6.111 Lecture 13

Today: Arithmetic: Multiplication

1.Simple multiplication
2.Twos complement mult.

3.Speed: CSA & Pipelining ':i'

4 Booth recoding | AU

5.Behavioral transformations:
Fixed-coef. mult., Canonical Signed Digits, Retiming

Acknowledgements:

* R. Katz, “Contemporary Logic Design”, Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)
 J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A Design Perspective” Prentice Hall, 2003.

 Kevin Atkinson, Alice Wang, Rex Min

6.111 Fall 2006 Lecture 13, Slide 1

1. Simple Multiplication
Unsigned Multiplication

A; A, AL A

AB. called a “partial product” —— A3By AzBy A1By AoBy
AB, AB; AB, AoB,
AsB, AB, AiB, AcB,
+ A3B; A,B; A;B; AgB;

N _
—

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products
(just an AND gate since B; is either O or 1)
Hard part: adding M N-bit partial products

6.111 Fall 2006 Lecture 13, Slide 2

Sequential Multiplier

Assume the multiplicand (A) has N bits and the
multiplier (B) has M bits. If we only want to invest
in a single N-bit adder, we can build a sequential
circuit that processes a single partial product at a
time and then cycle the circuit M times:

Init: PO, load A and B

Sn-1--S0 LSB

P B N A Repeat M times {
Mb”sﬁl N} P« P+ (Bg==12?A : 0)

\N DT shift P/B right one bit

}

6.111 Fall 2006

Done: (N+M)-bit result in P/B

Lecture 13, Slide 3

Combinational Multiplier

X3 Xz X; Xp Multiplicand
» Y3 Y2 ¥1 Yo Multiplier
X3¥o X2Y0 X1Y0 *0Y0
X3¥Y1 X2¥1 X1¥Y1 Xo)1
2a¥3 Xayy A1¥3 AgX2
+ X3¥3 Xo¥3 X1¥3 Xo¥3

Partial Product

Z Zz Z Z £3 £y Z Z Result)%r EZ_ ¥
f 6 5 4 1 0 v v
) ?
- . X3 X Y1
» Partial product computations @ b Z,

are simple (single AND gates)

» Propagation delay ~2N

6.111 Fall 2006

Lecture 13, Slide 4

2's Complement Multiplication

(Baugh-Wooley)

Step 1: two’s complement operands so Step 3: add the ones to the partial
high order bit is —2N-1. Must sign extend products and propagate the carries. All
partial products and subtract the last one the sign extension bits go away!

X3 X2 X1 X0 X3Y0 X2YO X1YO XOYO

* Y3 Y2 YL YO

X3Y0 X3YO X3Y0 X3YO X3YO X2YO X1YO XOYO X3Y3 X2Y3 XIV3 XOV3

+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1l XOY1 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 101 1 1
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

X3Y1 X2Y1 X1Y1l XOY1l
X2Y2 X1Y2 X0Y2

+ + + +

Step 2: don’t want all those extra additions, so Step 4: finish computing the constants...
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction

into add of (complement + 1). BY0 X2Y0 X1YO XOYO

X3Y0 X3Y0 X3YO X3YO X3YO X2Y0 X1YO XOYO + X3Y1 X2Y1 X1Y1l XOY1l
+ 1 + X2Y2 X1Y2 X0Y2
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1l X0vY1 + X3Y3 X2Y3 X1Y3 X0Y3
+ 1 + 1 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
T ASYS XSS XAYS XIYS XOY? } B=~B+1 Result: multiplying 2’s complement operands
N 1 takes just about same amount of hardware as
_ 1 1 1 1 multiplying unsigned operands!

6.111 Fall 2006 Lecture 13, Slide 5

6.111 Fall 2006

2's Complement Multiplication

A

Y3

Y,

Lecture 13, Slide 6

Multiplication in Verilog

You can use the "*" operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

If you want Verilog to treat your operands as signed two's
complement numbers, add the keyword signed to your
wire or reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different

circuitry if your multiplication operands are signed vs. unsigned.
Same is true of the >>> (arithmetic right shift) operator. 7o

get signed operations all operands must be signed.

To make a signed constant: 10'sh37C

6.111 Fall 2006 Lecture 13, Slide 7

Multipliers in the Virtex II

The Virtex FGPA has hardware multiplier circuits:

L P[35:0]

A(T:0] ——t
A0l B[17:0) ——
[P[35:0] c —
B[17:0] — CE —
MULT18X18 " /7 MULT18X18S
Combinatorial and Registered Multiplier Primitives

Note that the operands are signed 18-bit numbers.

