulationVolumeModulator(clock_27mhz, reset, filter_out,
filter_outhp,
 to_ac97_data, acceleration_left_out, acceleration_right_out,
amp_left_fixed,

amp_right_fixed, musicbeatperiod, rfd, rfdhp, {7'b0, switch[1]}, switch[0], addrZBT, switch[7],
volume, switch[6]);

 //module MetronomeProgrammer(clock_27mhz, reset, program_select, program, value,
music_beat_period,
 // offset);
 MetronomeProgrammer MyMetronomeProgrammer(clock_27mhz, reset|reset_metronome, which, program,
switch[7:0], musicbeatperiod,
 offset);

 // output useful things to the logic analyzer connectors
 //assign analyzer1_clock = clock_27mhz;
 // assign analyzer1_clock = ac97_bit_clock;
 // assign analyzer1_data[0] = audio_reset_b;
 // assign analyzer1_data[1] = ac97_sdata_out;
 // assign analyzer1_data[2] = ac97_sdata_in;
 // assign analyzer1_data[3] = ac97_synch;
 //assign analyzer1_data[15:8] = read_data[7:0];
 //assign analyzer1_data[15:8] = addr_mod[9:2];

 //assign analyzer1_data[15:8] = NewBeatPeriod[7:0];
 //assign analyzer1_data[7:0] = write_data;
 //assign analyzer1_data[7:7] = add;
 //assign analyzer1_data[6] = beat;
 //assign analyzer1_data[5:3] = interval;
 //assign analyzer1_data[2:0] = skip;

 //assign analyzer1_data[5:0] = zbtState;

 //assign analyzer2_clock = clock_27mhz;
 //assign analyzer2_data = {from_ac97_data[7:1], ready, to_ac97_data};
 //assign analyzer2_data = {beataudio, addrZBT[7:0]};
 //assign analyzer4_data[0] = we;
 //assign analyzer4_data[15:5] = 0;
 //assign analyzer4_data[3:1] = counter;
// assign analyzer4_data[4] = playbackchange;

 //ZBT Stuff
 zbt_6111 myzbt(clock_27mhz, 1'b1, weZBT, addrZBT, write_data, read_data, ram0_clk,
ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

 //ROM Stuff
 flash_int flashint1 (reset, clock_27mhz, fop, faddress, fwdata, frdata,
 fbusy, flash_data, flash_address, flash_ce_b,
 flash_oe_b, flash_we_b, flash_reset_b, 1'b1,
 flash_byte_b);

endmodule

///
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

 53

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
 input vclock;
 output [10:0] hcount;
 output [9:0] vcount;
 output vsync;
 output hsync;
 output blank;

 reg hsync,vsync,hblank,vblank,blank;
 reg [10:0] hcount; // pixel number on current line
 reg [9:0] vcount; // line number

 // horizontal: 1344 pixels total
 // display 1024 pixels per line
 wire hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount == 1023);
 assign hsyncon = (hcount == 1047);
 assign hsyncoff = (hcount == 1183);
 assign hreset = (hcount == 1343);

 // vertical: 806 lines total
 // display 768 lines
 wire vsyncon,vsyncoff,vreset,vblankon;
 assign vblankon = hreset & (vcount == 767);
 assign vsyncon = hreset & (vcount == 776);
 assign vsyncoff = hreset & (vcount == 782);
 assign vreset = hreset & (vcount == 805);

 // sync and blanking
 wire next_hblank,next_vblank;
 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
 always @(posedge vclock) begin
 hcount <= hreset ? 0 : hcount + 1;
 hblank <= next_hblank;
 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
 vblank <= next_vblank;
 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);
 end
endmodule

//////////////////////

//ROM constants

`define STATUS_RESET 4'h0
`define STATUS_READ_ID 4'h1
`define STATUS_CLEAR_LOCKS 4'h2
`define STATUS_ERASING 4'h3
`define STATUS_WRITING 4'h4
`define STATUS_READING 4'h5
`define STATUS_SUCCESS 4'h6
`define STATUS_BAD_MANUFACTURER 4'h7
`define STATUS_BAD_SIZE 4'h8
`define STATUS_LOCK_BIT_ERROR 4'h9
`define STATUS_ERASE_BLOCK_ERROR 4'hA
`define STATUS_WRITE_ERROR 4'hB
`define STATUS_READ_WRONG_DATA 4'hC

`define NUM_BLOCKS 128
`define BLOCK_SIZE 64*1024
`define LAST_BLOCK_ADDRESS ((`NUM_BLOCKS-1)*`BLOCK_SIZE)
`define LAST_ADDRESS (`NUM_BLOCKS*`BLOCK_SIZE-1)

`define FLASHOP_IDLE 2'b00

 54

`define FLASHOP_READ 2'b01
`define FLASHOP_WRITE 2'b10

///
//ROM FSM reads from the flash ROM one beat at a time. Beat specifies when a new user
specified
//beat has arrived. ROM FSM will stop reading after musicbeatperiod of samples has been accessed
//and interacts with BeatGenerator to determine this. ROM FSM also interacts with RAM FSM to
output
//1 beat of audio at one time. ROM FSM will also output useful data such as beginning, firstbeat,
//access_enable, access_reset.
///

module ROMFSM(clock_27mhz, reset, playback, ready, from_ac97_data, outdata, switch, we, din, dout,
 addr, counter, playbackchange, faddress, frdata, fwdata, fbusy, fop, dots, beat,
musicbeat,
 continue, beginning, offset, beatperiod, access_enable, access_reset, samplecount,
firstbeat);
 parameter SEGMENTS = 16; //number of segments of 65536 samples stored in
the ROM.

 input [15:0] frdata; //ROM interaction
 input fbusy; //ROM interaction
 input [15:0] offset;
 input [15:0] beatperiod;
 input clock_27mhz; // 27mhz system clock
 input reset; // 1 to reset to initial state
 input playback; // true when playback is enabled (always). if playback is
false, playback is reset to address 0.
 input ready; // debug input
 input [7:0] from_ac97_data; // debug input
 input switch; // turns on and off interpolation.
Feature taken out
 input beat;
 output signed [7:0] outdata; // 8-bit PCM data (6.75 MHz) to rest of system
 input musicbeat;
 output beginning;
 output continue; // high when the next beat should
be outputted

 //ROM Stuff
 output [1:0] fop;
 output [22:0] faddress;
 output [15:0] fwdata;
 output [639:0] dots; //debug output
 output firstbeat; //lets other modules know
when first beat is
 output we;
 output [15:0] addr;
 output [7:0] dout, din;
 output [0:0] counter;
 output playbackchange;
 output access_enable, access_reset;
 output [15:0] samplecount;

 reg [1:0] fop;
 reg [22:0] faddress = 0;
 reg [15:0] fwdata;
 reg [639:0] dots;
 reg [7:0] state = 5;
 reg [3:0] status;
 reg signed [7:0] outdata;
 reg we;
 //reg [7:0] din, dout;
 reg [15:0] addr = 0;
 reg counter = 0;
 reg [15:0] lastaddr = 0;
 reg [7:0] insample = 0;
 reg signed [7:0] outsample = 0;
 //previous sample used for potential anti-aliasing
 reg signed [7:0] oldsample = 0;

 55

 reg [7:0] to_ac97_data = 0;
 reg lastplayback = 0;
 reg statewrite, switchwriteold;
 reg [15: 0] samplecount = 0;
 reg continue = 1;
 reg read = 1;
 wire musicbeat2;
 wire beginning;
 wire switchwritechange;
 wire musicbeat;
 wire [7:0] din, dout;
 wire playbackchange;

 always @ (posedge clock_27mhz) begin
 //reset the memory address when playback first goes high
 continue <= (beat? 1: musicbeat? 0: continue);
 if (~playback|beginning) begin
 addr <= 0;
 faddress <= 0;
 counter <=0;
 state <= 5;
 samplecount <= offset;
 continue <= 1;
 status <= `STATUS_READING;
 fwdata <= 16'hFF; // Issue "read array" command
 fop <= `FLASHOP_WRITE;
 end
 case (state)
 0:
 //continue to read from ROM after beat is declared
 if (continue) begin
 samplecount <= samplecount + 1;
 state <= 4;
 status <= `STATUS_READING;
 fop <= `FLASHOP_READ;
 end
 else begin
 samplecount <= 0;
 end
 4: //delay to allow right data to be read from ROM
 begin
 state <= state+1;
 end
 5:
 begin
 state <= state+1;
 end
 6:
 begin
 faddress <= (faddress >= 65536*SEGMENTS - 1)? 0:
faddress + 1;
 outdata <= frdata[7:0];
 state <= 0;
 end
 default:
 fop <= `FLASHOP_IDLE;
 endcase
 end

assign access_enable = continue & (state == 0); //true when
new sample is accessed
assign access_reset = ~continue & (state == 0); //true when
access counts should be reset
assign musicbeat2 = (samplecount == beatperiod);
assign beginning = (faddress == 0);
 //specifies beginning of ROM
assign firstbeat = (faddress <= beatperiod - offset+4); //specifies first beat
endmodule

///
//ZBTFSM writes to ZBT SRAM and reads from ZBT SRAM. During the write cycle, data

 56

//is streamed in from ROM FSM at 6.75 MHz. During the read cycle, data is streamed out
//at 24 KHz. ZBT FSM interacts with ROM FSM to read out data music one beat
//at a time. ZBT FSM interacts with Tempo Modulator Module, which provides addr_mod to let
//ZBTFSM know how many addresses to skip or replay in order to modulate the tempo.
//ZBTFSM also creates "note extension" which replays samples at the end of each beat to create
//continuous playback. ExtendOn and Extend2 allow 2 different modes of note extension to be
enabled
//inaudio will be the input from the ROM FSM, outaudio will be the output to Volume and
Articulation Modulator
///

module ZBTFSM(reset, clock_27mhz, inaudio, outaudio, beat, musicbeat, we, write_data, read_data,
addr, ready, state, continue, access_enable,addr_mod, BeatPeriod, ExtendOn, ExtendOn2,
musicbeatperiod, firstbeat);

 input continue;
 input reset, clock_27mhz;
 input [7:0] inaudio; //from ROM FSM
 input [35:0] read_data; //interaction with ZBT SRAM
 input beat, musicbeat;
 input ready;
 input [10:0] BeatPeriod; //Beat period (user specified)
 input firstbeat; //true when first beat is
being written in
 input signed [15:0] addr_mod;
 input ExtendOn, ExtendOn2;
 input [15:0] musicbeatperiod;
 output access_enable; //true when a new address is
read out
 output [5:0] state;
 output [7:0] outaudio; //audio output at 24 KHz
 output we;
 output [35:0] write_data;
 output [18:0] addr;

 reg [35:0] write_data;
 reg signed [7:0] outaudio;
 reg read, we;
 reg [18:0] tempoaddr = 0;
 reg [18:0] mainfsmaddr = 0;
 reg [18:0] lasttempoaddr = 0;
 reg readcontinue= 1;
 reg [5:0] state =0;
 reg count = 0;
 reg [7:0] temp_data;
 reg [18:0] readAddr = 0;
 reg [18:0] writeAddr = 0;
 reg mode= 1;
 reg signed [7:0] oldsample = 0;
 reg firstbeatlatch; //latches first beat to use later in cycle
 wire access_enable;

 always @ (posedge clock_27mhz) begin
 readcontinue <= (beat? 1: (~continue & readAddr >= musicbeatperiod)? 0:
readcontinue);
 if (reset) begin
 state <= 0;
 writeAddr <= 0;
 readAddr <= 0;
 mode <= 1;
 oldsample <= 0;
 end
 if (beat) begin
 writeAddr <= 0;
 readAddr <= 0;
 state <= 0;
 end
 else

 case (state)
 0: begin

 57

 //write into RAM
 if (continue) begin
 we <= 1;
 //using 8 bit audio format for now
 write_data[7:0] <= inaudio;
 write_data[35:8] <= 0;
 state <= 1;
 firstbeatlatch <= firstbeat;
 end
 else
 state <= 5;
 end
 1: //delay
 state <= 3;

 3: state <= state+1;
 4: begin
 if (~continue) begin
 state <= state + 1;
 end

 else begin
 writeAddr <= writeAddr + 1;
 state <= 0;
 end
 end
 5: begin
 //playback
 we <= 0;
 if (ready) begin //only play back at each
ready cycle from AC97
 if (count == 0) begin //only increment when
count == 0 for 24 KHz
 if (readAddr + 1+ addr_mod <= 0)
 readAddr <= 0;
 else
 if (readcontinue) //only
increment when on read mode
 readAddr <= (readAddr >=
musicbeatperiod - firstbeatlatch * 5000)? - firstbeatlatch * 5000: readAddr + 1+ addr_mod;
 else if (~continue) begin
 //note extension option 1.
Plays last few thousand samples forward and backward
 //firstbeatlatch deals with when we
are at the first beat - exceptions.
 if (ExtendOn) begin
 if (readAddr >=
musicbeatperiod-500 - firstbeatlatch * 5000) begin
 mode <= 0;
 readAddr <=
musicbeatperiod-501 - firstbeatlatch * 5000;
 end
 else if (readAddr <=
musicbeatperiod - 3000 - firstbeatlatch * 5000) begin
 mode <= 1;
 readAddr <=
musicbeatperiod-2999 - firstbeatlatch * 5000;
 end
 else begin
 readAddr <= mode?
readAddr + 1: readAddr - 1;
 mode <= mode;
 end
 end
 //note extension option 2
 else if (ExtendOn2)
 readAddr <= (readAddr >=
musicbeatperiod - 500)? musicbeatperiod-3000: readAddr + 1;
 else
 readAddr <= readAddr;
 end

 58

 oldsample <= temp_data;
 temp_data <= read_data[7:0];
 end
 outaudio <= temp_data;
 count <= count +1;
 end
 end
 endcase

 end

 assign access_enable = ready & (count==0) & readcontinue; //specifies when a
new address in RAM is addressed
 assign addr = continue? writeAddr: readAddr;
//toggles between writing and reading

endmodule

///
// generate display pixels from reading the ZBT ram
// note that the ZBT ram has 2 cycles of read (and write) latency
//
// We take care of that by latching the data at an appropriate time.
//
// Note that the ZBT stores 36 bits per word; we use only 32 bits here,
// decoded into four bytes of pixel data.

