I. Blocking vs. Nonblocking Assignments

Conceptual need for two kinds of assignment (in always blocks):

Blocking:
Evaluation and assignment
are immediate

Non-Blocking:
Assignment is postponed until
all r.h.s. evaluations are done

When to use:
(only in always blocks!)

Sequential
Circuits

Combinatorial
Circuits

6.111 Fall 2006

Lecture 6, Slide 1

Assignment Styles for Sequential Logic

Flip-Flop Based
Digital Delay
Line

in —

D>
clk r-

— out

* Will nonblocking and blocking assignments both

produce the desired result?

modulle nonblocking(in, clk, out);

input i1n, clk;
output out;
reg ql, g2, out;

always @ (posedge clk)

begin
ql <= 1In;
g2 <= qil;
out <= (2;
end
endmodule

6.111 Fall 2006

modulle blocking(in, clk, out);
input in, clk;
output out;
reg ql, g2, out;

always @ (posedge clk)
begin

endmodule

Lecture 6, Slide 2

Use Nonblocking for Sequential Logic

always @ (posedge clk) always @ (posedge clk)
begin negin

gl <= 1iIn; 11 = 1In;

g2 <= ql; d<. = ql;

out <= q2; out = qg2;
end end

[“Ateadwﬂsmgtﬂockedge,ql,q2,and :} [“At each rising 'uck edge, gl = in. }
out simultaneously receive the old values After that, 2= q. = in; After that,
of in, g1, and g2.” out =92 =L =in; Firally out = in.”

ql q2 . ql g2
in=—D Qf=—D QfF—=—D Q}—out n = >—e

clk r> |_> |_> 21K |_>

Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

out

+ Guideline: use nonblocking assignments for
sequential always blocks

6.111 Fall 2006 Lecture 6, Slide 3

Use Blocking for Combinational Logic

Blocking Behavior abc xy always @ (a or b or ¢)
(Given) Initial Condition | 110 11 begin
achan es; — S0 aesssssssssE s s N ENEEn
alwaysgblocktriggered 01011 X B a & b: 3 =i :
x = a & b 010 01 y = x| ¢; b X
end : :
y =x | c; 01000 c - =y
Noivelaocking Behavior abc xy | Deferred
chi\r/]Zr;) IniFiaI Conaiicr | 110 11 always-@ (a or b or c)
I ok tri 010 11 i
always block triggered begin
x <= a & b; 010 11 !x<=0 X <= a & b;
y <= x | c; 010 11| x<=0, y<=1 y ==X | c;
: . end
Assionmcnt completion 010 01

Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it's not elegant

+ Guideline: use blocking assignments for
combinational always blocks

6.111 Fall 2006

Lecture 6, Slide 4

IT. Single-clock Synchronous Circuits

We'll use Flip Flops and Registers - groups of FFs sharing a clock input —ina
highly constrained way to build digital systems.

Single-clock Synchronous Discipline:

m) combinational cycles \ l

*Single clock signal shared among
all clocked devices C\

*Only care about value of combinational
circuits just before rising edge of

clock v
*Period greater than every C\
combinational delay

*Change saved state after noise-

inducing logic transitions have
ktopped! /

6.111 Fall 2006 Lecture 6, Slide 5

Clocked circuit for on/off button

modulle onoff(clk,button, light);
input clk,button;
output light;

Does this work
with a 1Mhz

reg light; CLK?
always @ (posedge clk) \\\ E
begin R &
1T (button) light <= ~light;
end
endmodule
10
H o>t 0
BUTTON LE 1 D Q > LIGHT
CLK <LK o>
ya%

SINGLE GLOBAL CLOCK LOAD-ENABLED REGISTER

6.111 Fall 2006 Lecture 6, Slide 6

Asynchronous Inputs in Sequential Systems

What about external signals?

e , Can't guarantee
r Sequential System setup and hold
AN times will be met!
Clock

When an asynchronous signal causes a setup/hold

violation. ..
| I

Q / L e
=
D L
Clock _/__ \ \ _/_\ ____
Transition is missed on Transition is caught on Output is metastable
first clock cycle, but first clock cycle. for an mdetgrmmate
caught on next clock amount of time.
cycle.

