6.111 Lecture 12

Today: Arithmetic: Addition \& Subtraction

1. Binary representation
2.Addition and subtraction
3.Speed: Ripple-Carry
4.Carry-bypass adder
5.Carry-lookahead adder

[^0]
1. Binary Representation of Numbers

How to represent negative numbers?

- Three common schemes:
- sign-magnitude, ones complement, twos complement
- Sign-magnitude: MSB = 0 for positive, 1 for negative
- Range: -($\left.2^{\mathrm{N}-1}-1\right)$ to $+\left(2^{\mathrm{N}-1}-1\right)$
- Two representations for zero: 0000... \& 1000...
- Simple multiplication but complicated addition/subtraction
- Ones complement: if \mathbf{N} is positive then its negative is $\overline{\mathbf{N}}$
- Example: $0111=7,1000=-7$
- Range: -($\left.2^{\mathrm{N}-1}-1\right)$ to $+\left(2^{\mathrm{N}-1}-1\right)$
- Two representations for zero: 0000... \& 1111...
- Subtraction is addition followed by ones complement

Negative Numbers: Twos Complement

Twos complement = bitwise complement + 1

$0111 \rightarrow 1000+1=1001=-7$
$1001 \rightarrow 0110+1=0111=+7$

- Asymmetric range
- Only one representation for zero
- Simple addition and subtraction
- Most common representation

"sign bit"
6.111 Fall 2006

Range: - $2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$ "decimal" point

Twos Complement: Examples \& Properties

- 4-bit examples:

[Katz'93, chapter 5]
-8-bit twos complement example:

$$
11010110=-2^{7}+2^{6}+2^{4}+2^{2}+2^{1}=-128+64+16+4+2=-42
$$

- With twos complement representation for signed integers, the same binary addition procedure works for adding both signed and unsigned numbers.
- By moving the implicit location of "decimal" point, we can represent fractions too:

$$
1101.0110=-2^{3}+2^{2}+2^{0}+2^{-2}+2^{-3}=-8+4+1+0.25+0.125=-2.25
$$

2. Binary Addition \& Subtraction

Addition:

Here's an example of binary addition as one might do it by "hand":

So we can quickly build a circuit two add two 4-bit numbers...

Subtraction: $A-B=A+(-B)$

Using 2's complement representation: $-B=\sim B+1$
~ = bit-wise complement

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by control input:

Condition Codes

Besides the sum, one often wants four other bits of information from an arithmetic unit:
Z (zero): result is $=0$
big NOR gate
N (negative): result is < 0
C (carry): indicates an add in the most significant position produced a carry, e.g., $1111+0001$ from last $F A$
V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111

$$
\begin{aligned}
& V=A_{N-1} B_{N-1} \overline{S_{N-1}}+\overline{A_{N-1}}{\overline{B_{N-1}}}_{N-1} S_{N-1} \\
& V=\operatorname{COUT}_{N-1} \oplus \operatorname{CIN}_{N-1}
\end{aligned}
$$

To compare A and B, perform $A-B$ and use condition codes:

Signed comparison:
LT $\quad \mathrm{N} \oplus \mathrm{V}$

LE $\quad \mathbf{Z}+(\mathbf{N} \oplus \mathbf{V})$
EQ Z
NE ~Z
GE $\quad \sim(N \oplus V)$
GT $\quad \sim(Z+(N \oplus V))$
Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU $\sim(C+Z)$

3. Speed: $\dagger_{P D}$ of Ripple-carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when adding 11 ... 111 to 00... 001 .
$t_{P D}=(N-1)^{\star}\left(t_{P D, O R}+t_{P D, A N D}\right)+t_{P D, X O R} \approx \Theta(N)$

$$
C I_{N-1} \text { to } S_{N-1}
$$

$\Theta(N)$ is read "order N": means that the latency of our adder grows at worst in proportion to the number of bits in the

$$
\mathbf{t}_{\mathrm{adder}}=(\mathrm{N}-1) \mathrm{t}_{\mathrm{carry}}+\mathbf{t}_{\mathrm{sum}}
$$ operands.

Faster carry logic

Let's see if we can improve the speed by rewriting the equations for $C_{\text {OUT }}$:

$$
\begin{gathered}
\mathbf{C}_{\mathbf{i n}} \rightarrow \underset{\text { Full }}{\text { Adder }} ⿺ 辶 \mathbf{C}_{\mathbf{0}} \\
\downarrow \\
\mathbf{S}
\end{gathered}
$$

$$
\begin{aligned}
& C_{\text {OUT }}=A B+A C_{\mathrm{IN}}+B C_{\mathrm{IN}} \\
&=A B+(A+B) C_{\mathrm{IN}} \\
&=G+P C_{\mathrm{IN}} \\
& \text { generate propagate }
\end{aligned}
$$

$$
\text { where } G=A B \text { and }
$$

Generate (G) = AB
Propagate $(P)=A \oplus B$

$$
\begin{aligned}
C_{o}(G, P) & =G+P C_{i} \\
S(G, P) & =P \oplus C_{i}
\end{aligned}
$$

Virtex II Adder Implementation

Virtex II Carry Chain

$1 \mathrm{CLB}=4$ Slices $=2,4$-bit adders 64-bit Adder: 16 CLBs

CLBs must be in same column

4. Carry Bypass Adder

Key Idea: if $\left(P_{0} P_{1} P_{2} P_{3}\right)$ then $C_{0,3}=C_{i, 0}$

16-bit Carry Bypass Adder

What is the worst case propagation delay for the 16 -bit adder?