// *Modifications for handling storage of two 16-bit pieces of data per pixel

module vram_display(reset,clk,hcount,vcount,vr_pixel,
 vram_addr,vram_read_data);

 input reset, clk;
 input [10:0] hcount;
 input [9:0] vcount;
 output [15:0] vr_pixel;
 output [18:0] vram_addr;
 input [35:0] vram_read_data;

 wire [18:0] vram_addr = {vcount, ~hcount[9:1]};

 wire hc2 = ~hcount[0];
 reg [15:0] vr_pixel;
 reg [35:0] vr_data_latched;
 reg [35:0] last_vr_data;

 always @(posedge clk)
 last_vr_data <= (hc2==1'd1) ? vr_data_latched : last_vr_data;

 always @(posedge clk)
 vr_data_latched <= (hc2==1'd0) ? vram_read_data : vr_data_latched;

 always @(*) // each 36-bit word from RAM is decoded to 4 bytes
 case (hc2)
 1'd1: vr_pixel = last_vr_data[15:0];
 1'd0: vr_pixel = last_vr_data[15+16:0+16];
 endcase

endmodule // vram_display

///
// parameterized delay line

module delayN(clk,in,out);
 input clk;
 input in;
 output out;

 parameter NDELAY = 3;

 59

 reg [NDELAY-1:0] shiftreg;
 wire out = shiftreg[NDELAY-1];

 always @(posedge clk)
 shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

///
//
// bi-directional monaural interface to AC97
//
///

module lab4audio (clock_27mhz, reset, volume,
 audio_in_data, audio_out_data, ready,
 audio_reset_b, ac97_sdata_out, ac97_sdata_in,
 ac97_synch, ac97_bit_clock);

 input clock_27mhz;
 input reset;
 input [4:0] volume;
 output [7:0] audio_in_data;
 input [7:0] audio_out_data;
 output ready;

 //ac97 interface signals
 output audio_reset_b;
 output ac97_sdata_out;
 input ac97_sdata_in;
 output ac97_synch;
 input ac97_bit_clock;

 wire [2:0] source;
 assign source = 0; //mic

 wire [7:0] command_address;
 wire [15:0] command_data;
 wire command_valid;
 wire [19:0] left_in_data, right_in_data;
 wire [19:0] left_out_data, right_out_data;

 reg audio_reset_b;
 reg [9:0] reset_count;

 //wait a little before enabling the AC97 codec
 always @(posedge clock_27mhz) begin
 if (reset) begin
 audio_reset_b = 1'b0;
 reset_count = 0;
 end else if (reset_count == 1023)
 audio_reset_b = 1'b1;
 else
 reset_count = reset_count+1;
 end

 wire ac97_ready;
 ac97 ac97(ac97_ready, command_address, command_data, command_valid,
 left_out_data, 1'b1, right_out_data, 1'b1, left_in_data,
 right_in_data, ac97_sdata_out, ac97_sdata_in, ac97_synch,
 ac97_bit_clock);

 // ready: one cycle pulse synchronous with clock_27mhz
 reg [2:0] ready_sync;
 always @ (posedge clock_27mhz) begin
 ready_sync <= {ready_sync[1:0], ac97_ready};
 end
 assign ready = ready_sync[1] & ~ready_sync[2];

 60

 reg [7:0] out_data;
 always @ (posedge clock_27mhz)
 if (ready) out_data <= audio_out_data;
 assign audio_in_data = left_in_data[19:12];
 assign left_out_data = {out_data, 12'b000000000000};
 assign right_out_data = left_out_data;

 // generate repeating sequence of read/writes to AC97 registers
 ac97commands cmds(clock_27mhz, ready, command_address, command_data,
 command_valid, volume, source);
endmodule

// assemble/disassemble AC97 serial frames
module ac97 (ready,
 command_address, command_data, command_valid,
 left_data, left_valid,
 right_data, right_valid,
 left_in_data, right_in_data,
 ac97_sdata_out, ac97_sdata_in, ac97_synch, ac97_bit_clock);

 output ready;
 input [7:0] command_address;
 input [15:0] command_data;
 input command_valid;
 input [19:0] left_data, right_data;
 input left_valid, right_valid;
 output [19:0] left_in_data, right_in_data;

 input ac97_sdata_in;
 input ac97_bit_clock;
 output ac97_sdata_out;
 output ac97_synch;

 reg ready;

 reg ac97_sdata_out;
 reg ac97_synch;

 reg [7:0] bit_count;

 reg [19:0] l_cmd_addr;
 reg [19:0] l_cmd_data;
 reg [19:0] l_left_data, l_right_data;
 reg l_cmd_v, l_left_v, l_right_v;
 reg [19:0] left_in_data, right_in_data;

 initial begin
 ready <= 1'b0;
 // synthesis attribute init of ready is "0";
 ac97_sdata_out <= 1'b0;
 // synthesis attribute init of ac97_sdata_out is "0";
 ac97_synch <= 1'b0;
 // synthesis attribute init of ac97_synch is "0";

 bit_count <= 8'h00;
 // synthesis attribute init of bit_count is "0000";
 l_cmd_v <= 1'b0;
 // synthesis attribute init of l_cmd_v is "0";
 l_left_v <= 1'b0;
 // synthesis attribute init of l_left_v is "0";
 l_right_v <= 1'b0;
 // synthesis attribute init of l_right_v is "0";

 left_in_data <= 20'h00000;
 // synthesis attribute init of left_in_data is "00000";
 right_in_data <= 20'h00000;
 // synthesis attribute init of right_in_data is "00000";
 end

 always @(posedge ac97_bit_clock) begin

 61

 // Generate the sync signal
 if (bit_count == 255)
 ac97_synch <= 1'b1;
 if (bit_count == 15)
 ac97_synch <= 1'b0;

 // Generate the ready signal
 if (bit_count == 128)
 ready <= 1'b1;
 if (bit_count == 2)
 ready <= 1'b0;

 // Latch user data at the end of each frame. This ensures that the
 // first frame after reset will be empty.
 if (bit_count == 255)
 begin
 l_cmd_addr <= {command_address, 12'h000};
 l_cmd_data <= {command_data, 4'h0};
 l_cmd_v <= command_valid;
 l_left_data <= left_data;
 l_left_v <= left_valid;
 l_right_data <= right_data;
 l_right_v <= right_valid;
 end

 if ((bit_count >= 0) && (bit_count <= 15))
 // Slot 0: Tags
 case (bit_count[3:0])
 4'h0: ac97_sdata_out <= 1'b1; // Frame valid
 4'h1: ac97_sdata_out <= l_cmd_v; // Command address valid
 4'h2: ac97_sdata_out <= l_cmd_v; // Command data valid
 4'h3: ac97_sdata_out <= l_left_v; // Left data valid
 4'h4: ac97_sdata_out <= l_right_v; // Right data valid
 default: ac97_sdata_out <= 1'b0;
 endcase

 else if ((bit_count >= 16) && (bit_count <= 35))
 // Slot 1: Command address (8-bits, left justified)
 ac97_sdata_out <= l_cmd_v ? l_cmd_addr[35-bit_count] : 1'b0;

 else if ((bit_count >= 36) && (bit_count <= 55))
 // Slot 2: Command data (16-bits, left justified)
 ac97_sdata_out <= l_cmd_v ? l_cmd_data[55-bit_count] : 1'b0;

 else if ((bit_count >= 56) && (bit_count <= 75))
 begin
 // Slot 3: Left channel
 ac97_sdata_out <= l_left_v ? l_left_data[19] : 1'b0;
 l_left_data <= { l_left_data[18:0], l_left_data[19] };
 end
 else if ((bit_count >= 76) && (bit_count <= 95))
 // Slot 4: Right channel
 ac97_sdata_out <= l_right_v ? l_right_data[95-bit_count] : 1'b0;
 else
 ac97_sdata_out <= 1'b0;

 bit_count <= bit_count+1;

 end // always @ (posedge ac97_bit_clock)

 always @(negedge ac97_bit_clock) begin
 if ((bit_count >= 57) && (bit_count <= 76))
 // Slot 3: Left channel
 left_in_data <= { left_in_data[18:0], ac97_sdata_in };
 else if ((bit_count >= 77) && (bit_count <= 96))
 // Slot 4: Right channel
 right_in_data <= { right_in_data[18:0], ac97_sdata_in };
 end

endmodule

 62

// issue initialization commands to AC97
module ac97commands (clock, ready, command_address, command_data,
 command_valid, volume, source);

 input clock;
 input ready;
 output [7:0] command_address;
 output [15:0] command_data;
 output command_valid;
 input [4:0] volume;
 input [2:0] source;

 reg [23:0] command;
 reg command_valid;

 reg [3:0] state;

 initial begin
 command <= 4'h0;
 // synthesis attribute init of command is "0";
 command_valid <= 1'b0;
 // synthesis attribute init of command_valid is "0";
 state <= 16'h0000;
 // synthesis attribute init of state is "0000";
 end

 assign command_address = command[23:16];
 assign command_data = command[15:0];

 wire [4:0] vol;
 assign vol = 31-volume; // convert to attenuation

 always @(posedge clock) begin
 if (ready) state <= state+1;

 case (state)
 4'h0: // Read ID
 begin
 command <= 24'h80_0000;
 command_valid <= 1'b1;
 end
 4'h1: // Read ID
 command <= 24'h80_0000;
 4'h3: // headphone volume
 command <= { 8'h04, 3'b000, vol, 3'b000, vol };
 4'h5: // PCM volume
 command <= 24'h18_0808;
 4'h6: // Record source select
 command <= { 8'h1A, 5'b00000, source, 5'b00000, source};
 4'h7: // Record gain = max
 command <= 24'h1C_0F0F;
 4'h9: // set +20db mic gain
 command <= 24'h0E_8048;
 4'hA: // Set beep volume
 command <= 24'h0A_0000;
 4'hB: // PCM out bypass mix1
 command <= 24'h20_8000;
 default:
 command <= 24'h80_0000;
 endcase // case(state)
 end // always @ (posedge clock)
endmodule // ac97commands

//
//
// analyzer_bar: generate rectangle on screen with adjustable width
// x, y determine the upper left hand corner of block

 63

//
//
module analyzer_bar(x,y,width,hcount,vcount,pixel);
 parameter HEIGHT = 30; // default height: 30 pixels
 parameter COLOR_R = 8'd0;
 parameter COLOR_G = 8'd255;
 parameter COLOR_B = 8'd0;

 input [10:0] x,hcount,width; // Variable width in this sprite
 input [9:0] y,vcount;
 output [23:0] pixel;

 reg [23:0] pixel;
 always @ (x or y or hcount or vcount or width) begin
 if ((hcount >= x && hcount < (x+width)) &&
 (vcount >= y && vcount < (y+HEIGHT)))
 pixel = {COLOR_R,COLOR_G,COLOR_B};
 else pixel = 0;
 end
endmodule

//
//
// beat_markers: Takes in coordinates of right hand and decides when
// a beat starts and ends. Outputs beat_start and
beat_end
// are each high for one clock cycle when there's the
start or end
// of a beat detected.
//
//

module beat_markers(clk,reset,right_x,right_y,
 beat_start,beat_end,time_scale, tol, tol_end,
tol_start);

 input clk,reset;
 input [10:0] right_x;
 input [9:0] right_y;

 input [1:0] time_scale;
 input [1:0] tol, tol_end, tol_start;

 output beat_start,beat_end;

 // Define bound parameters for detecting the potential end of a beat:
 parameter TOLERANCE_X = 2;
 parameter TOLERANCE_Y = 2;
 // Define bound parameters for detecting the actual end of a beat:
 parameter TOLERANCE_END_X = 5;
 parameter TOLERANCE_END_Y = 5;
 // Definte bound parameters for detecting the start of another beat:
 parameter TOLERANCE_START_X = 25;
 parameter TOLERANCE_START_Y = 25;

 parameter STATIONARY_TIME = 7*(1048575/8);

