
6.111 Fall 2006 Lecture 13, Slide 1

6.111 Lecture 13
Today: Arithmetic: Multiplication

1.Simple multiplication
2.Twos complement mult.
3.Speed: CSA & Pipelining
4.Booth recoding
5.Behavioral transformations:

Fixed-coef. mult., Canonical Signed Digits, Retiming

Acknowledgements:

• R. Katz, “Contemporary Logic Design”, Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)
• J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A Design Perspective” Prentice Hall, 2003.
• Kevin Atkinson, Alice Wang, Rex Min

6.111 Fall 2006 Lecture 13, Slide 2

Unsigned Multiplication

A0A1A2A3
B0B1B2B3

A0B0A1B0A2B0A3B0

A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

A0B3A1B3A2B3A3B3

x

+

ABi called a “partial product”

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products
(just an AND gate since BI is either 0 or 1)

Hard part: adding M N-bit partial products

1. Simple Multiplication

6.111 Fall 2006 Lecture 13, Slide 3

Sequential Multiplier

Assume the multiplicand (A) has N bits and the
multiplier (B) has M bits. If we only want to invest
in a single N-bit adder, we can build a sequential
circuit that processes a single partial product at a
time and then cycle the circuit M times:

AP B

+

SN

NC

N
xN

N

N+1

SN-1…S0
Init: P←0, load A and B

Repeat M times {
P ← P + (BLSB==1 ? A : 0)
shift P/B right one bit

}

Done: (N+M)-bit result in P/B

M bits

LSB

1

6.111 Fall 2006 Lecture 13, Slide 4

Combinational Multiplier

Partial product computations
are simple (single AND gates)

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Propagation delay ~2N

6.111 Fall 2006 Lecture 13, Slide 5

2’s Complement Multiplication

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Step 1: two’s complement operands so
high order bit is –2N-1. Must sign extend
partial products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction
into add of (complement + 1).

Step 3: add the ones to the partial
products and propagate the carries. All
the sign extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1
- 1 1 1 1

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

(Baugh-Wooley)

6.111 Fall 2006 Lecture 13, Slide 6

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3
z4

z5z6z7

y3

y2

y1

y0

6.111 Fall 2006 Lecture 13, Slide 7

Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s
complement numbers, add the keyword signed to your
wire or reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different
circuitry if your multiplication operands are signed vs. unsigned.
Same is true of the >>> (arithmetic right shift) operator. To
get signed operations all operands must be signed.

To make a signed constant: 10’sh37C

6.111 Fall 2006 Lecture 13, Slide 8

Multipliers in the Virtex II
The Virtex FGPA has hardware multiplier circuits:

Note that the operands are signed 18-bit numbers.

The ISE tools will often use these hardware multipliers when
you use the “*” operator in Verilog. Or can you instantiate
them directly yourself:

wire signed [17:0] a,b;
wire signed [35:0] result;

MULT18X18 mymult(.A(a),.B(b),.P(result));

6.111 Fall 2006 Lecture 13, Slide 9

3. Faster Multipliers: Carry-Save Adder

Last stage is still a carry-propagate adder (CPA)

Good for pipelining: delay
through each partial product
(except the last) is just
tPD,AND + tPD,FA.
No carry propagation time!

CSA

6.111 Fall 2006 Lecture 13, Slide 10

Increasing Throughput: Pipelining

= register

Idea: split processing across several
clock cycles by dividing circuit into
pipeline stages separated by
registers that hold values passing
from one stage to the next.

Throughput = 1 result per clock cycle (period is now 4*tPD,FA instead of 8*tPD,FA)

6.111 Fall 2006 Lecture 13, Slide 11

Wallace Tree Multiplier

CSACSACSA

CSA

...

CSA

CSA

CSA

CPA

O(log1.5M)

Higher fan-in adders can be
used to further reduce delays
for large M.

Wallace Tree:
Combine groups of
three bits at a
time

This is called a 3:2
counter by multiplier
hackers: counts
number of 1’s on the
3 inputs, outputs 2-
bit result.

4:2 compressors and 5:3
counters are popular
building blocks.

6.111 Fall 2006 Lecture 13, Slide 12

4. Booth Recoding: Higher-radix mult.

AN-1 AN-2 … A4 A3 A2 A1 A0
BM-1 BM-2 … B3 B2 B1 B0x

...

2M/2

BK+1,K*A = 0*A → 0
= 1*A → A
= 2*A → 4A – 2A
= 3*A → 4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating
each partial product we would halve the number of columns and
halve the latency of the multiplier!

Booth’s insight: rewrite
2*A and 3*A cases,
leave 4A for next partial
product to do!

