Something We Can't Build (Yet)

What if you were given the following design specification:

When the button is pushed:
1) Turn on the light if
it is off
- button 2) Turn off the light if light
> it is on

The light should change
state within a second
of the button press

What makes this circuit so different
from those we've discussed before?

1. "State” - i.e. the circuit has memory

2. The output was changed by a input
“event” (pushing a button) rather
than an input “value”

6.111 Fall 2006 Lecture B, Slide 1

Digital State

One model of what we'd like to build

Current

State Combinational

Logic

Input

Plan: Build a Sequential Circuit with stored digital STATE -

* Memory stores CURRENT state, produced at output

* Combinational Logic computes

- NEXT state (from input, current state)

- OUTPUT bit (from input, current state)

- State changes on LOAD control input

6.111 Fall 2006

New
State

v

Output

Lecture 5, Slide 2

Storage: Using Feedback

IDEA: use positive feedback to maintain storage indefinitely.
Our logic gates are built to restore marginal signal levels, so
hoise shouldn’t be a problem!

Result: a bistable

storage element
Vi Vour

Not affected
YTC for , Feedback constraint: by noise
inverter pair V.=V
IN™ T out
Vour, \ ..o"/ Three solutions: \
¢ two end-points are stable
o ¢ middle point is unstable
o " Vi We'll get back to this!

6.111 Fall 2006 Lecture B, Slide 3

Settable Storage Element

It’s easy to build a settable storage element (called a latch)
using a lenient MUX:

Hel"e,s a feedback path, ccstate” signal
soit’s nolonger a

9 / combinational circuit. appeal"s as I?Oth
/g ((input and output

=O\ G D QyfQour
- Q 0 -0 o0
D :1/ O o 1 1 | Qstable
[1 O --| 0 "
. Qfollows D
G 17 1 -- 1

6.111 Fall 2006 Lecture 5, Slide 4

New Device: D Latch

G=1: G=0:
Q follows D Q holds
Q= D X vi X vz XX
. Q
D—1 ' G \
s |
Q X_vi X X v
Tep Tep
I G
BUT... Achangein D or G
contaminates Q, hence Q’
... how can this possibly
G="1:QFollows D, independently of & e work?

G=0: QHolds stable Q, independently of D

6.111 Fall 2006 Lecture 5, Slide 5

D-Latch timing

a’ =
— Q
D —1 '
c—1
To reliably latch V2:

- Apply V2 to D, holding G=1
- After T, V2 appears at Q=Q’

- After another T,,, @ & D both valid
for T,,; will hold Q=V 2 independently

of G
- Set G=0, while @ & D hold Q=D

- After another T,,, G=0 and Q
are sufficient to hold Q=Y 2
independently of D

6.111 Fall 2006

D Stable
'd N\
D X v2 0K
G \
Q X v2
<4“—r<—> <+—>
TF’D TF’D TF’D

+“———r> 4>

TSETUP L HOLD

/Dynamic Discipline for our latch:

Toerup = 2Tpp: interval priorto G

stable & valid

Thop = Tpp: interval following G

\ stable & valid

transition for which D must be

transition for which D must be

~

Lecuw%a Slide 6

NOR-based Set-Reset (SR) Flipflop

S R Q Q
S — _
Q 0 0 Q Q
S Q 1 0 1 0
—R QH—— 0 1 0 1
1 1
R Q 0 0
Forbidden State
Reset Hold Set Reset Set
\\\.\ !
R
S
Q
Q

Flip-flop refers to a bi-stable element

6.111 Fall 2006

Lecture 5, Slide 7

Lets try using the D-Latch...

New
/\ State
> D Q@ >
Current
> G State Combinational
Logic
Input Output
Plan: Build a Sequential Circuit with one bit of STATE -
* Single latch holds CURRENT state What happens
when G=17

* Combinational Logic computes e

- NEXT state (from input, current state) "‘
- OUTPUT bit (frominput, current state)

- State changes when G = 1 (briefly!)
6.111 Fall 2006 Lecture 5, Slide 8

Combinational Cycles

| New
State
>~ D Q >
Current
1 > G State Combinational
Logic
Input Output
. Looks like a stupid
When G=1, latch is Transparent... Approach to me...
... provides a combinational path from D to Q. ~

Can’t work without tricky timing constrants on G=1 pulse:
» Must fit within contamination delay of logic §
* Must accommodate latch setup, hold times

Want to signal an INSTANT, not an INTERVAL...

6.111 Fall 2006 Lecture 5, Slide 9

Edge-triggered D-Register

The gate of this
latch is open when

the clock is low

— D Q D Q—
» What does

Q _'/that one do? master slave
$ ~|C G CLK —>
The gate of this
latch is open when

the clock is high

11"

Observations:
3 * only one latch “transparent” at any time:
Transitions mark
instants, not intervals * master closed when slave is open
¢ slave closed when master is open
- — no combinational path through flip flop

‘/ (the feedback path in one of the master or slave latches is always active)

I

!
-~

* Q only changes shortly after O —1

transition of CLK, so flip flop appears I\
to be “triggered” by rising edge of CLK

6.111 Fall 2006 Lecture 5, Slide 10

6.111 Fall 2006

D-Register Waveforms

D——D Q D Q—Q D—D QF— Q
master slave —
—0O| G G — CLK —>
CLK
D __ LT
CLK .
Q i ?
A) '
Y Y
master closed / W slave closed
slave open master open

Lecture 5, Slide 11

D-Register Timing - I

Values determined
from slave latch

>top—

<tpp

—

D—D Q—>Q
Q
CLK —>
CLK
D

tp5: maximum propagation delay, CLK -»Q
t,p: minimum contamination delay, CLK ->Q

tsetupt Setup time

d

»
<« »

d »
N} »

>Ysetor > Thowo

Values determined
from master latch

guarantee that D has propagated through feedback path before master closes

thont hold time

guarantee master is closed and data is stable before allowing D to change

6.111 Fall 2006

Lecture 5, Slide 12

D-Register Timing - IT
Questions for register-based designs:

D Q . * qd ° how much time for useful work
_reg] L reg2 (i.e. for combinational logic

delay)?