// TESTING

 // Define bound parameters for detecting the potential end of a beat:
 //wire [9:0] TOLERANCE_X = tol; //5*tol; //10'd10;
 //wire [9:0] TOLERANCE_Y = tol; //5*tol;//9'd10;
 // Define bound parameters for detecting the actual end of a beat:
 //wire [9:0] TOLERANCE_END_X = 5*tol_end; //5*tol_end;//10'd15;
 //wire [9:0] TOLERANCE_END_Y = 5*tol_end; //5*tol_end;//9'd15;
 // Definte bound parameters for detecting the start of another beat:
 //wire [9:0] TOLERANCE_START_X = 5*tol_start; //10*tol_start;//10'd25;
 //wire [9:0] TOLERANCE_START_Y = 5*tol_start; //10*tol_start;//9'd25;

 64

 // Stores previous samples of coordinates:
 reg [10:0] x_prev;
 reg [9:0] y_prev;

 // Stores potential stop coordinates:
 reg [10:0] temp_x;
 reg [9:0] temp_y;

 reg [21:0] count_stationary; // Count how many clk cycles the hand must remain
stationary to register as a beat end

 reg [1:0] state = 0; // State of FSM

 reg beat_start, beat_end; // Holds value for outputs of beat start and end

 // Define bounds for detecting a potential stop motion:
 wire [10:0] upper_x = x_prev + TOLERANCE_X;
 wire [10:0] lower_x = x_prev - TOLERANCE_X;
 wire [9:0] upper_y = y_prev + TOLERANCE_Y;
 wire [9:0] lower_y = y_prev - TOLERANCE_Y;

 // Define bounds for detecting the end of a beat:
 wire [10:0] upper_stop_x = temp_x + TOLERANCE_END_X;
 wire [10:0] lower_stop_x = temp_x - TOLERANCE_END_X;
 wire [9:0] upper_stop_y = temp_y + TOLERANCE_END_Y;
 wire [9:0] lower_stop_y = temp_y - TOLERANCE_END_Y;

 // Define bounds for detecting the start of a beat:
 wire [10:0] upper_start_x = temp_x + TOLERANCE_START_X;
 wire [10:0] lower_start_x = temp_x - TOLERANCE_START_X;
 wire [9:0] upper_start_y = temp_y + TOLERANCE_START_Y;
 wire [9:0] lower_start_y = temp_y - TOLERANCE_START_Y;

 // Detect potential stop: Check if the current coordinates are within certain bounds of
the previous coordinates
 wire within_bounds = (right_x > lower_x) && (right_x < upper_x) && (right_y > lower_y) &&
(right_y < upper_y);

 // Detect actual stop: Check if current coordinates are within certain bounds of the
coordinates of the potential stop
 wire stationary_test = (right_x > lower_stop_x) && (right_x < upper_stop_x) && (right_y >
lower_stop_y) && (right_y < upper_stop_y);

 // Detect start: Check if current coordinates are within certain bounds of the
coordinates at the beat end
 wire start_test = (right_x > lower_start_x) && (right_x < upper_start_x) && (right_y >
lower_start_y) && (right_y < upper_start_y);

 always @ (posedge clk) begin
 if (reset) begin
 x_prev <= 0;
 y_prev <= 0;
 temp_x <= 0;
 temp_y <= 0;
 count_stationary <= 0;
 state <= 0;
 beat_start <= 0;
 beat_end <= 0;
 end
 else begin
 // Store coordinates like a small memory
 x_prev <= right_x;
 y_prev <= right_y;
 if (state == 0) begin // State 00: Beat started, wait for stop
 beat_start <= 0;

 65

 if (within_bounds) begin // Potential stop detected
 state <= 1;
 temp_x <= right_x;
 temp_y <= right_y;
 end
 end
 else if (state == 1) begin // State 01: Stop detected, test for real stop
 if (stationary_test) begin // Still potentially stopped, increase the time
count
 count_stationary <= count_stationary + 1;
 end
 else begin // Wasn't stopped for long enough, return to
state 00
 state <= 0;
 count_stationary <= 0;
 end

 if (count_stationary == STATIONARY_TIME) begin // Only if stopped for a long
time, register as beat end
 state <= 2;
 beat_end <= 1;
 count_stationary <= 0;
 // Update with the beat end coordinates
 temp_x <= right_x;
 temp_y <= right_y;
 end

 end
 else if (state == 2) begin // State 10: Beat ended, wait for movement.
 beat_end <= 0;
 if (~start_test) begin // If movement in the hand begins again, return to state 00
 state <= 0;
 beat_start <= 1; // Start beat
 end
 end
 else begin // For unused state 11
 state <= 0;
 end
 end
 end
endmodule

//
//
// centered_block: generate rectangle on screen centered at x, y
//
//
module centered_block(x,y,hcount,vcount,pixel);
 parameter WIDTH = 30; // default width: 30 pixels
 parameter HEIGHT = 30; // default height: 30 pixels
 parameter COLOR_R = 8'd0;
 parameter COLOR_G = 8'd255;
 parameter COLOR_B = 8'd0;

 input [10:0] x,hcount;
 input [9:0] y,vcount;
 output [23:0] pixel;

 reg [23:0] pixel;
 always @ (x or y or hcount or vcount) begin
 if ((hcount >= (x-(WIDTH/2)) && hcount < (x+(WIDTH/2))) &&
 (vcount >= (y-(HEIGHT/2)) && vcount < (y+(HEIGHT/2))))
 pixel = {COLOR_R,COLOR_G,COLOR_B};
 else pixel = 0;
 end
endmodule

//

 66

//
// color_decision: Takes in camera from video and outputs a signal
// (pixel_video) which goes high when the desired blue
color
// is detected. Also outputs RGB video to be used in
displaying
// the camera video on screen.
//
//

module color_decision(clk,reset,vr_pixel,pixel_video,cam_image,switch);

 input clk,reset;
 input [15:0] vr_pixel;
 input [7:0] switch;

 output pixel_video;
 output [23:0] cam_image;

 // Define minimum cb (blue chrominance) and maximum cr:
 wire [4:0] color_cb_min = 5'b10010;
 wire [4:0] color_cr_max = 5'b10000;

 // Y and Cb from camera input:
 wire [5:0] Y = vr_pixel[15:10];
 wire [4:0] Cr = vr_pixel[9:5];
 wire [4:0] Cb = vr_pixel[4:0];

 // Module (YCrCb2RGB): Convert from YCrCb color space to the RGB color space:
 wire [7:0] R_cam, G_cam, B_cam; // Outputs for color converter module
 YCrCb2RGB color_convert(R_cam, G_cam, B_cam, clk, reset, {Y, 4'b0000}, {Cr, 5'b00000},
{Cb, 5'b00000});

 // Detect the desired blue color:
 wire color_found = (Cb >= color_cb_min) && (Cr <= color_cr_max);

 // Initial processing of camera input data at 65mhz. pixel_video = 1 if blue detected
 reg pixel_video;

 //reg [7:0] R_cam_reg, G_cam_reg, B_cam_reg;
 reg [7:0] temp_R1, temp_G1, temp_B1;
 reg [7:0] temp_R2, temp_G2, temp_B2;

 // Dim the display a little by dividing RGB values:
 wire [7:0] scaled_R_cam = (R_cam/2);
 wire [7:0] scaled_G_cam = (G_cam/2);
 wire [7:0] scaled_B_cam = (B_cam/2);

 // Used for display of the camera video input as RGB data:
 assign cam_image = {scaled_R_cam, scaled_G_cam, scaled_B_cam};

 always @(posedge clk) begin
 pixel_video <= (color_found) ? 1'b1 : 1'b0;
 end

endmodule

//
//
// color_detection: Uses information from the camera to detect if the
// desired color is in the left or right hand
plane.
//
//

module color_detection(reset,clk,pixel_video,hcount,vcount,
 left_en,right_en,desired_color);

 67

 input reset, clk;
 input pixel_video; // Camera input. High if initially
detected as the desired color.
 input [10:0] hcount;
 input [9:0] vcount;
 output left_en; // High if desired color
detected and pixel is in left hand plane
 output right_en; // High if desired color detected and
pixel is in right hand plane
 output desired_color; // High if registered as the
desired color

 // Define borders of the video area on screen:
 parameter RIGHT_BORDER = 867;
 parameter LEFT_BORDER = 157;
 parameter TOP_BORDER = 27;
 parameter BOTTOM_BORDER = 505;
 parameter CENTER_X = (LEFT_BORDER + RIGHT_BORDER)/2; // Find the middle of
the window

 // Decide if detected pixel is in left half of the screen
 wire left_side = (LEFT_BORDER < hcount) && (hcount < CENTER_X) && (TOP_BORDER < vcount) &&
(vcount < BOTTOM_BORDER);

 // Decide if detected pixel is in right half of the screen
 wire right_side = (CENTER_X < hcount) && (hcount < RIGHT_BORDER) && (TOP_BORDER < vcount) &&
(vcount < BOTTOM_BORDER);

 // Used for storing old pixel values
 reg pix1, pix2;
 // Error reduction: desired_color only asserts high if three pixels in a row are blue:
 wire desired_color_temp = pix1 && pix2;

 // Divide into left and right halves of the screen
 assign left_en = left_side && desired_color_temp;
 assign right_en = right_side && desired_color_temp;

 assign desired_color = desired_color_temp;

 // Shift registers to compare consecutive pixel samples:
 always @(posedge clk) begin
 if (reset) begin
 pix1 <= 0;
 pix2 <= 0;
 end
 else begin
 pix1 <= pix2;
 pix2 <= pixel_video;
 end
 end

endmodule

///
//
// Pushbutton Debounce Module
//
///

module debounce (reset, clk, noisy, clean);
 input reset, clk, noisy;
 output clean;

 parameter NDELAY = 650000;
 parameter NBITS = 20;

 reg [NBITS-1:0] count;
 reg xnew, clean;

 68

 always @(posedge clk)
 if (reset) begin xnew <= noisy; clean <= noisy; count <= 0; end
 else if (noisy != xnew) begin xnew <= noisy; count <= 0; end
 else if (count == NDELAY) clean <= xnew;
 else count <= count+1;

endmodule

//
//
// find_distance: Calculates the distance in pixels between points
// A and B
//
//

module find_distance(clk,reset,Ax,Ay,Bx,By,distance);

 input clk,reset;
 input [10:0] Ax, Bx;
 input [9:0] Ay, By;

 output [10:0] distance;

 reg [10:0] distance;

 // Differences along x and y axes:
 wire [10:0] diff_x = (Ax > Bx) ? (Ax - Bx) : (Bx - Ax);
 wire [10:0] diff_y = (Ay > By) ? (Ay - By) : (By - Ay);

 // Calculate sum of squared differences:
 wire [19:0] sum_of_squares = diff_x*diff_x + diff_y*diff_y;

 // Wires for square_root module:
 wire ce = 1; // input: ce = 1 means module is
enabled
 wire aclr = reset; // input: aclr will reset the square
root module
 wire [10:0] distance_temp; // output: result of square root calculation
 wire rdy; // output: rdy = 1 means new data
is available from sqrt

 // MODULE: Finds the square root of an input
 square_root sqrt1(sum_of_squares,clk,ce,aclr,distance_temp,rdy);

 always @(posedge clk) begin
 if (reset) begin
 distance <= 0;
 end
 else if (rdy) begin // Only update the distance calculation when square root
finishes
 distance <= distance_temp;
 end
 end

endmodule

//
//
// generate_visualization: Decides what R,G,B signals to send for final
// display on the monitor
//
//

module generate_visualization(clk,clock_27mhz,reset,hcount,vcount,
 button_up,
button_down,
 cam_image,

 69

 left_x, left_y,
right_x, right_y,
 beat_start_x,
beat_start_y,

 beat_end_x,beat_end_y,
 amp_left,
amp_right,
 beat_period,

 acceleration_left,acceleration_right,
 desired_color,
 display_out_r,
display_out_g, display_out_b);

 input clk, clock_27mhz, reset;
 input [10:0] hcount;
 input [9:0] vcount;
 input button_up, button_down;
 input [23:0] cam_image;

 input [10:0] left_x, right_x;
 input [9:0] left_y, right_y;
 input [10:0] beat_start_x, beat_end_x;
 input [9:0] beat_start_y, beat_end_y;
 input [10:0] amp_left, amp_right, beat_period, acceleration_left,
acceleration_right;

 input desired_color;
 output [7:0] display_out_r, display_out_g, display_out_b;

 reg [10:0] moving_amp_left, moving_amp_right;

 // Define borders of the video area on screen:
 parameter RIGHT_BORDER = 867;
 parameter LEFT_BORDER = 157;
 parameter TOP_BORDER = 27;
 parameter BOTTOM_BORDER = 505;
 parameter CENTER_X = (LEFT_BORDER + RIGHT_BORDER)/2; // Find the middle of
the window

 parameter BORDER_WIDTH = 10; // The width of the border separating camera from analyzer
visualization