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
P, G, C_{i} to C_{0} or Sum for a C/S: 1 delay unit
2:1 mux delay: 1 delay unit

Critical Path Analysis

For the second stage, is the critical path:
$B P 2=0$ or $B P 2=1 ?$
Message: Timing Analysis is Very Tricky Must Carefully Consider Data Dependencies For False Paths

Carry Bypass vs Ripple Carry

Ripple Carry: $\quad \mathbf{t}_{\text {adder }}=(\mathbf{N}-1) \mathrm{t}_{\text {carry }}+\mathrm{t}_{\text {sum }}$
Carry Bypass: $t_{\text {adder }}=\mathbf{2 (M - 1)} \mathrm{t}_{\text {carry }}+\mathrm{t}_{\text {sum }}+(\mathrm{N} / \mathrm{M}-1) \mathrm{t}_{\text {bypass }}$

M = bypass
word size
$\mathrm{N}=$ number of bits being added

5. Carry Lookahead Adder (CLA)

- Recall that $\quad C_{\text {OUT }}=G+P C_{I N} \quad$ where $G=A B$ and $P=A \oplus B$
- For adding two N -bit numbers:

$$
\begin{aligned}
C_{N}= & G_{N-1}+P_{N-1} C_{N-1} \\
& =\underbrace{}_{\begin{array}{c}
G_{N-1}+P_{N-1} G_{N-2}+P_{N-1} P_{N-2} C_{N-2} \\
\\
\end{array} \underbrace{G_{N-1}+P_{N-1} G_{N-2}+P_{N-1} P_{N-2} G_{N-3}+\ldots+P_{N-1} \ldots P_{0} C_{I N}}} \begin{aligned}
& 1 \text { for } P / G \text { generation, delays* } 1 \text { for ANDs, } 1 \text { for final OR } \\
& \text { assuming gates with } N \text { inputs }
\end{aligned}
\end{aligned}
$$

- Idea: pre-compute all carry bits combinatorially

Carry Lookahead Circuits

The 74182 Carry Lookahead Unit

74182 carry lookahead unit

- high speed carry lookahead generator
- used with 74181 to extend carry lookahead beyond 4 bits
- correctly handles the carry polarity of the 181

$$
\begin{aligned}
\mathrm{C}_{\mathrm{n}+\mathrm{x}}= & \overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{P} 0}+\overline{\mathrm{G} 0} \cdot \overline{\mathrm{C}_{\mathrm{n}}}} \\
= & \overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{P0}}} \cdot \overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{C}_{\mathrm{n}}}} \\
= & (\mathrm{G} 0+\mathrm{P} 0) \cdot\left(\mathrm{G} 0+\mathrm{C}_{\mathrm{n}}\right)=\mathrm{G} 0+\mathrm{P} 0 \mathrm{C}_{\mathrm{n}} \\
>\mathrm{C}_{4}= & \mathrm{G}_{3: 0}+\mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{n}} \\
\mathrm{C}_{\mathrm{n}+\mathrm{y}}= & \mathrm{C}_{8}=\mathrm{G}_{7: 4}+\mathrm{P}_{7: 4} \mathrm{G}_{3: 0}+\mathrm{P}_{7: 4} \mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{i}, 0}=\mathrm{G}_{7: 0}+\mathrm{P}_{7: 0} \mathrm{C}_{\mathrm{n}} \\
\mathrm{C}_{\mathrm{n}+\mathrm{z}}= & \mathrm{C}_{12}=\mathrm{G}_{11: 8}+\mathrm{P}_{11: 8} \mathrm{G}_{7: 4}+\mathrm{P}_{11: 8} \mathrm{P}_{7: 4} \mathrm{G}_{3: 0}+\mathrm{P}_{11: 8} \mathrm{P}_{7: 4} \mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{n}} \\
& =\mathrm{G}_{11: 0}+\mathrm{P}_{11: 0} \mathrm{C}_{\mathrm{n}}
\end{aligned}
$$

Block Generate and Propagate

G and P can be computed for groups of bits (instead of just for individual bits). This allows us to choose the maximum fan-in we want for our logic gates and then build a hierarchical carry chain using these equations:

$$
\begin{aligned}
& C_{\mathrm{J}+1}=G_{\mathrm{IJ}}+P_{\mathrm{IJ}} C_{\mathrm{I}} \\
& G_{\mathrm{IK}}=G_{\mathrm{J}+1, \mathrm{~K}}+P_{\mathrm{J}+1, \mathrm{~K}} G_{\mathrm{IJ}} \\
& P_{\mathrm{IK}}=P_{\mathrm{IJ}} P_{\mathrm{J}+1, \mathrm{~K}}
\end{aligned}
$$

where $I<J$ and $J+1 \leqslant K$

Hierarchical building block

P/G generation

8-bit CLA (P/G generation)

8-bit CLA (carry generation)

8-bit CLA (complete)

Summary

- Negative numbers:
- Twos Complement -B = $\bar{B}+1$

- Addition \& Subtraction use same adder
- Ripple Carry Adder:
$-\mathbf{t}_{\text {adder }}=(\mathbf{N}-1) \mathbf{t}_{\text {carry }}+\mathbf{t}_{\text {sum }}$

- Carry Bypass Adder:
$-\mathrm{t}_{\text {adder }} \approx(\mathrm{M}-1) \mathrm{t}_{\text {carry }}+\mathrm{t}_{\text {sum }}+(\mathrm{N} / \mathrm{M}-1) \mathrm{t}_{\text {bypass }}$
- Carry Lookahead Adder:
$-\mathrm{t}_{\text {adder }} \approx \mathbf{2} \log _{2}(\mathbf{N}) \mathrm{t}_{\mathrm{pg}}$

[^0]: Acknowledgements:
 -R. Katz, "Contemporary Logic Design", Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)

 - J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Prentice Hall, 2003.
 - Kevin Atkinson, Alice Wang, Rex Min