Q: Which cases are problematic?

6.111 Fall 2006 Lecture 6, Slide 7

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

I Sequential System
fo o D Q

AN

. Clocked
: Synchronous

Clock

This prevents the possibility of I and IT occurring in different places
in the circuit, but what about metastability?

6.111 Fall 2006 Lecture 6, Slide 8

Handling Metastability

Preventing metastability turns out to be an impossible problem

High gain of digital devices makes it likely that metastable conditions
will resolve themselves quickly

Solution to metastability: allow time for signals to stabilize

Can be Very unlikely to be Extremely unlikely to
metastable metastable for >1 be metastable for >2
right after clock cycle clock cycle
sampling \ \ /
i i I Complicated
f" o D QD QP Q Sequential Logic
= System
AN
Clock

How many registers are necessary?
Depends on many design parameters(clock speed, device speeds, ..)
In 6.111, a pair of synchronization registers is sufficient

6.111 Fall 2006 Lecture 6, Slide 9

ITI. Finite State Machines

Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized "states” of operation

At each clock edge, combinational logic computes oufputs and
next state as a function of /nputs and present state

inputs outputs
+ +
present next
state state

CLK

6.111 Fall 2006 Lecture 6, Slide 10

Example 1: Light Switch

- State transition diagram

" BUTTON-1

BUTTON=0 BUTTON=0
BUTTON=1
* Logic di
ogic diagram Combinational logic
>0
~DQ—>1
BUTTON 1 D Q > LIGHT
CLK >

6.111 Fall 2006 RCngTer' Lecture 6, Slide 11

Example 2: 4-bit Counter

* Logic diagram

4 4
@ = /L— count

- Verilog clk

4-bit counter

module counter(clk, count);
input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= count+l;
end

endmodule
6.111 Fall 2006 Lecture 6, Slide 12

Example 2: 4-bit Counter

* Logic diagram

A 4

@h / /1 count
- Verilog enb clk
4-bit counter with enable
module counter(clk,enb,count);
input clk,enb;

output [3:0] count; Could I use the following instead?
reg [3:0] count; if (enb) count <= count+1;

always @ (posedge clk) begin)
count <= enb ? count+1l : count;
end

endmodule
6.111 Fall 2006

Lecture 6, Slide 13

Example 2: 4-bit Counter

* Logic diagram
0—1N4 4
@ /L. count
1 /
0]
0 [/\
- Verilog enb clr clk
4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count); Isn't this a lot like
input Clk’enb’clr; Exercise 1inLab 2?
output [3:0] count; \‘

reg [3:0] count;
always @ (posedge clk) begin "l
? count+l - count);

count <= clr ? 4°b0 : (enb
end

endmodule
6.111 Fall 2006

Lecture 6, Slide 14

Two Types of FSMs

Moore and Mealy FSMs : different output generation

e Moore FSM:

next

S+

inputs outputs
Xg---Xp n Y = fk(S)
CLK
present state S
 Mealy FSM:
direct combinational path! outputs

. Vi = F.(S, Xg...X,)
inputs
Xg---Xp

6.111 Fall 2006 Lecture 6, Slide 15

Design Example: Level-to-Pulse

A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.

+ It's a synchronous rising-edge detector.

- Sample uses:

- Buttons and switches pressed by humans for
arbitrary periods of time

- Single-cycle enable signals for counters

Level to
—L Pulse P
L Converter Ut P orod
: ...output P produces a
Whenever mput_ L goes |_ single pulse, one clock
from low to high... : :
CLK period wide.

6.111 Fall 2006 Lecture 6, Slide 16

Step 1: State Transition Diagram

* Block diagram of desired system:

Synchronizer Edge Detector
: Level to
unsynchronized
user input b v g . FUE "
L S FSM
CLK

- State transition diagram is a useful FSM representation and
design aid:

“if L=1 at the clock edge, —— =1
then jump to state 01.”