 // High at pixels along the center line of the video:
 wire middle = (hcount == CENTER_X);

 // High at pixels outside the video frame:
 wire outside_frame = (hcount < LEFT_BORDER) || (hcount > RIGHT_BORDER) || (vcount < TOP_BORDER)
|| (vcount > BOTTOM_BORDER);

 wire border = ((hcount == LEFT_BORDER) || (hcount == RIGHT_BORDER) || (vcount == TOP_BORDER)
|| (vcount == BOTTOM_BORDER));
 // High at pixels on the border and center of the video:
 wire thin_border = (~outside_frame) && (border || middle);

 // Signals for the background:

 // Display border around video section:
 wire border_display = (vcount <= (BOTTOM_BORDER + BORDER_WIDTH)) && outside_frame;

 // Display bottom bar:
 wire bottom_bar = (vcount > (BOTTOM_BORDER + BORDER_WIDTH)) && (vcount <= (BOTTOM_BORDER
+ 2*BORDER_WIDTH));

 // Registers for holding values used in display:

 70

 reg [23:0] pixel; // The actual video displayed on
the screen
 reg [23:0] border_pixel; // The border of the top video section
 reg [23:0] bottom_bar_pixel; // The bar between the video section and the
motion analyzer visualization

 // Determines the current state of the video display:
 reg menu_state = 0;

 // Generate Sprites:

 wire [23:0] left_hand_pixel, right_hand_pixel; // {R,G,B} for display of blocks
following left and right hands
 wire [23:0] beat_start_pixel, beat_end_pixel; // {R,G,B} for display of blocks at
start and end of a beat

 // Block following left hand:
 centered_block left_hand(left_x,left_y,hcount,vcount,left_hand_pixel);
 defparam left_hand.WIDTH = 20;
 defparam left_hand.HEIGHT = 20;
 defparam left_hand.COLOR_R = 8'd0;
 defparam left_hand.COLOR_G = 8'd255;
 defparam left_hand.COLOR_B = 8'd0;

 // Block following right hand:
 centered_block right_hand(right_x,right_y,hcount,vcount,right_hand_pixel);
 defparam right_hand.WIDTH = 20;
 defparam right_hand.HEIGHT = 20;
 defparam right_hand.COLOR_R = 8'd255;
 defparam right_hand.COLOR_G = 8'd0;
 defparam right_hand.COLOR_B = 8'd0;

 // Block to display at the start of a beat:
 centered_block beat_start_block(beat_start_x,beat_start_y,hcount,vcount,beat_start_pixel);
 defparam beat_start_block.WIDTH = 10;
 defparam beat_start_block.HEIGHT = 10;
 defparam beat_start_block.COLOR_R = 8'd0;
 defparam beat_start_block.COLOR_G = 8'd255;
 defparam beat_start_block.COLOR_B = 8'd0;

 // Block to display at the end of a beat:
 centered_block beat_end_block(beat_end_x,beat_end_y,hcount,vcount,beat_end_pixel);
 defparam beat_end_block.WIDTH = 10;
 defparam beat_end_block.HEIGHT = 10;
 defparam beat_end_block.COLOR_R = 8'd255;
 defparam beat_end_block.COLOR_G = 8'd0;
 defparam beat_end_block.COLOR_B = 8'd0;

 // Display motion analyzer results:
 wire [23:0] amp_left_bar;
 wire [10:0] amp_left_x = 11'd0;
 wire [9:0] amp_left_y = 10'd550;

 analyzer_bar amp_left_block(amp_left_x,amp_left_y,amp_left,hcount,vcount,amp_left_bar);
 defparam amp_left_block.HEIGHT = 20;
 defparam amp_left_block.COLOR_R = 8'd0;
 defparam amp_left_block.COLOR_G = 8'd255;
 defparam amp_left_block.COLOR_B = 8'd0;

 wire [23:0] amp_right_bar;
 wire [10:0] amp_right_x = 11'd0;
 wire [9:0] amp_right_y = 10'd580;

 analyzer_bar
amp_right_block(amp_right_x,amp_right_y,amp_right,hcount,vcount,amp_right_bar);

 71

 defparam amp_right_block.HEIGHT = 20;
 defparam amp_right_block.COLOR_R = 8'd255;
 defparam amp_right_block.COLOR_G = 8'd0;
 defparam amp_right_block.COLOR_B = 8'd0;

 wire [23:0] beat_period_bar;
 wire [10:0] beat_period_x = 11'd0;
 wire [9:0] beat_period_y = 10'd610;

 wire [10:0] scaled_beat_period = 4*beat_period;

 analyzer_bar
beat_period_block(beat_period_x,beat_period_y,scaled_beat_period,hcount,vcount,beat_period_bar);
 defparam beat_period_block.HEIGHT = 20;
 defparam beat_period_block.COLOR_R = 8'd0;
 defparam beat_period_block.COLOR_G = 8'd0;
 defparam beat_period_block.COLOR_B = 8'd255;

 wire [23:0] acceleration_left_bar;
 wire [10:0] acceleration_left_x = 11'd0;
 wire [9:0] acceleration_left_y = 10'd640;

 analyzer_bar
acceleration_left_block(acceleration_left_x,acceleration_left_y,acceleration_left,hcount,vcount,a
cceleration_left_bar);
 defparam acceleration_left_block.HEIGHT = 20;
 defparam acceleration_left_block.COLOR_R = 8'd0;
 defparam acceleration_left_block.COLOR_G = 8'd255;
 defparam acceleration_left_block.COLOR_B = 8'd0;

 wire [23:0] acceleration_right_bar;
 wire [10:0] acceleration_right_x = 11'd0;
 wire [9:0] acceleration_right_y = 10'd670;

 analyzer_bar
acceleration_right_block(acceleration_right_x,acceleration_right_y,acceleration_right,hcount,vcou
nt,acceleration_right_bar);
 defparam acceleration_right_block.HEIGHT = 20;
 defparam acceleration_right_block.COLOR_R = 8'd255;
 defparam acceleration_right_block.COLOR_G = 8'd0;
 defparam acceleration_right_block.COLOR_B = 8'd0;

 // All the motion analyzer bars grouped together:
 wire [23:0] analyzer_bar_group = amp_left_bar + amp_right_bar + beat_period_bar +
acceleration_left_bar + acceleration_right_bar;

 // Generates the menu on the display:

 // Parameters for placing the sprites of the menu buttons on screen:
 parameter MODE1_X = 970;
 parameter MODE1_Y = 570;
 parameter MODE2_X = 970;
 parameter MODE2_Y = 650;

 // Generating sprites for menu:

 wire [23:0] mode1_pixel;
 wire [10:0] mode1_x = MODE1_X;
 wire [9:0] mode1_y = MODE1_Y;

 // Block to display mode 1:
 centered_block mode1_block(mode1_x,mode1_y,hcount,vcount,mode1_pixel);
 defparam mode1_block.WIDTH = 60;
 defparam mode1_block.HEIGHT = 60;
 defparam mode1_block.COLOR_R = 8'd255;
 defparam mode1_block.COLOR_G = 8'd236;

 72

 defparam mode1_block.COLOR_B = 8'd139;

 wire [23:0] mode2_pixel;
 wire [10:0] mode2_x = MODE2_X;
 wire [9:0] mode2_y = MODE2_Y;
 // Block to display mode 2:
 centered_block mode2_block(mode2_x,mode2_y,hcount,vcount,mode2_pixel);
 defparam mode2_block.WIDTH = 60;
 defparam mode2_block.HEIGHT = 60;
 defparam mode2_block.COLOR_R = 8'd255;
 defparam mode2_block.COLOR_G = 8'd236;
 defparam mode2_block.COLOR_B = 8'd139;

 wire [23:0] current_mode_pixel;
 wire [10:0] current_mode_x = (menu_state == 0) ? MODE1_X : MODE2_X;
 wire [9:0] current_mode_y = (menu_state == 0) ? MODE1_Y : MODE2_Y;

 // Block to display the background border around the button of the current mode:
 centered_block
current_mode_block(current_mode_x,current_mode_y,hcount,vcount,current_mode_pixel);
 defparam current_mode_block.WIDTH = 70;
 defparam current_mode_block.HEIGHT = 70;
 defparam current_mode_block.COLOR_R = 8'd255;
 defparam current_mode_block.COLOR_G = 8'd127;
 defparam current_mode_block.COLOR_B = 8'd0;

 wire [23:0] number1_pixel, number2a_pixel, number2b_pixel;

 parameter NUM_WIDTH = 8;
 parameter NUM_HEIGHT = 40;

 // Block to display number 1:
 centered_block number1_block(mode1_x,mode1_y,hcount,vcount,number1_pixel);
 defparam number1_block.WIDTH = NUM_WIDTH;
 defparam number1_block.HEIGHT = NUM_HEIGHT;
 defparam number1_block.COLOR_R = 8'd255;
 defparam number1_block.COLOR_G = 8'd36;
 defparam number1_block.COLOR_B = 8'd0;

 wire [10:0] num2a_x = mode2_x - NUM_WIDTH;

 // Block to display number 2a (the first bar of the II):
 centered_block number2a_block(num2a_x,mode2_y,hcount,vcount,number2a_pixel);
 defparam number2a_block.WIDTH = NUM_WIDTH;
 defparam number2a_block.HEIGHT = NUM_HEIGHT;
 defparam number2a_block.COLOR_R = 8'd255;
 defparam number2a_block.COLOR_G = 8'd36;
 defparam number2a_block.COLOR_B = 8'd0;

 wire [10:0] num2b_x = mode2_x + NUM_WIDTH;

 // Block to display number 2b (the second bar of the II):
 centered_block number2b_block(num2b_x,mode2_y,hcount,vcount,number2b_pixel);
 defparam number2b_block.WIDTH = NUM_WIDTH;
 defparam number2b_block.HEIGHT = NUM_HEIGHT;
 defparam number2b_block.COLOR_R = 8'd255;
 defparam number2b_block.COLOR_G = 8'd36;
 defparam number2b_block.COLOR_B = 8'd0;

 // Generating blocks to follow the path of the hand motion:

 wire [23:0] left_hand_pixel1, right_hand_pixel1; // {R,G,B} for display of closer
trailing blocks for left and right hands
 wire [23:0] left_hand_pixel2, right_hand_pixel2; // {R,G,B} for display of farther
trailing blocks for left and right hands

 // Registers to keep track of the old hand positions:
 reg [10:0] left_x_old1, left_x_old2, right_x_old1, right_x_old2;
 reg [9:0] left_y_old1, left_y_old2, right_y_old1, right_y_old2;

 73

 // Trailing block 1 following left hand:
 centered_block left_hand1(left_x_old1,left_y_old1,hcount,vcount,left_hand_pixel1);
 defparam left_hand1.WIDTH = 20;
 defparam left_hand1.HEIGHT = 20;
 defparam left_hand1.COLOR_R = 8'd0;
 defparam left_hand1.COLOR_G = 8'd200;
 defparam left_hand1.COLOR_B = 8'd0;

 // Trailing block 1 following right hand:
 centered_block right_hand1(right_x_old1,right_y_old1,hcount,vcount,right_hand_pixel1);
 defparam right_hand1.WIDTH = 20;
 defparam right_hand1.HEIGHT = 20;
 defparam right_hand1.COLOR_R = 8'd200;
 defparam right_hand1.COLOR_G = 8'd0;
 defparam right_hand1.COLOR_B = 8'd0;

 // Trailing block 2 following left hand:
 centered_block left_hand2(left_x_old2,left_y_old2,hcount,vcount,left_hand_pixel2);
 defparam left_hand2.WIDTH = 20;
 defparam left_hand2.HEIGHT = 20;
 defparam left_hand2.COLOR_R = 8'd0;
 defparam left_hand2.COLOR_G = 8'd100;
 defparam left_hand2.COLOR_B = 8'd0;

 // Trailing block 2 following right hand:
 centered_block right_hand2(right_x_old2,right_y_old2,hcount,vcount,right_hand_pixel2);
 defparam right_hand2.WIDTH = 20;
 defparam right_hand2.HEIGHT = 20;
 defparam right_hand2.COLOR_R = 8'd100;
 defparam right_hand2.COLOR_G = 8'd0;
 defparam right_hand2.COLOR_B = 8'd0;

 reg [18:0] count; // maximum: 2^19, which is about 0.2 of a second

 always @(posedge clock_27mhz) begin
 count <= count + 1;
 if (count == 0) begin // Take position samples every 0.2 seconds