The ISE tools will often use these hardware multipliers when

you use the

WVt

them directly yourself:

wire signed [17:0] a,b;

wire signed [35:0] result;

MULT18X18 mymult(.A(a), -B(b), .P(result));

6.111 Fall 2006

operator in Verilog. Or can you instantiate

Lecture 13, Slide 8

3. Faster Multipliers: Carry-Save Adder

Good for pipelining: delay
through each partial product

_-'|||:

TFAH TH TH T

(except the last) is just i o = O o =l =
tPD,AND + tPD,FA. i --| i
N tion timel H ‘ '
(o] CGf'f'y pf‘OpGgG ion time _l_ H Q_ﬁ ’JCE
et e fat jfat]
Ll Ll s 1
LT TET BT S
{jﬂ_ff—fj_fm_
S|P RIS
| FA _FIA — _FIA — FA =
Suglugliy
= FA FA FA FA S

Last stage is still a carry-propagate adder (CPA)

6.111 Fall 2006

Lecture 13, Slide 9

Increasing Throughput: Pipelining

Idea: split processing across several H
AL

x ; v
clock cycles by dividing circuit into - R ; R
pipeline stages separated by 1 1 6 Il 6 1 @

registers that hold values passing i = o =l
from one stage to the next. ""I i

I FA ~1— T FA
— 1
Al

ery,

Te fojJpis

A - FA -
|
Al

{jﬂ T LT T

-
E T (-I:—I_.
z | T G:_
. T .
S Jees

+—+—+

i] I

Throughput = 1 result per clock cycle (period is now 4*tpp ¢, instead of 8™*tpp £4)

6.111 Fall 2006 Lecture 13, Slide 10

Wallace Tree Multiplier

This is called a 3.2 l l l l l l l l l

counter by multiplier CSA . CSA CSA
hackers: counts .

number of 1s on the -
3 inputs, outputs 2-

bit result CSA CSA

Wallace Tree: | | | | O(log; sM)

Combine groups of A
three bits at a | |
time CSA

Higher fan-in adders can be
used to further reduce delays v 3
for large M. CPA

4:2 compressors and 5:3 l

counters are popular
building blocks.

6.111 Fall 2006 Lecture 13, Slide 11

4. Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating
each partial product we would halve the number of columns and
halve the latency of the multiplier!

6.111 Fall 2006

AN-I AN-Z A4 A3 AZ Al AO
X Bu.: Bmz2- Bs By By By
A -]
Y ———
M/2 2
]
vV EE \
B * * /
Booth's insight: rewrite o1, A - (1)*2 ::g
2*A and 3*A cases, — = 2*A 5 4A - 2A
leave 4A for next partial =3*A 5> 4A - A

product to dol

Lecture 13, Slide 12

Booth recoding

current bit pair /fr'om previous bit pair
By.1 By Byg_i| action
O O O add O
O 0 1 add A
O 1 O | add A
O 1 1 |add 2*A
1 O O |sub 2*A
1 0 1 sub A — _2%A+A
1 1 O sub A
1 1 % add 0 < -A+A

A "1” in this bit means the previous stage
needed to add 4*A. Since this stage is
shifted by 2 bits with respect to the
previous stage, adding 4*A in the previous
stage is like adding A in this stage!

6.111 Fall 2006 Lecture 13, Slide 13

5.Behavioral Transformations

* There are a large number of implementations of the
same functionality
= These implementations present a different point in the
area-time-power design space
= Behavioral transformations allow exploring the design
space a high-level

Optimization metrics:

1.
2.
3.

4.
5.

Area of the design
Throughput or sample time T
Latency: clock cycles between
the input and associated
output change

Power consumption

Energy of executing a task

6. ..

