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Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that 
produces exactly the same outputs.

• Can we simplify the FSM by removing equivalent states?
No!  The outputs may be the same, but the 
next-state transitions are not.

• This situation closely resembles a procedure call or function call in 
software...how can we apply this concept to FSMs?

Acknowledgements: Rex Min



6.111 Fall 2006 Lecture 8, Slide 2

The Major/Minor FSM Abstraction

• Subtasks are encapsulated in minor FSMs with common 
reset and clock

• Simple communication abstraction:
– START:  tells the minor FSM to begin operation (the call)
– BUSY:  tells the major FSM whether the minor is done 

(the return)
• The major/minor abstraction is great for...

– Modular designs (always a good thing)
– Tasks that occur often but in different contexts
– Tasks that require a variable/unknown period of time
– Event-driven systems

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK
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Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until 
the minor FSM 

is ready

2. Trigger the 
minor FSM 

(and make sure 
it’s started)

3. Wait until 
the minor FSM 

is done

START

BUSY

Major FSM 
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”
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Inside the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

1. Wait for a 
trigger from the 

major FSM

2. Do some useful work

T1
BUSY

START

START

START

BUSY

Major FSM 
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM 

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the 
major FSM that 

work is done

can we 
speed 

this up?
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Optimizing the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

T1
BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
BUSY

T1
BUSY

START

START
T4

BUSY

Bad idea #2:
BUSY never asserts!

T1
BUSY

START

START T2
BUSY
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A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB
STARTA
STARTB

WTAB

TICK BUSYABUSYB

TICK BUSYA+BUSYB BUSYA+BUSYB

STC
STARTC

BUSYABUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Assume that BUSYA and 
BUSYB both rise before either 

minor FSM completes. 
Otherwise, we loop forever!

Operating Scenario:
• Major FSM is triggered 

by TICK
• Minors A and B are 

started simultaneously
• Minor C is started once 

both A and B complete
• TICKs arriving before 

the completion of C are 
ignored
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Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB

state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK
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Clocking and Synchronous Communication
Module M1 Module M2

CLK

Ideal world:

CLKM1

CLKM2

M1 and M2 clock edges aligned in time
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Clock Skew
Module M1 Module M2

CLK

Real world has clock skew:

CLKM1

CLKM2

M2 clock delayed with respect to M1 clock

delay

Oops! Skew has caused 
a hold time problem!

1. Wire delay
2. Different clocks!
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Low-skew Clocking in FPGAs

Figures from Xilinx App Notes
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Goal: use as few clock domains as possible

Suppose we wanted clocks at f/2, f/4, f/8, etc.:

reg clk2,clk4,clk8,clk16;
always @ (posedge clk) clk2 <= ~clk2;
always @ (posedge clk2) clk4 <= ~clk4;
always @ (posedge clk4) clk8 <= ~clk16;
always @ (posedge clk8) clk16 <= ~clk16;

CLK

CLK2

CLK4

CLK8

CLK16

Very hard to have synchronous communication 
between clk and clk16 domains

No! don’t do
it this way
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Solution: 1 clock, many enables
Use one (high speed) clock, but create enable signals to select 
a subset of the edges to use for a particular piece of 
sequential logic
reg [3:0] count;
always @ (posedge clk) count <= count + 1;   // counts 0..15
wire enb2 = (clock[0] == 1’b1);
wire enb4 = (clock[1:0] == 2’b11);
wire enb8 = (clock[2:0] == 3’b111);
wire enb16 = (clock[3:0] == 4’b1111);

CLK

ENB2

ENB4

ENB8

ENB16

count 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1414

= clock edge selected by enable signal

always @ (posedge clk)
if (enb2) begin
// get here every 2nd cycle

end

always @ (posedge clk)
if (enb2) begin
// get here every 2nd cycle

end
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Using External Clocks
Sometimes you need to communicate synchronously with 
circuitry outside of the FPGA (memories, I/O, …)

Problem: different delays along
internal paths for DATA and CLK
change timing relationship

Solutions:

1) Bound internal delay from pin
to internal reg; add that delay
to setup time (tSU) specification

2) Make internal clock edge aligned
with external clock edge (but what
about delay of pad and clock driver)

IO
B

IO
B

CLK

DATA

tSU th

BUFG

REG
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1) Bound Internal Data Delay

Solution: use registers built into the IOB pin interface:

Low-delay
inputs

Low-delay
tristate
outputs
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2) Align external and internal clocks

Uses phase locked loop and digital 
delay lines to align CLKFB to CLKIN.

CLK90, CLK180, CLK270 are shifted 
by ¼ cycle from CLK0.
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Example: Labkit ZBT interface

In the circuitry above, the lower DCM is used to ensure that the fpga_clock signal, 
which clocks all of the FPGA flip-flops, is in phase with the refence clock 
(clock_27mhz, in this example). The upper DCM is used to generate the de-skewed 
clock for the external ZBT memories. The feedback loop for this DCM includes a 2.0 
inch long trace on the labkit PCB. Since all of the PCB traces from the FPGA to the 
ZBT memories are also 2.0 inches long, the propagation delay from the output of the 
upper DCM back to its CLKFB input should be almost exactly the same as the 
propagation delay from the DCM output to the ZBT memories. 
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Generating Other Clock Frequencies

The labkit has a 27MHz crystal (37ns period).  But what if we 
need a different frequency, e.g., 65MHz to generate 
1024x768 VGA video?

The DCM can also synthesize 
certain multiples of the CLKIN 
frequency (eg, multiples of 27MHz):

CLKINCLKFX f
D
Mf ⎟

⎠
⎞

⎜
⎝
⎛=

Where M = 2..32 and D = 2..32 
with a output frequency of range of 
24MHz to 210MHz.
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Verilog to generate 65MHz clock

// use FPGA's digital clock manager to produce a
// 65MHz clock (actually 64.8MHz)
wire clock_65mhz_unbuf,clock_65mhz;
DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclk1 is 10
// synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
// synthesis attribute CLK_FEEDBACK of vclk1 is NONE
// synthesis attribute CLKIN_PERIOD of vclk1 is 37
BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

( ) MHzMHzfCLKFX 8.6427
10
24

=⎟
⎠
⎞

⎜
⎝
⎛=
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RESETing to a known state
Just after configuration, all the registers/memories are in a 
known state (eg, default value for regs is 0).  But you may 
need to include a RESET signal to set the initial state to what 
you want.  Note the Verilog initial block only works in 
simulation and has no effect when synthesizing hardware.

Solution: have your logic take a RESET signal which can be 
asserted on start up and by an external push button:

// power-on reset generation
wire power_on_reset;    // remain high for first 16 clocks
SRL16 reset_sr (.D(1'b0), .CLK(clock_27mhz), .Q(power_on_reset),

.A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
defparam reset_sr.INIT = 16'hFFFF;

// ENTER button is user reset
wire reset,user_reset;
debounce db1(power_on_reset, clock_27mhz, ~button_enter, user_reset);
assign reset = user_reset | power_on_reset;
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Debugging: making the state visible
To figure out what your circuit is doing it can be very useful to 
include logic that makes various pieces of state visible to the 
outside world.  Some suggestions:

• turn the leds on and off to signal events, entry into 
particular pieces of code, etc.

• use the 16-character flourescent display to show more 
complex state information

• drive useful data onto the USER pins and use the adapters to 
hook them up to the logic analyzer.  Include your master clock 
signal and the configure the logic analyzer to sample the data 
on the non-active edge of the clock (to avoid setup and hold 
problems introduced by I/O pad delays).  The logic analyzer 
can capture thousands of cycles of data and display the results 
in useful ways.