 // Shift registers to hold hand positions:

 left_x_old2 <= left_x_old1;
 left_y_old2 <= left_y_old1;

 left_x_old1 <= left_x;
 left_y_old1 <= left_y;

 right_x_old2 <= right_x_old1;
 right_y_old2 <= right_y_old1;

 right_x_old1 <= right_x;
 right_y_old1 <= right_y;

 end
 end

 always @(posedge clk)
 begin
 if (menu_state == 0) begin // State 0: Display black background
in video
 pixel <= ((desired_color && ~outside_frame) || thin_border) ?
24'b111111111111111111111111 : 24'b0; //switch[0]
 if (~button_down) begin // On button down
press, go to state 1
 menu_state <= 1;
 end
 end
 else if (menu_state == 1) begin // State 1: Display camera input in
background of video

 74

 pixel <= (thin_border) ? 24'b111111111111111111111111 :
((~outside_frame) ? cam_image : 24'b0);
 if (~button_up) begin // On button up press, return to state 0
 menu_state <= 0;
 end
 end

 // Generate the background of the video part of the screen:
 border_pixel[23:16] <= (border_display) ? 8'd58 : 8'd0;
 border_pixel[15:8] <= (border_display) ? 8'd95 : 8'd0;
 border_pixel[7:0] <= (border_display) ? 8'd205 : 8'd0;
 bottom_bar_pixel[23:16] <= (bottom_bar) ? 8'd0 : 8'd0;
 bottom_bar_pixel[15:8] <= (bottom_bar) ? 8'd0 : 8'd0;
 bottom_bar_pixel[7:0] <= (bottom_bar) ? 8'd139 : 8'd0;

 end

 wire top_layer_zero = (left_hand_pixel == 0) && (right_hand_pixel == 0);
 wire second_layer_zero = (left_hand_pixel1 == 0) && (right_hand_pixel1 == 0);

 wire [23:0] border_group = border_pixel + bottom_bar_pixel;
 // Display of background of video section
 wire [23:0] hand_pixel_group = (~top_layer_zero) ? (left_hand_pixel +
right_hand_pixel) : ((~second_layer_zero) ? (left_hand_pixel1 + right_hand_pixel1) :
(left_hand_pixel2 + right_hand_pixel2)); // Display of blocks following hands
 wire [23:0] beat_markers_group = beat_start_pixel + beat_end_pixel; // Display of
beat start and end blocks

 // Display of the video displayed on screen.
 // Note: to prevent odd colors in overlap, the layers for display are
(from top to bottom):
 // hand_pixel_group > beat_markers_group > pixel
 wire [23:0] cam_display_vid = (hand_pixel_group == 0) ? ((beat_markers_group == 0) ?
pixel : beat_markers_group) : hand_pixel_group;

 // Display of the numbers for the mode buttons:
 wire [23:0] numbers_group = number1_pixel + number2a_pixel + number2b_pixel;

 // Tests used for deciding how to layer the sprites in the menu display:
 wire not_button = (mode1_pixel == 0) && (mode2_pixel == 0); // The current pixel has no
unpressed button area
 wire not_number = (numbers_group == 0);
 // The current pixel has no number area

 // Display of the unpressed buttons:
 wire [23:0] button_group = mode1_pixel + mode2_pixel;

 // Display of the final menu:
 // Note: to prevent odd colors in overlap, the layers for display are
(from top to bottom):
 // numbers_group > button_group > current_mode_pixel
 wire [23:0] menu_vid = (~not_number) ? numbers_group : ((~not_button) ? button_group :
current_mode_pixel);

 // Signals to send to the display, separated into R, G, B:
 assign display_out_r = cam_display_vid[23:16] + analyzer_bar_group[23:16] +
border_group[23:16] + menu_vid[23:16];
 assign display_out_g = cam_display_vid[15:8] + analyzer_bar_group[15:8] +
border_group[15:8] + menu_vid[15:8];
 assign display_out_b = cam_display_vid[7:0] + analyzer_bar_group[7:0] + border_group[7:0]
+ menu_vid[7:0];

endmodule

//
//

 75

// motion_analyzer: Generates qualities of amplitude, beat period,
// and acceleration by interpreting the x and y
coordinates
// of the left and right hands over time.
//
//

module motion_analyzer(clk,reset,left_x,left_y,right_x,right_y,
 beat_start,beat_end,
 beat_start_x,beat_start_y,
 beat_end_x,beat_end_y,
 amp_left,amp_right,
 beat_period,
 acceleration_left,acceleration_right,
 time_scale, tol, tol_end, tol_start);

 input clk,reset;
 input [10:0] left_x, right_x;
 input [9:0] left_y, right_y;

 input [1:0] time_scale;
 input [1:0] tol, tol_end, tol_start;

 output beat_start,beat_end;
 output [10:0] beat_start_x, beat_end_x;
 output [9:0] beat_start_y, beat_end_y;
 output [10:0] amp_left, amp_right, beat_period, acceleration_left, acceleration_right;

 wire beat_start_wire; // High for one clock cycle when beat starts,
low otherwise.
 wire beat_end_wire; // High for one clock cycle when beat
ends, low otherwise.

 assign beat_start = beat_start_wire;
 assign beat_end = beat_end_wire;

 // Coordinates of where the beat started:
 reg [10:0] beat_start_x;
 reg [9:0] beat_start_y;

 // Coordinates of where the beat ended:
 reg [10:0] beat_end_x;
 reg [9:0] beat_end_y;

 // MODULE: Determines the start and end of a beat
 beat_markers beat_markers_module(clk,reset,right_x,right_y,

 beat_start_wire,beat_end_wire,

 time_scale, tol, tol_end, tol_start);

 // MODULE: Generates the amplitude, period, and acceleration qualities based on beat
markers

 wire [10:0] amp_left, amp_right, beat_period, acceleration_left, acceleration_right;
 qualities_generator qual_gen1(clk,reset,

 left_x,left_y,right_x,right_y,

 beat_start_wire,beat_end_wire,

 amp_left,amp_right,
 beat_period,

 acceleration_left,acceleration_right);

 76

 // Update coordinates of beat start and end:
 always @(posedge clk) begin
 if (reset) begin
 beat_start_x <= 0;
 beat_start_y <= 0;
 beat_end_x <= 0;
 beat_end_y <= 0;
 end
 else begin
 if (beat_start_wire) begin // Only update start coordinates on the
start of a new beat
 beat_start_x <= right_x;
 beat_start_y <= right_y;
 end
 if (beat_end_wire) begin // Only update end coordinates on the end of
a beat
 beat_end_x <= right_x;
 beat_end_y <= right_y;
 end
 end
 end

endmodule

//
// File: ntsc2zbt.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Example for MIT 6.111 labkit showing how to prepare NTSC data
// (from Javier's decoder) to be loaded into the ZBT RAM for video
// display.
//

// **** MODIFICATIONS: This version uses 32 bits of each location in the ZBT memory.
// Each location stores information for two pixels of 16 bits each.
// Storage for each pixel:
// Highest 8 bits used for Y
// Next 4 bits used for Cr
// Loweest 4 bits used for Cb
// Code modifications following (*) in code below
///
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

 input clk; // system clock
 input vclk; // video clock from camera
 input [2:0] fvh;
 input dv;
 input [29:0] din;
 output [18:0] ntsc_addr;
 output [35:0] ntsc_data;
 output ntsc_we; // write enable for NTSC data
 input sw; // switch which determines mode (for debugging)

 parameter COL_START = 10'd160;
 parameter ROW_START = 10'd0;

 // here put the luminance data from the ntsc decoder into the ram
 // this is for 1024 x 768 XGA display

 reg [9:0] col = 0;
 reg [9:0] row = 0;
 reg [15:0] vdata = 0;
 reg vwe;
 reg old_dv;
 reg old_frame; // frames are even / odd interlaced

 77

 reg even_odd; // decode interlaced frame to this wire

 wire frame = fvh[2];
 wire frame_edge = frame & ~old_frame;

 always @ (posedge vclk) //LLC1 is reference
 begin
 old_dv <= dv;
 vwe <= dv && !fvh[2] & ~old_dv; // if data valid, write it
 old_frame <= frame;
 even_odd = frame_edge ? ~even_odd : even_odd;

 if (!fvh[2])
 begin
 col <= fvh[0] ? COL_START :
 (!fvh[2] && !fvh[1] && dv && (col < 1024)) ? col + 1 : col;
 row <= fvh[1] ? ROW_START :
 (!fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
 vdata <= (dv && !fvh[2]) ? {din[29:24],din[19:15],din[9:5]} : vdata; // * Store
16-bit Y Cr Cb information in form described above
 end
 end

 // synchronize with system clock

 reg [9:0] x[1:0],y[1:0];
 reg [15:0] data[1:0];
 reg we[1:0];
 reg eo[1:0];

 always @(posedge clk)
 begin
 {x[1],x[0]} <= {x[0],col};
 {y[1],y[0]} <= {y[0],row};
 {data[1],data[0]} <= {data[0],vdata};
 {we[1],we[0]} <= {we[0],vwe};
 {eo[1],eo[0]} <= {eo[0],even_odd};
 end

 // edge detection on write enable signal

 reg old_we;
 wire we_edge = we[1] & ~old_we;
 always @(posedge clk) old_we <= we[1];

 // shift each set of four bytes into a large register for the ZBT

 reg [31:0] mydata;
 always @(posedge clk)
 if (we_edge)
 mydata <= { mydata[15:0], data[1] }; // *Store 16 bit data per clock

 // compute address to store data in

 wire [18:0] myaddr = {y[1][8:0], eo[1], x[1][9:1]}; // *Modification to address

 // alternate (256x192) image data and address
 wire [31:0] mydata2 = {data[1],data[1],data[1],data[1]};
 wire [18:0] myaddr2 = {1'b0, y[1][8:0], eo[1], x[1][7:0]};

 // update the output address and data only when four bytes ready

 reg [18:0] ntsc_addr;
 reg [35:0] ntsc_data;
 wire ntsc_we = sw ? we_edge : (we_edge & (x[1][0]==1'b0)); // *Write every two times

 always @(posedge clk)
 if (ntsc_we)
 begin
 ntsc_addr <= sw ? myaddr2 : myaddr; // normal and expanded modes
 ntsc_data <= sw ? {4'b0,mydata2} : {4'b0,mydata};

 78

 end

endmodule // ntsc_to_zbt

//
//
// position_calculator: Calculate the average x and y positions of the
// hands over a frame. Left_en high
when the current
// pixel should be included in the
weighted average
// calculation for the left hand. The
same for right_en
// with the right hand
//
//

module position_calculator(reset,clk,

 left_en,right_en,hcount,vcount,
 vsync, left_x, left_y,
right_x, right_y);

 input reset, clk, left_en, right_en,vsync;
 input [10:0] hcount;
 input [9:0] vcount;
 output [10:0] left_x, right_x;
 output [9:0] left_y,right_y;

 // Define borders of the video area on screen:
 parameter RIGHT_BORDER = 867;
 parameter LEFT_BORDER = 157;
 parameter TOP_BORDER = 27;
 parameter BOTTOM_BORDER = 505;
 parameter CENTER_X = (LEFT_BORDER + RIGHT_BORDER)/2; // Find the middle of
the window

 wire [10:0] left_x_1, right_x_1,left_y_1, right_y_1;

 // Decide if in left half of the screen
 wire left_in_left_side = (LEFT_BORDER < left_x_1) && (left_x_1 < CENTER_X) && (TOP_BORDER <
left_y_1) && (left_y_1 < BOTTOM_BORDER);

 // Decide if in right half of the screen
 wire right_in_right_side = (CENTER_X < right_x_1) && (right_x_1 < RIGHT_BORDER) && (TOP_BORDER
< right_y_1) && (right_y_1 < BOTTOM_BORDER);

 // Modules to calculate weighted sums:

 weighted_sum ws1(reset, clk, left_en, vsync, hcount, left_x_1,vcount);
 // Left hand: x position
 weighted_sum ws2(reset, clk, left_en, vsync, {1'b0,vcount}, left_y_1,vcount); // Left
hand: y position
 weighted_sum ws3(reset, clk, right_en, vsync, hcount, right_x_1,vcount);
 // Right hand: x position
 weighted_sum ws4(reset, clk, right_en, vsync, {1'b0,vcount}, right_y_1,vcount); // Right hand:
y position

 // Registers to hold the x and y positions of the hands:
 reg [10:0] left_x = 0;
 reg [10:0] right_x = 0;
 reg [9:0] left_y = 0;
 reg [9:0] right_y = 0;

 // Used in distance calculation between samples:

 79

 wire [10:0] diff_right_x = (right_x > right_x_1) ? (right_x - right_x_1) : (right_x_1 -
right_x);
 wire [10:0] diff_left_x = (left_x > left_x_1) ? (left_x - left_x_1) : (left_x_1 - left_x);
 wire [10:0] diff_right_y = (right_y > right_y_1) ? (right_y - right_y_1) : (right_y_1 -
right_y);
 wire [10:0] diff_left_y = (left_y > left_y_1) ? (left_y - left_y_1) : (left_y_1 - left_y);

