
Interactive Adventure Game

Greg Luthman

Akash Shah

Overview

• Inspiration: Super Mario Brothers

• Goal: create a side scroll adventure game that puts the player
into the game world.

– A live action, side scroll adventure game

– Instead of playing with a controller and seeing a character move on
screen, everything is controlled by the player's actions in front of a
camera.

– Use the video of the player to determine the proper commands to
send to the game

– The player will be able to duck objects, jump over objects, move
forward or backward in the game world.

Video
A/D

Green
Screen

Character
Gestures

Overlay

VGA
out

Game

Main
FSM

Characters

Physics

World
State

vcount
hcount

newline
newframe

Ctrl signals

scalex
scaley

tranx
trany

hcount
vcount pixel_on

char_pixel

hcount
vcount

vcount
hcount

hcount
vcount

hcount

newline
newframe

vcount

game_pixel

reset
calibrate

YCrCbToRGB

5

24
30

YCrCb

ZBT

RGB
read_addr
write_addr
din
dout
we

RGB out
24

24

Video Subsystem Breakdown

• Video in: Handles the video that is being input
from the camera into the labkit.

• Green Screen Module

– Handles detection of the green screen background

– Allows for an overlay that replaces the background
color with the virtual game world.

– The module will allow for handling of variations in
intensity and color

Video Subsystem Cont’d

• Character Module
– Utilizes the green screen module

– Determines the location of the character on the
captured image.

• Gesture Recognition
– Recognizes simple gestures that the player may choose

to execute.

– A group of control signals denote which actions have
been made

Video Subsystem Cont’d

• Overlay
– Overlays incoming filtered video feed with game

environment

• VGA Output
– Outputs the VGA signal to the monitor

Game Subsystem

• Frame Buffer
– 240 x 256 resolution, 9-bit pixel data (fits onto

BRAM)
– Can only write when vcount is off screen to avoid

glitchy looking graphics

• Background Generator
– Updates the frame buffer using data from the

level rom and the tile memory
– Uses “left_pixel” from FSM to determ ine w here

the screen is in the game world

Gam e Subsystem cont’d

• Tile Memory
– Holds 64 tiles

– Each tile is 16 x 16

• Level ROM
– Game world is 15 tiles high by 256 tiles long

– Given a row and a column, will return which type
of tile is in that spot

Gam e Subsystem cont’d

• Sprite RAM
– Holds data for 16 different sprites
– X-coordinate, y-coordinate, and data about the sprite

(tile type, sprite state, ect.)

• FSM
– Updates and draws the sprites into the Frame Buffer

after the Background generator
– Detects collisions between sprites, the player, and the

background
– Does all physics calculations

Timeline

• Last Week
– Camera Working
– Chroma Key
– Frame Buffer 100% finished
– Background Generator working

• This Week
– Character Recognition
– Background Generator 100% finished
– Level ROM, Tile memory working

Tim eline cont’d

• Next Week (before Thanksgiving)
– Simple Gestures

– Sprite RAM working

• First Week of December
– Gestures finished

– FSM 100% finished

– Background tiles finished (.coe 50% finished)

Tim eline cont’d

• 2nd Week of December
– Sprite tiles finished (.coe files 100 % finished)

– Testing integrated system

• Just in Case Weekend
– Debugging

– Extras (if time)

Questions?