L=1 Binary values of states

11
High input,
Waiting for fall
P=0

/ This is the output that results from

this state. (Moore or Mealy?)

01
Edge Detected!

P=1

Low input,
Waiting for rise

P=0

“if L=0 at the clock edge,
then stay in state 00.”

6.111 Fall 2006 Lecture 6, Slide 17

Step 2: Logic Derivation

Transition diagram is readily converted to a fg;r?” n SNte)t(t Out
state transition table (just a truth table) ate ate
L=1 L=1 _
O O0|0] O 0 0
00 11 O 0110 1 0
Low i t, High i t,
S oloninou.)) (o o 1|ofo of 1
=t 0 1]1]1 1] 1
N~ 1 1]/o0lo0o o] o
1 101]l1 1] 0

+ Combinational logic may be derived using Karnaugh maps

s,s, fOr S;™

LN\ 0001 11 10

010:0:0 X y 4 y Ay 4

110711 X L st o

== Comb. '—ln-bD Flip- Q Comb. mmp < for P:

S,S, for So+: Logic Lkl Flops Logic S) 1 0 1
L N\ 00 01 11 10 n oloix
01]0:0:0:X S = 111

1 171717% S,*=LS, P=S,S, L

Sy =L

6.111 Fall 2006 Lecture 6, Slide 18

Moore Level-to-Pulse Converter

next

AT state . AR Ay

present state S

S,*=LS, _ =
SO+ =L P= S180

Moore FSM circuit implementation of level-to-pulse converter:

Syt S,
L D Q >7 P
CLK> Q
} Q
|__J ST _| s,
_> Q

6.111 Fall 2006 Lecture 6, Slide 19

Design of a Mealy Level-to-Pulse

direct combinational path! y 4

y 4 y [
S Comb.

Logic cLkull Flops]
S

- Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

1. When L=1 and S=0, this output is
asserted immediately and until the

state transition occurs (or L changes). L S @
//”' P ___g 2
= Clock _/__1: ’__
State
Output transitions immediately.
State transitions at the clock edge.

L=0 | P=0

L=1|P=0

2. While in state S=1 and as long as L
remains at 1, this output is asserted.

6.111 Fall 2006 Lecture 6, Slide 20

Mealy Level-to-Pulse Converter

Pres. Next

State Ji State Out
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 0

Mealy FSM circuit implementation of level-to-pulse converter:

— -

S* S

Ol O

D
CLK —>

S
FSM's state simply remembers the previous value of L

Circuit benefits from the Mealy FSM's implicit single-
cycle assertion of outputs during state transitions

6.111 Fall 2006 Lecture 6, Slide 21

How are they different?
- Moore: outputs = f(state) only

- Mealy outputs = f(state and input)
- Mealy outputs generally occur one cycle earlier than a Moore:

Moore: delayed assertion of P

L SRS
=)
Clock B
State[0]

Moore/Mealy Trade-Offs

Mealv: immediate assertion of P

Y
B

Compared to a Moore FSM, a Mealy FSM might...
- Be more difficult to conceptualize and design

- Have fewer states

6.111 Fall 2006

Lecture 6, Slide 22

FSM Timing Requirements

- Timing requirements for FSM are identical to any
generic sequential system with feedback

Minimum Clock Period Minimum Delay

inputs outputs inputs outputs
+ + + +
present next present ‘s next
state state state Y state

_CLK CLK o> & FlOPS e, (D0
g4\
- T -
1> ch + Tlogic + Tsu Tcd,reg + Tcd,logic > Thold

6.111 Fall 2006 Lecture 6, Slide 23

Summary

+ Assignments in always blocks:

- blocking ("=") for combinational logic
- non-blocking ("<=") for sequential logic

+ Single-clock Synchronous discipline:
- Reliable digital circuits / systems
- Global clock to edge-triggered registers

* Finite state machines: —

- Programmable systems
- Moore & Mealy

6.111 Fall 2006