6.111 Fall 2006

power
/t """ >
ﬁ/-,: - _EC. _‘/ E
l P-rm----- '\, 7 (
IS S
1 L —e=—e s area
iﬁ'----l--y---__.!/

Lecture 13, Slide 14

Fixed-Coefficient Multiplication

Conventional Multiplication X, X, XX
Z=X"Y Yoo Yo Vi Y
X3 Yo X Yo X+ Yy Xo0 Y,
Xg Yy Xp Y XYy %o Y,
X3 Y, Xp Y, XY, XY,
Xy Yy Xp Yy X Yy XY,
z, Z, Zg %, Z, Z, Z, Z

Constant multiplication (become hardwired shifts and adds)
X3 X2 Xl XO

Z= X - (1001), 1 0 0 1
X3 X2 Xl ><0

X X, X, X
Z, Z, Z. Z, Z, Z, Z, Z,

Y = (1001), = 28 + 20 X L '?’* > Z
<< 3

+— shifts using wiring

6.111 Fall 2006 Lecture 13, Slide 15

Transform: Canonical Signed Digits (CSD)

Canonical signed digit representation is used to increase the number of
zeros. It uses digits {-1, O, 1} instead of only {O, 1}.

Iterative encoding: replace :
string of consecutive 1's 611 .1 1|=|1 00 ..0 -1

(replace 1 with 2-1) 2N-2+ . +21+20 9N-1 _ 920

Worst case CSD has 50% non zero bits

o 1 1 0 1 1 1 1|=-» |0 1 1 1 0 O 0 -1

1 0 0 -1 0 0 0 -1

X—gp <<7—>@—Dé—>z

<< 4
\

Shift translates to re-wiring

6.111 Fall 2006 Lecture 13, Slide 16

Algebraic Transformations

Commutativity Distributivity
A - 3 . A B A C B
C
“Gir)“ o L»G?A
=
A+B=B+A (A+B)C=AB + BC
Associativity Common sub-expressions

C
A B B X Y X X Y
A I—»(i)«'—»(i)«' L:(;):l_l
= -
A B M 4

(A+B)+C= A+ (B+C)

6.111 Fall 2006) Lecture 13, Slide 17

Transforms for Efficient Resource Utilization

6.111 Fall 2006

Time multiplexing: mapped
to 3 multipliers and 3
adders

Reduce number of
operators to 2 multipliers
and 2 adders

WY

Lecture 13, Slide 18

Retiming: A very useful transform

Retiming is the action of moving delay around in the systems
= Delays have to be moved from ALL inputs to ALL outputs or vice versa

))
—» D ¥ —>
—> —»| D >
—»| D [P —>
—> —» D >
—» D > —>
—— —

Cutset retiming: A cutset intersects the edges, such that this would result in
two disjoint partitions of these edges being cut. To retime, delays are moved
from the ingoing to the outgoing edges or vice versa.

. mm Ietiming Synchronous Cireuitry

\ Charles E. Lelsersen and Jasies B. Saxe
Augy LLN

)

—»

—>

—b

1377

Benefits of retiming: N /
* Modify critical path delay (111 R

* Reduce total number of registers LU AN\ e)
Lecture 13, Slide 19

6.111 Fall 2006

Pipelining, Just Another Transformation
(Pipelining = Adding Delays + Retiming)

b —o—

L~
) Contrary to retiming,

add input
sl S registers

pipelining adds extra
registers to the system

?5 H D —D - \\\
) |
!3 1R 1 ’é 1 »?_>
v D L[> ! How to pipeline:

1. Add extra registers at a//
inputs (or, equivalently, al//
outputs)

. Retime

retime

I
I
I
I
|
I
|
|
\
> 4
N

"
13
.

6.111 Fall 2006 Lecture 13, Slide 20

The Power of Transforms: Lookahead

y(n) =x(n) + Ay(n-1) x(n) y(n)
X(n) y(n) foop 7 & T
D

+ T unrolling A °D
A D .__F A
_< I‘_I

y(n) =x(n) + A[x(n-1) + A y(n-2)]

Try pipelining distributivi
this structure Istributivity X() y(n)
T
2D
associativity (
x(n y(n)
W (n) y(n)
retiming
-~ D 2D
> t<<-| | A A2
A2
precomputed

6.111 Fall 2006 Lecture 13, Slide 21

Summar'y) Xag %é 5w
16 X, X,]zo
TR
..
- Simple multiplication: . i B8 R

- O(N) delay

v v

- Twos complement easily handled (Baugh-Wooley)

Faster multipliers:

— Wallace Tree O(log N) *eee®
o
* Booth recoding: ceccvccoe
— Add using 2 bits at a time X(n) y(n)
- Behavioral Transformations: .[o][o] [
— Faster circuits using pipelining D> !

and algebraic properties

6.111 Fall 2006

A2

Lecture 13, Slide 22