 // Error correction: eliminate jumps in light positions for smoother motion
 // Detecting whether two successive x,y positions are within reasonable distance of each
other.
 parameter JUMP_THRESHOLD = 75;
 wire no_left_jump = (diff_left_x < JUMP_THRESHOLD) && (diff_left_y < JUMP_THRESHOLD);
 // = 1 if reasonable distance between successive left hand coordinates
 wire no_right_jump = (diff_right_x < JUMP_THRESHOLD) && (diff_right_y < JUMP_THRESHOLD);
 // = 1 if reasonable distance between successive right hand coordinates

 // High at pixels outside the video frame:
 wire outside_frame_left = (left_x < LEFT_BORDER) || (left_x > RIGHT_BORDER) || (left_y <
TOP_BORDER) || (left_y > BOTTOM_BORDER);
 wire outside_frame_right = (right_x < LEFT_BORDER) || (right_x > RIGHT_BORDER) || (right_y <
TOP_BORDER) || (right_y > BOTTOM_BORDER);

 // Tests before updating coordinates:
 wire update_left = left_in_left_side && (no_left_jump || outside_frame_left);
 wire update_right = right_in_right_side && (no_right_jump || outside_frame_right);

 // FSM state
 reg state = 0;

 always @(posedge clk) begin
 if (reset) begin
 left_x <= 0;
 right_x <= 0;
 left_y <= 0;
 right_y <= 0;
 state <= 0;

 end
 else begin
 if (state == 0) begin // State 0: Frame ended, wait for new
frame to start
 if (vsync == 1) begin // When vsync goes high, store results of weighted
averages
 state <= 1;
 if (update_left) begin //

 left_x <= left_x_1;
 // Store the left hand x position
 left_y <= left_y_1[9:0]; // Store the left hand y position

 end
 if (update_right) begin //

 right_x <= right_x_1;
 // Store the right hand x position
 right_y <= right_y_1[9:0]; // Store the right hand y position

 end
 end
 end
 else if (state == 1) begin // State 1: Frame started, wait for frame to end
 if (vsync == 0) begin
 state <= 0;
 end
 end

 end
 end

 80

endmodule

//
//
// qualities_generator: Uses beat start and end information to calculate
// amplitude, beat period, and
acceleration qualities
// for each hand
//
//

module qualities_generator(clk,reset,
 left_x,left_y,right_x,right_y,
 beat_start,beat_end,
 amp_left,amp_right,
 beat_period,

 acceleration_left,acceleration_right);

 input clk,reset;
 input [10:0] left_x, right_x;
 input [9:0] left_y, right_y;
 input beat_start,beat_end;

 output [10:0] amp_left, amp_right, beat_period, acceleration_left, acceleration_right;

 // Holds the motion qualities for output:
 reg [10:0] amp_left, amp_right, beat_period, acceleration_left, acceleration_right;

 // Store the location of the hands at beat start and end in these registers:
 reg [10:0] left_x1, right_x1, left_x2, right_x2;
 reg [9:0] left_y1, right_y1, left_y2, right_y2;

 // Store 3 sets of samples of coordinates for each hand for use in acceleration
calculations:
 reg [10:0] left_xt1, right_xt1, left_xt2, right_xt2, left_xt3, right_xt3;
 reg [9:0] left_yt1, right_yt1, left_yt2, right_yt2, left_yt3, right_yt3;

 // Used for generating a slower clock
 reg [18:0] count; // maximum: 2^19, which is about 0.2th of a second

 // FSM state
 reg state = 0;

 // Holds a count of time a beat is taking (each count is 2^21 clock cycles):
 reg [10:0] time_count = 0;

 // Wires for the find_distance modules:
 wire [10:0] dist_right, dist_left;
 wire [10:0] accel_left_dist1, accel_left_dist2, accel_right_dist1, accel_right_dist2;

 wire dist_calc_clr = (reset || beat_end); // Reset distance calc on reset button or
end of beat

 // Amplitude calculation:
 find_distance dist1(clk,dist_calc_clr,left_x1,left_y1,left_x2,left_y2,dist_left);
 find_distance dist2(clk,dist_calc_clr,right_x1,right_y1,right_x2,right_y2,dist_right);

 // Acceleration calculation
 // Left hand:
 find_distance
dist3(clk,dist_calc_clr,left_xt1,left_yt1,left_xt2,left_yt2,accel_left_dist1);
 find_distance
dist4(clk,dist_calc_clr,left_xt3,left_yt3,left_xt2,left_yt2,accel_left_dist2);

 // Right hand:

 81

 find_distance
dist5(clk,dist_calc_clr,right_xt1,right_yt1,right_xt2,right_yt2,accel_right_dist1);
 find_distance
dist6(clk,dist_calc_clr,right_xt3,right_yt3,right_xt2,right_yt2,accel_right_dist2);

 // Take the difference to get the change of speed. If the movement is slowing down,
output 0 acceleration
 wire [10:0] accel_left = (accel_left_dist1 >= accel_left_dist2) ? 11'b0 :
2*(accel_left_dist2 - accel_left_dist1);
 wire [10:0] accel_right = (accel_right_dist1 >= accel_right_dist2) ? 11'b0 :
2*(accel_right_dist2 - accel_right_dist1);

 always @ (posedge clk) begin

 if (reset) begin

 amp_left <= 0;
 amp_right <= 0;
 beat_period <= 0;
 acceleration_left <= 0;
 acceleration_right <= 0;

 left_x1 <= 0;
 right_x1 <= 0;
 left_x2 <= 0;
 right_x2 <= 0;
 left_y1 <= 0;
 right_y1 <= 0;
 left_y2 <= 0;
 right_y2 <= 0;

 left_xt1 <= 0;
 right_xt1 <= 0;
 left_xt2 <= 0;
 right_xt2 <= 0;
 left_xt3 <= 0;
 right_xt3 <= 0;
 left_yt1 <= 0;
 right_yt1 <= 0;
 left_yt2 <= 0;
 right_yt2 <= 0;
 left_yt3 <= 0;
 right_yt3 <= 0;

 count <= 0;

 state <= 0;
 time_count <= 0;

 end

 else if (state == 0) begin // State 0: Beat ended, waiting to start a beat
 if (beat_start) begin // Switch to state 1 when beat ends

 state <= 1;
 time_count <= 0;

 count <= 0;

 // Store coordinates of start position:
 left_x1 <= left_x;
 left_y1 <= left_y;
 right_x1 <= right_x;
 right_y1 <= right_y;

 // Update with new beat qualities:
 amp_left <= dist_left;
 amp_right <= dist_right;
 beat_period <= time_count;
 acceleration_left <= accel_left;
 acceleration_right <= accel_right;

 82

 end
 end
 else if (state == 1) begin // State 1: Beat started, waiting to end

 // Calculating acceleration and time count:
 count <= count + 1;
 if (count == 0) begin // Count only every 0.02 seconds
 time_count <= time_count + 1;
 if (time_count <= 6) begin // Only keep sample info within the first
6*0.02 seconds

 // Store successive coordinates for acceleration
calculations:
 left_xt1 <= left_xt2;
 left_yt1 <= left_yt2;
 right_xt1 <= right_xt2;
 right_yt1 <= right_yt2;

 left_xt2 <= left_xt3;
 left_yt2 <= left_yt3;
 right_xt2 <= right_xt3;
 right_yt2 <= right_yt3;

 left_xt3 <= left_x;
 left_yt3 <= left_y;
 right_xt3 <= right_x;
 right_yt3 <= right_y;
 end
 end

 if (beat_end) begin // Switch to state 0 when beat ends
 state <= 0;
 // Store coordinates where the beat motion ended
 left_x2 <= left_x;
 left_y2 <= left_y;
 right_x2 <= right_x;
 right_y2 <= right_y;
 end
 end
 end
endmodule

//
//
// video_processor: Uses the camera input to determine the coordinates
// of each hand.
//
//

module video_processor(reset,clk,pixel_video,hcount,vcount,vsync,
 left_x, left_y, right_x,
right_y,desired_color);

 input reset, clk, vsync;
 input [10:0] hcount;
 input [9:0] vcount;
 input pixel_video;
 output [10:0] left_x, right_x; // The weighted average X position of each hand
 output [9:0] left_y,right_y; // The weighted average Y position of each
hand
 output desired_color; // Used for display of the
coordinates detected by the color_detection module

 // left_en = 1 when a pixel of the desired color is in the left hand plane
 // right_en = 1 when a pixel of the desired color is in the right hand plane
 wire left_en, right_en;

 83

 // MODULE: Detects when the desired color appears in each half of the screen
 color_detection cd1(reset, clk, pixel_video, hcount, vcount,
 left_en, right_en,desired_color);

 // MODULE: Calculates the weighted average position of each hand
 position_calculator pc1(reset,clk,left_en,right_en,hcount,vcount,vsync,
 left_x, left_y, right_x,
right_y);

endmodule

//
//
// weighted_sum: Calculate the weighted sum of position every frame.
// Only count values when enable is high will be
included
// in the calculation.
//
//

module weighted_sum(reset,clk,enable,vsync,count,avg,vcount);

 input reset, clk, enable, vsync;
 input [10:0] count;
 input [9:0] vcount;

 output [10:0] avg;

 parameter BOTTOM_BORDER = 505;

 // Store how many pixels of the desired color were detected
 reg [17:0] pixel_count = 0;
 // Keep a running sum of the x or y coordinate at the detected pixels
 reg [27:0] sum = 0;

 // FSM state
 reg state = 0;

 // Output of divide module:
 wire [27:0] divider_result;

 // The actual result of divide:
 assign avg = divider_result[10:0];

 // Wires for divide module:
 wire [17:0] remd; // Remainder
 wire rfd; // Ready for new data

 wire aclr = 0; // Asynchronous clear, disabled
 wire ce = 1; // Clock enable, disabled

 reg sclr = 0; // Synchronous clear, enabled

 // MODULE: Used for division of the running sum with the sample count
 divider div1 (
 sum,
 pixel_count,
 divider_result,
 remd,
 clk,
 rfd,
 aclr,
 sclr,
 ce);

 always @(posedge clk) begin

 84

 if (reset) begin
 pixel_count <= 0;
 sum <= 0;
 state <= 0;
 sclr <= 0;
 end
 else begin
 if (state == 0) begin // State 0: Tabulate the running sum and pixel count
 if (vcount > BOTTOM_BORDER) begin // Once the frame is no
longer in the video range, start calculating divide
 sclr <= 0;
 end
 if (vsync == 0) begin // Once the frame is
done, go to state 1
 state <= 1;
 end
 else if (enable) begin // If pixel detected,
increase count and running sum
 pixel_count <= pixel_count + 1;
 sum <= sum + count;
 end
 end
 else if (state == 1) begin // State 1: Wait until the next frame starts.

 if (vsync == 1) begin // Once a new frame begins,
return to state 0
 sclr <= 1;
 pixel_count <= 0;
 sum <= 0;
 state <= 0;
 end
 end
 end
 end
endmodule

//
// File: zbt_6111.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the
// pipeline delays of the ZBT from the user. The ZBT memories have
// two cycle latencies on read and write, and also need extra-long data hold
// times around the clock positive edge to work reliably.
//

///
// Ike's simple ZBT RAM driver for the MIT 6.111 labkit
//
// Data for writes can be presented and clocked in immediately; the actual
// writing to RAM will happen two cycles later.
//
// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.
//
// A clock enable signal is provided; it enables the RAM clock when high.

module zbt_6111(clk, cen, we, addr, write_data, read_data,
 ram_clk, ram_we_b, ram_address, ram_data, ram_cen_b);

 input clk; // system clock
 input cen; // clock enable for gating ZBT cycles
 input we; // write enable (active HIGH)
 input [18:0] addr; // memory address
 input [35:0] write_data; // data to write
 output [35:0] read_data; // data read from memory
 output ram_clk; // physical line to ram clock
 output ram_we_b; // physical line to ram we_b
 output [18:0] ram_address; // physical line to ram address

 85

 inout [35:0] ram_data; // physical line to ram data
 output ram_cen_b; // physical line to ram clock enable

 // clock enable (should be synchronous and one cycle high at a time)
 wire ram_cen_b = ~cen;

 // create delayed ram_we signal: note the delay is by two cycles!
 // ie we present the data to be written two cycles after we is raised
 // this means the bus is tri-stated two cycles after we is raised.

 reg [1:0] we_delay;

 always @(posedge clk)
 we_delay <= cen ? {we_delay[0],we} : we_delay;

 // create two-stage pipeline for write data

 reg [35:0] write_data_old1;
 reg [35:0] write_data_old2;
 always @(posedge clk)
 if (cen)
 {write_data_old2, write_data_old1} <= {write_data_old1, write_data};