6.111 Fall 2006 Lecture 13, Slide 13

Booth recoding

BK+1

0
0
0
0
1
1
1
1

BK

0
0
1
1
0
0
1
1

BK-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage
needed to add 4*A. Since this stage is
shifted by 2 bits with respect to the
previous stage, adding 4*A in the previous
stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair

6.111 Fall 2006 Lecture 13, Slide 14

There are a large number of implementations of the
same functionality
These implementations present a different point in the
area-time-power design space
Behavioral transformations allow exploring the design
space a high-level

Optimization metrics:

area

time

power

1. Area of the design
2. Throughput or sample time TS
3. Latency: clock cycles between

the input and associated
output change

4. Power consumption
5. Energy of executing a task
6. …

5.Behavioral Transformations

6.111 Fall 2006 Lecture 13, Slide 15

Fixed-Coefficient Multiplication

Z0Z1Z2Z3Z4Z5Z6Z7

X0 · Y3X1 · Y3X2 · Y3X3 · Y3

X0 · Y2X1 · Y2X2 · Y2X3 · Y2

X0 · Y1 X1 · Y1X2 · Y1X3 · Y1

X0 · Y0 X1 · Y0X2 · Y0X3 · Y0

Y0Y1Y2Y3

X0X1X2X3

Z = X · Y

Conventional Multiplication

X Z
<< 3

Y = (1001)2 = 23 + 20

shifts using wiring

Z0Z1Z2Z3Z4Z5Z6Z7

X0X1X2X3

X0X1X2X3

1001
X0X1X2X3

Z0Z1Z2Z3Z4Z5Z6Z7

X0X1X2X3

X0X1X2X3

1001
X0X1X2X3

Z = X · (1001)2

Constant multiplication (become hardwired shifts and adds)

6.111 Fall 2006 Lecture 13, Slide 16

Transform: Canonical Signed Digits (CSD)

10 11…1

Canonical signed digit representation is used to increase the number of
zeros. It uses digits {-1, 0, 1} instead of only {0, 1}.

Iterative encoding: replace
string of consecutive 1’s

2N-2 + … + 21 + 20

01 -10…0

2N-1 - 20

Worst case CSD has 50% non zero bits

X << 7 Z

<< 4
Shift translates to re-wiring

1 110 1101 1 110 1101 0 -110 0011 0 -110 0011

0 -101 00-10 0 -101 00-10

(replace 1 with 2-1)

6.111 Fall 2006 Lecture 13, Slide 17

Algebraic Transformations

A B B A

⇔

Commutativity

A + B = B + A

⇔

Distributivity

C

A B
A C B

(A + B) C = AB + BC

⇔

Associativity

A

CB

C

A B

(A + B) + C = A + (B+C)
A BA B

⇔

Common sub-expressions
X YX Y X

6.111 Fall 2006 Lecture 13, Slide 18

Transforms for Efficient Resource Utilization

CA B FD E

2

1

IG H Time multiplexing: mapped
to 3 multipliers and 3

adders

Reduce number of
operators to 2 multipliers

and 2 adders

2

1

CA B

distributivity
FD E IG H

6.111 Fall 2006 Lecture 13, Slide 19

Retiming is the action of moving delay around in the systems
Delays have to be moved from ALL inputs to ALL outputs or vice versa

D

D

D

D

D

Retiming: A very useful transform

Cutset retiming: A cutset intersects the edges, such that this would result in
two disjoint partitions of these edges being cut. To retime, delays are moved
from the ingoing to the outgoing edges or vice versa.

Benefits of retiming:
• Modify critical path delay
• Reduce total number of registers

D

D

D

6.111 Fall 2006 Lecture 13, Slide 20

Pipelining, Just Another Transformation
(Pipelining = Adding Delays + Retiming)

D

D

D

D

D

D

D

D

D

How to pipeline:
1. Add extra registers at all

inputs (or, equivalently, all
outputs)

2. Retime

retime

add input
registers

Contrary to retiming,
pipelining adds extra
registers to the system

6.111 Fall 2006 Lecture 13, Slide 21

The Power of Transforms: Lookahead

D

x(n) y(n)

A

2D

x(n) y(n)

D
AAA

D

x(n) y(n)

A2

A DD

loop
unrolling

distributivity

associativity

retiming
2D

x(n) y(n)

D
A2A

precomputed

2D

x(n) y(n)

D A
A

y(n) = x(n) + A[x(n-1) + A y(n-2)]

y(n) = x(n) + A y(n-1)

Try pipelining
this structure

6.111 Fall 2006 Lecture 13, Slide 22

Summary

• Simple multiplication:
– O(N) delay
– Twos complement easily handled (Baugh-Wooley)

• Faster multipliers:
– Wallace Tree O(log N)

• Booth recoding:
– Add using 2 bits at a time

• Behavioral Transformations:
– Faster circuits using pipelining

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3
z4z5z6z7

y3

y2

y1

y0

D

x(n) y(n)

A2

A DD

and algebraic properties