 // wire to ZBT RAM signals

 assign ram_we_b = ~we;
 assign ram_clk = ~clk; // RAM is not happy with our data hold
 // times if its clk edges equal FPGA's
 // so we clock it on the falling edges
 // and thus let data stabilize longer
 assign ram_address = addr;

 assign ram_data = we_delay[1] ? write_data_old2 : {36{1'bZ}};
 assign read_data = ram_data;

endmodule // zbt_6111

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 22:23:15 12/04/06
// Design Name:
// Module Name: ArticulationModulatorUnit
// Project Name:
// Target Device:
// Tool versions:
// Description: This module performs the articulation modulation for the audio. The
module
// outputs a coefficient that is used to multiply the
audio in order to
// create a stronger first part of a beat and a weaker second part of a beat.
// sample_count should be the sample number that is currently being addressed.
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module ArticulationModulatorUnit(reset, clock_27mhz, musicbeatperiod, Acc,
 coefficient, sample_count, division);
 input reset;
 input clock_27mhz;
 input [15:0] musicbeatperiod;
 input [10:0] Acc;
 input [15:0] sample_count;
 output [7:0] coefficient;

 86

 output [7:0] division; //debug output
 reg [7:0] division;
 wire [1:0] NewAcc;

 reg [7:0] coefficient;

 //figure out what part of beat we are at. Divide beat into 16 sections
 always @ (sample_count or musicbeatperiod) begin
 if (sample_count <= musicbeatperiod >> 4)
 division = 0;
 else if (sample_count <= (musicbeatperiod >> 4) * 2)
 division = 1;
 else if (sample_count <= (musicbeatperiod >> 4) * 3)
 division = 2;
 else if (sample_count <= (musicbeatperiod >> 4) * 4)
 division = 3;
 else if (sample_count <= (musicbeatperiod >> 4) * 5)
 division = 4;
 else if (sample_count <= (musicbeatperiod >> 4) * 6)
 division = 5;
 else if (sample_count <= (musicbeatperiod >> 4) * 7)
 division = 6;
 else if (sample_count <= (musicbeatperiod >> 4) * 8)
 division = 7;
 else if (sample_count <= (musicbeatperiod >> 4) * 9)
 division = 8;
 else if (sample_count <= (musicbeatperiod >> 4) * 10)
 division = 9;
 else if (sample_count <= (musicbeatperiod >> 4) * 11)
 division = 10;
 else if (sample_count <= (musicbeatperiod >> 4) * 12)
 division = 11;
 else if (sample_count <= (musicbeatperiod >> 4) * 13)
 division = 12;
 else if (sample_count <=(musicbeatperiod >> 4)* 14)
 division = 13;
 else if (sample_count <= (musicbeatperiod >> 4) * 15)
 division = 14;
 else
 division = 15;
 end

 //ROM to store the functions that the audio will be multiplied with to create
articulation effect
 always @ (NewAcc or sample_count) begin
 if (NewAcc ==0)
 coefficient = 255;
 //legato
 else if (NewAcc == 0)
 case (division)
 0: coefficient = 153;
 1: coefficient = 230;
 2: coefficient = 255;
 3: coefficient = 255;
 4: coefficient = 255;
 5: coefficient = 255;
 6: coefficient = 255;
 7: coefficient = 255;
 8: coefficient = 255;
 9: coefficient = 255;
 10: coefficient = 255;
 11: coefficient = 255;
 12: coefficient = 230;
 13: coefficient = 179;
 14: coefficient = 153;
 15: coefficient = 102;
 endcase
 else if (NewAcc == 1)
 case (division)
 0: coefficient = 153;

 87

 1: coefficient = 230;
 2: coefficient = 255;
 3: coefficient = 255;
 4: coefficient = 255;
 5: coefficient = 255;
 6: coefficient = 255;
 7: coefficient = 255;
 8: coefficient = 255;
 9: coefficient = 255;
 10: coefficient = 217;
 11: coefficient = 179;
 12: coefficient = 153;
 13: coefficient = 102;
 14: coefficient = 51;
 15: coefficient = 26;
 endcase
 else if (NewAcc == 2)
 case (division)
 0: coefficient = 26;
 1: coefficient = 230;
 2: coefficient = 255;
 3: coefficient = 255;
 4: coefficient = 255;
 5: coefficient = 230;
 6: coefficient = 179;
 7: coefficient = 153;
 8: coefficient = 102;
 9: coefficient = 51;
 10: coefficient = 26;
 11: coefficient = 26;
 12: coefficient = 26;
 13: coefficient = 26;
 14: coefficient = 26;
 15: coefficient = 26;
 endcase
 //staccato
 else
 case (division)
 0: coefficient = 26;
 1: coefficient = 230;
 2: coefficient = 255;
 3: coefficient = 230;
 4: coefficient = 153;
 5: coefficient = 51;
 6: coefficient = 51;
 7: coefficient = 51;
 8: coefficient = 26;
 9: coefficient = 26;
 10: coefficient = 26;
 11: coefficient = 26;
 12: coefficient = 26;
 13: coefficient = 26;
 14: coefficient = 26;
 15: coefficient = 26;
 endcase
 end

 assign NewAcc = Acc[1:0];
endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 21:21:20 12/03/06
// Design Name:
// Module Name: ArticulationVolumeModulator
// Project Name:
// Target Device:

 88

// Tool versions:
// Description: Given left and right velocities and acceleration, the Articulation
// And Volume Modulator will change the input hp and
lp audio data
// so that greater velocities will result in a greater
amplitude output
// and a greater acceleration will result in a
choppier playback.
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module ArticulationVolumeModulator(clock_27mhz, reset, lp_audio, hp_audio,
 FinalAudio, AccL, AccR, VelL, VelR, musicbeatperiod, rfd,
rfdhp, lp, hp, sample_count, volumeswitch, volume, accelerationswitch);
 input clock_27mhz;
 input reset;
 input signed [28:0] lp_audio;
 input signed [28:0] hp_audio;
 output signed [7:0] FinalAudio;
 input [1:0] AccL;
 input [1:0] AccR;
 input [6:0] VelL;
 input [6:0] VelR;
 input [15:0] musicbeatperiod;
 input [15:0] sample_count;
 input rfd;
 input rfdhp;
 input lp;
 input hp;
 input volumeswitch;
 input accelerationswitch;
 output [4:0] volume;

 reg [4:0] volume;
 reg signed [7:0] low_out, high_out = 0;
 reg signed [7:0] low_out_articulation, high_out_articulation = 0;
 reg [24:0] TempFinalAudio;

 wire [7:0] low_coefficient;
 wire [7:0] high_coefficient;
 wire [1:0] AccLInput;
 wire [1:0] AccRInput;

 ArticulationModulatorUnit LPUnit(reset, clock_27mhz, musicbeatperiod, AccLInput,
 low_coefficient, sample_count, division);

 ArticulationModulatorUnit HPUnit(reset, clock_27mhz, musicbeatperiod, AccRInput,
 high_coefficient, sample_count, division);

 //ArticulationModulatorUnit LPUnit(reset, clock_27mhz, BeatPeriod, AccL[0], sample_count,
low_coefficient);
 always @ (posedge clock_27mhz) begin
 if (rfd)
 low_out <= {lp_audio[28], lp_audio[22:22-6]};
 if (rfdhp)
 high_out <= {hp_audio[28], hp_audio[22:22-6]};

 //assign the raw audio volume to be equal to greatest of the two velocities
shifted by 1
 //if velocity exceeds maximum, assign it to be 5'b11111
 if (volumeswitch)
 if (VelL > VelR)
 volume <= ((VelL >> 1) > 5'b11111)? 5'b11111: (VelL >> 1);
 else
 volume <= ((VelR >> 1) > 5'b11111)? 5'b11111: (VelR >> 1);

 89

 else
 volume <= 5'b11000;
 end

 //assign TempFinalAudio = VelL* low_coefficient * low_out+ VelR* high_coefficient*
high_out;
 always @ (volumeswitch or VelL or VelR or low_coefficient or high_coefficient or
high_out or low_out) begin
 if (volumeswitch)
 TempFinalAudio = VelL* low_coefficient * low_out+ VelR* high_coefficient*
high_out;
 else
 TempFinalAudio = 7'b1111111 * low_coefficient * low_out+ 7'b1111111 *
high_coefficient* high_out;
 end

 assign FinalAudio = {TempFinalAudio[24], TempFinalAudio[21: 21-6]};

 //allow switch to switch on and off articulation feature
 assign AccLInput = accelerationswitch? AccL: 0;
 assign AccRInput = accelerationswitch? AccR: 0;

endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 18:27:16 12/03/06
// Design Name:
// Module Name: BeatGenerator2
// Project Name:
// Target Device:
// Tool versions:
// Description: BeatGenerator produces a 1-clock-period musicbeat signal which signifies
// the divisions between beats in the audio in the
flash ROM. Access_enable
// should be a 1 clock-period enable signal and
should be on only when a new
// address in ROM has been accessed. access_reset is
used to reset the count.
// (this is done after every beat)
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module BeatGenerator2(reset, clock_27mhz, beginning, offset, samplecount, access_enable,
access_reset, musicbeat, beatperiod, toggle);
input [15:0] samplecount; //debug input
input clock_27mhz, reset, access_enable, access_reset;
input beginning;
input [15:0] offset;
input [15:0] beatperiod;
input toggle; //debug input
output musicbeat;
reg [15:0] sample_count;

always @ (posedge clock_27mhz) begin
 if (reset|beginning) begin
 sample_count <= offset;
 end
 else begin
 //regular increment
 if (access_enable) begin
 sample_count <= sample_count + 1;
 end

 90

 //reset when needed
 else if (access_reset) begin
 sample_count <= 0;
 end
 end
end

//musicbeat enabled only when sample_count reaches beatperiod
assign musicbeat = (sample_count == beatperiod);
endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 18:09:36 12/01/06
// Design Name:
// Module Name: BeatPeriodCounter
// Project Name:
// Target Device:
// Tool versions:
// Description: BeatPeriodCounter counts how long the previous user specified beat period
was.
// BeatPeriod is different from other signals
(musicbeatperiod) in the fact that it
// does not correspond to one data access from the ROM.
Instead, it is 1 data access
// from rom multiplied by 100. BeatPeriod and
musicbeatperiod/100 will give identical
// representations.
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module BeatPeriodCounter(reset, clock_27mhz, enable, beat, BeatPeriod, beginning);
input reset, clock_27mhz, enable, beat;
output [10:0] BeatPeriod;
reg [10:0] BeatPeriod = 0;
reg [10:0] TempBeatPeriod = 0;
reg [7:0] count = 0;
input beginning;

always @(posedge clock_27mhz) begin
 if (reset|beginning) begin
 TempBeatPeriod <= 0;
 count <= 0;
 end
 else begin
 if (enable) begin
 if (count >= 199) begin
 TempBeatPeriod <= (TempBeatPeriod >= 2047)? 2047: TempBeatPeriod +
1;
 count <=0;
 end
 else
 count <= count +1;
 end
 if (beat) begin
 BeatPeriod <= TempBeatPeriod;
 TempBeatPeriod <= 0;
 count <=0;
 end
 end
end

 91

endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 19:21:35 11/30/06
// Design Name:
// Module Name: DivisionConverter
// Project Name:
// Target Device:
// Tool versions:
// Description: DivisionConverter Converts the ratio between OriginalBeatPeriod, and
BeatPeriod
// to something more useful: skip, interval, add.
Every add divisions accessed,
// skip divisions will be either added, or subtracted
from the ZBT address to be
// accessed next. This helps produce the tempo
modulating effect.
// If add is high, skip divisions will be added. If
add is low, skip divisions are
// subtracted.
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module DivisionConverter(reset, clock_27mhz, BeatPeriod, beat, OriginalBeatPeriod, skip, interval,
add, NewBeatPeriod, NewOriginalBeatPeriod, TempBeatPeriod, musicbeatperiod);
input reset, clock_27mhz;
input beat;
input [10:0] BeatPeriod;
output [10:0] OriginalBeatPeriod;
output [2:0] skip;
output [2:0] interval;
output add;
output [10:0] NewBeatPeriod; //debug output
output [10:0] NewOriginalBeatPeriod; //debug output
output [10:0] TempBeatPeriod; //debug output
input [15:0] musicbeatperiod;

reg [10:0] OriginalBeatPeriod;
reg [2:0] tempDifference;
reg [3:0]state = 0;
reg [10:0] NewBeatPeriod =0;
reg [10:0] NewOriginalBeatPeriod = 0;
reg [3:0] LeftBound = 10;
reg [2:0] skip=0;
reg [2:0] interval=0;
reg [10:0] TempBeatPeriod = 0;
reg add=0;
reg [2:0] denom = 7;
reg [2:0] nom = 6;
reg [4:0] count = 0;
always @ (posedge clock_27mhz) begin
 if (reset) begin
 state <= 0;
 end
 if (beat)
 state <= 0;
 else
 case (state)
 0: begin
 OriginalBeatPeriod <= musicbeatperiod *10 /1024;
 NewBeatPeriod <= BeatPeriod;

 92

 NewOriginalBeatPeriod <= musicbeatperiod *10 /1024; //unit
conversion
 state <= 1;
 end
 1: begin
 if ((NewOriginalBeatPeriod <= 7) & (NewBeatPeriod <= 7)) begin
 state <= 2;
 end
 else begin
 NewBeatPeriod <= NewBeatPeriod >> 1;
 NewOriginalBeatPeriod <= NewOriginalBeatPeriod >> 1;
 end
 end
 2: begin
 //slower playback
 if (BeatPeriod > OriginalBeatPeriod) begin
 add <= 0; //address are subtracted every
interval
 if (BeatPeriod >> 1 >= OriginalBeatPeriod) begin
 interval <= 2;
 skip <= 1;
 end
 else if (NewBeatPeriod == NewOriginalBeatPeriod) begin
 interval <= 0;
 skip <= 0;
 end
 else begin //ratios should be between 1/2 and 1.
keep skip at 1.
 interval <= NewOriginalBeatPeriod[2:0];
 skip <= 1;
 end
 end
 //faster playback
 else if (BeatPeriod < OriginalBeatPeriod) begin
 if (NewBeatPeriod == 0) begin
 interval <= 1;
 skip <= 7;
 add <= 1;
 end
 else if (NewBeatPeriod == NewOriginalBeatPeriod) begin
 add <= 0;
 interval <= 0;
 skip <= 0;
 end
 else begin
 add <= 1; //addresses are added every interval
 interval <= NewBeatPeriod[2:0];
 //interval <= 1;
 skip <= NewOriginalBeatPeriod[2:0] -
NewBeatPeriod[2:0];
 end
 end
 else begin
 add <= 0; //same beat period. insure plays at
1x
 interval <= 0;
 skip <= 0;
 end
 end
 default: state <= 0;
 endcase

 //assign skip = tempDifference;
end

endmodule

//DivisionCounter counts the number of division accessed. Access_enable is high everytime a new
//address is accessed from RAM. The parameter, DIVISONLENGTH specifies the length of each
division

 93

//in samples. 800 samples corresponds to 800/24000 of a second per division. Addr_mod will
display
//the correct value every interval of divisions accessed, in which it will either add or subtract
//skip divisions depending on add. If add is high, addresses are added. If add is low,
addresses are
//subtracted(slows down music).

module DivisionCounter(reset, clock_27mhz, access_enable, addr_mod, skip, interval, add,
divisionCount);
parameter DIVISIONLENGTH = 800;
input reset, clock_27mhz;
input access_enable, add;
input [2:0] skip;
input [2:0] interval;
output [15:0] addr_mod;
output divisionCount; //debug output

reg signed [15:0] addr_mod = 0;
reg [2:0] divisionCount = 0;
reg [15:0] addr_count;
wire division_enable;

always @ (posedge clock_27mhz) begin
 if (reset) begin
 divisionCount <= 0;
 addr_mod <= 0;
 addr_count <= 0;
 end
 else begin
 if (access_enable)
 begin
 addr_count <= (addr_count >= DIVISIONLENGTH-1)? 0: addr_count+1;
 //count number of divisions accessed.
 if (division_enable) begin
 if (divisionCount < (interval - 1)) begin
 addr_mod <= 0;
 divisionCount <= divisionCount + 1;
 end
 else begin
 //if add is high, skip divisions are added, if low, skip
divisions are subtracted
 if (add)
 addr_mod <= (DIVISIONLENGTH) * skip;
 else
 addr_mod <= -DIVISIONLENGTH * skip;
 divisionCount <= 0;
 end
 end
 else
 addr_mod <= 0;
 end
 end
end

assign division_enable = (addr_count >= DIVISIONLENGTH-1);

endmodule

///
//
// 6.111 FPGA Labkit -- Flash ROM Interface
//
// For Labkit Revision 004
//
//
// Created: January 22, 2005
// Author: Nathan Ickes
//
///

 94

`define FLASHOP_IDLE 2'b00
`define FLASHOP_READ 2'b01
`define FLASHOP_WRITE 2'b10

module flash_int(reset, clock, op, address, wdata, rdata, busy, flash_data,
 flash_address, flash_ce_b, flash_oe_b, flash_we_b,
 flash_reset_b, flash_sts, flash_byte_b);

 parameter access_cycles = 5;
 parameter reset_assert_cycles = 1000;
 parameter reset_recovery_cycles = 30;

 input reset, clock; // Reset and clock for the flash interface
 input [1:0] op; // Flash operation select (read, write, idle)
 input [22:0] address;
 input [15:0] wdata;
 output [15:0] rdata;
 output busy;
 inout [15:0] flash_data;
 output [23:0] flash_address;
 output flash_ce_b, flash_oe_b, flash_we_b;
 output flash_reset_b, flash_byte_b;
 input flash_sts;

 reg [1:0] lop;
 reg [15:0] rdata;
 reg busy;
 reg [15:0] flash_wdata;
 reg flash_ddata;
 reg [23:0] flash_address;
 reg flash_oe_b, flash_we_b, flash_reset_b;

 assign flash_ce_b = flash_oe_b && flash_we_b;
 assign flash_byte_b = 1; // 1 = 16-bit mode (A0 ignored)

 assign flash_data = flash_ddata ? flash_wdata : 16'hZ;

 //
 //
 //
 //
 //

 initial
 flash_reset_b <= 1'b1;

 reg [9:0] state;

 always @(posedge clock)
 if (reset)
 begin
 state <= 0;
 flash_reset_b <= 0;
 flash_we_b <= 1;
 flash_oe_b <= 1;
 flash_ddata <= 0;
 busy <= 1;
 end
 else if (flash_reset_b == 0)
 if (state == reset_assert_cycles)
 begin
 flash_reset_b <= 1;
 state <= 1023-reset_recovery_cycles;
 end
 else
 state <= state+1;
 else if ((state == 0) && !busy)
 // The flash chip and this state machine are both idle. Latch the user's
 // address and write data inputs. Deassert OE and WE, and stop driving
 // the data buss ourselves. If a flash operation (read or write) is

 95

 // requested, move to the next state.
 begin
 flash_address <= {address, 1'b0};
 flash_we_b <= 1;
 flash_oe_b <= 1;
 flash_ddata <= 0;
 flash_wdata <= wdata;
 lop <= op;
 if (op != `FLASHOP_IDLE)
 begin
 busy <= 1;
 state <= state+1;
 end
 else
 busy <= 0;
 end
 else if ((state==0) && flash_sts)
 busy <= 0;
 else if (state == 1)
 // The first stage of a flash operation. The address bus is already set,
 // so, if this is a read, we assert OE. For a write, we start driving
 // the user's data onto the flash databus (the value was latched in the
 // previous state.
 begin
 if (lop == `FLASHOP_WRITE)
 flash_ddata <= 1;
 else if (lop == `FLASHOP_READ)
 flash_oe_b <= 0;
 state <= state+1;
 end
 else if (state == 2)
 // The second stage of a flash operation. Nothing to do for a read. For
 // a write, we assert WE.
 begin
 if (lop == `FLASHOP_WRITE)
 flash_we_b <= 0;
 state <= state+1;
 end
 else if (state == access_cycles+1)
 // The third stage of a flash operation. For a read, we latch the data
 // from the flash chip. For a write, we deassert WE.
 begin
 if (lop == `FLASHOP_WRITE)
 flash_we_b <= 1;
 if (lop == `FLASHOP_READ)
 rdata <= flash_data;
 state <= 0;
 end
 else
 begin
 if (!flash_sts)
 busy <= 1;
 state <= state+1;
 end

endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 20:50:04 12/04/06
// Design Name:
// Module Name: MetronomeProgrammer
// Project Name:
// Target Device:
// Tool versions:
// Description: Allows for the reprogram of the beat period in the music that is loaded
in ROM.

 96

// The module acts as a mini ROM, storing values for
musicbeatperiod, and offset.
// Offset specifies the initial beatperiod count,
while musicbeatperiod specifies the
// regular beat period. Program must be high to
reprogram these signals.
// If program_select is high, musicbeatperiod is
reprogrammed, if not, offset is reprogrammed.
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
module MetronomeProgrammer(clock_27mhz, reset, program_select, program, value, music_beat_period,
 offset);
 input clock_27mhz;
 input reset;
 input program_select;
 input program;
 input [7:0] value;
 output [15:0] music_beat_period;
 output [15:0] offset;

 reg [15:0] music_beat_period = 21900;
 reg [15:0] offset = 5000;

 always @ (posedge clock_27mhz) begin
 if (reset) begin
 music_beat_period <= 21900;
 offset <= 5000;
 end
 else begin
 //does not change value unless program is selected
 if (program)
 //selects either offset or value to program
 if (program_select)
 offset<= value*100;
 else
 music_beat_period <= value * 100;
 end
 end

endmodule

`timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 17:12:19 12/09/06
// Design Name:
// Module Name: SignalTamer
// Project Name:
// Target Device:
// Tool versions:
// Description: SignalTamer takes the signals from the Video Analysis section of the
project
// and converts them into signals that are easier to
use in the audio side.
// Signals fed in are volume_in, and acceleration_in.
Signals out are volume_in
// and acceleration_out, which will be "tamer" than
the raw inputs. The volume will be
// smoothed. On a beat transition edge, the first
half of the
// beat will be dedicated to smoothing the transition
using linear interpolation.

 97

// The beat will be divided into 32 sections, and the
first 16 will be used to smooth.
// Prior to smoothing, choppy playback had resulted.
// The acceleration data will be averaged with the
previous result. Both signals are
// scaled to be easier to use on the audio side.
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
//performs a rudimentary low pass filtering, and sets a minimum level for the volume

module SignalTamer (reset, clock_27mhz, volume_in, volume_out, acceleration_in, acceleration_out,
 beat, sample_count, musicbeatperiod,
interpolationswitch);

input reset, clock_27mhz, beat;
input [10:0] volume_in;
input [10:0] acceleration_in;
input [15:0] sample_count;
output [1:0] acceleration_out;
output [6:0] volume_out;
input [15:0] musicbeatperiod;
input interpolationswitch;

wire [6:0] volume_out;
reg [6:0] volume_out_noninterpolated;
reg [6:0] volume_out_interpolated;
reg [6:0] temp_volume;
reg [6:0] current_volume;
reg [6:0] volume_out_old;
reg [1:0] acceleration_out;
reg [1:0] temp_acceleration;
reg [1:0] current_acceleration;
//reg [6:0] temp_volume2;
wire [8:0] sum;
reg [4:0] division;
always @ (posedge clock_27mhz) begin
 if (beat) begin

 //volume stuff

 //temp_volume2 <= temp_volume;
 //temp_volume <= current_volume;
 current_volume <= volume_in >>4;

 //averages volume_out and gives it a minimum value so audio is always audible
 if (sum > 7'b1111111)
 volume_out_noninterpolated <= 7'b1111111;
 else if (sum < 7'b0010000)
 volume_out_noninterpolated <= 7'b0000000;
 else
 volume_out_noninterpolated <= sum[6:0] ;

 volume_out_old <= volume_out_noninterpolated;

 //acceleration/articulation stuff

 if (acceleration_in > 100)
 current_acceleration <= 3;
 else if (acceleration_in > 75)
 current_acceleration <= 2;
 else if (acceleration_in > 50)
 current_acceleration <= 1;
 else
 current_acceleration <= 0;

 98

 temp_acceleration <= current_acceleration;

 //averages volume_out and gives it a minimum value so audio is always audible
 acceleration_out <= ((temp_acceleration + current_acceleration) >>1);

 end
 //interpolates volumes so it sounds better in beat transitions
 //volume_out_interpolated
 volume_out_interpolated <= (volume_out_noninterpolated*division + volume_out_old * (16-
division))>>4;
end

//interpolates volumes so it sounds better in beat transitions. divides beat into 32's and
//changes volumes ever 1/32 of a beat. End transition at middle of next beat.
always @ (sample_count or musicbeatperiod) begin
 if (sample_count <= musicbeatperiod >> 5)
 division = 0;
 else if (sample_count <= (musicbeatperiod >> 5) * 2)
 division = 1;
 else if (sample_count <= (musicbeatperiod >> 5) * 3)
 division = 2;
 else if (sample_count <= (musicbeatperiod >> 5) * 4)
 division = 3;
 else if (sample_count <= (musicbeatperiod >> 5) * 5)
 division = 4;
 else if (sample_count <= (musicbeatperiod >> 5) * 6)
 division = 5;
 else if (sample_count <= (musicbeatperiod >> 5) * 7)
 division = 6;
 else if (sample_count <= (musicbeatperiod >> 5) * 8)
 division = 7;
 else if (sample_count <= (musicbeatperiod >> 5) * 9)
 division = 8;
 else if (sample_count <= (musicbeatperiod >> 5) * 10)
 division = 9;
 else if (sample_count <= (musicbeatperiod >> 5) * 11)
 division = 10;
 else if (sample_count <= (musicbeatperiod >> 5) * 12)
 division = 11;
 else if (sample_count <= (musicbeatperiod >> 5) * 13)
 division = 12;
 else if (sample_count <=(musicbeatperiod >> 5)* 14)
 division = 13;
 else if (sample_count <= (musicbeatperiod >> 5) * 15)
 division = 14;
 else
 division = 15;
end

//scaling
assign sum = (current_volume) * 5;
//can potentially turn off interpolation
assign volume_out = interpolationswitch? volume_out_interpolated: volume_out_noninterpolated;

endmodule