Y

CLK

does it help to guarantee a
minimum t.,?2 How about
_ 1, designing registers so that
CLK___ | ! ’ Yoo reg > THOLD,reg?

* D\

sty

what happens if CLK signal
doesn't arrive at the two
registers at exactly the same
time (a phenomenon known as
T2 = Yopregt + Tep1 < Yok = Ysetupregz “Clock skew™)?

Ti = Yeoregt * Tep.1 > THOLD, reg2

6.111 Fall 2006 Lecture 5, Slide 13

Sequential Circuit Timing

_ New
T
CD.R

1ns /\ 1 state
1'PD R 3ns P >

tsp = 20| Current ombinational
Thr = 2ns| state

Y

. Logic
10 e ?
Inpuf OUTPU"'
Questions:
- Constraints on T,y for the logic? > 1ns
* Minimum clock period? > 10 ns (Tpp r*Tpp.L* Tsp)
- Setup, Hold times for Inputs? Ts = TppL *Tsp
Th=Tur-TeoL

This is a simple Finite State Machine ... more on next timel

6.111 Fall 2006 Lecture 5, Slide 14

The Sequential always Block

- Edge-triggered circuits are described using a
sequential always block

Combinational

module combinational(a, b, sel,
out) ;
input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;

else out = b;

end
endmodule
a—1
out
b—0
sel

6.111 Fall 2006

Sequential

module sequential(a, b, sel,
clk, out);
input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk)
begin
if (sel) out <= a;
else out <= b;

end
endmodule
a—1
D Qp— out
b —O0
r>

Lecture 5, Slide 15

Importance of the Sensitivity List

- The use of posedge and negedge makes an always block
sequential (edge-triggered)

* Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear
module dff sync_clear(d, clearb, module dff async clear(d, clearb, clock, q);
clock, q):;) — _

) input d, clearb, clock;

input d, clearb, clock; output q;

output q; reg q;

reg dg;

always @ (posedge clock) always @ (negedge clearb or posedge clock)
begin begin

if (lclearb) q <= 1'b0; if (lclearb) g <= 1'b0;

else q <= d; else q <= d;
end end
endmodule endmodule

always block entered only at always block entered immediately
each positive clock edge when (active-low) clearb is asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

= Assign any signal or variable from only one always block, Be wary
of race conditions: always blocks execute in parallel

6.111 Fall 2006 Lecture 5, Slide 16

Blocking vs. Nonblocking Assignments

* Verilog supports two types of assignments within always blocks,
with subtly different behaviors.

* Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

begin
X = a | b; 1. Evaluate a | b, assign result to x
y=a’"b" c; 2. Evaluate a*b”c, assign resultto y
z = b & ~c; 3. Evaluate b&(~c), assign result to z
end

« Nonblocking assignment: all assignments deferred until all right-
hand sides have been evaluated (end of simulation timestep)

always @ (a or b or c)

begin
X <= a | b; 1. Evaluate a | b but defer assignment of x
y <= a ~ b " c; 2. Evaluate a*b”c but defer assignment of y
zZ <= b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end 4. Assign x, y, and z with their new values

- Sometimes, as above, both produce the same result. Sometimes,

not!
6.111 Fall 2006 Lecture 5, Slide 17

Assignment Styles for Sequential Logic

Flip-Flop Based — ql 2215 ol out
Digital Delay R L D Q L E
Line |_> 3
clk —

- Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out):; module blocking(in, clk, out);
input in, clk; input in, clk;
output out; output out;
reg gl, g2, out; reg gl, g2, out;
always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= qgql; g2 = ql;
out <= g2; out = g2;
end end
endmodule endmodule

6.111 Fall 2006 Lecture 5, Slide 18

Use Nonblocking for Sequential Logic

always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; Q2 = ql;
out <= g2; out = g2;
end end
“At each rising clock edge, g1, g2, and out “At each rising clock edge, ql =
simultaneously receive the old values of in, After that, g2 = ql =in.
ql, and g2.” After that, out=g2 =gl = In.

Therefore out = in.”

ql q2 _ ql g2
in—D QF=—D Q=D Q—out N ———|p Qf—+—— out

clk -r> |_> |_> clk _|_>

. Blocklng assignments do not reflect the intrinsic behavior of
multi-stage sequenflal logic

+ Guideline: use nonblocking assignments for
sequential always blocks

6.111 Fall 2006 Lecture 5, Slide 19

Use Blocking for Combinational Logic

module blocking(a,b,c,x,vy):;

Blocking Behavior abc xy reeeeeeneen s _ fnpat a b o
. » i a = : output x,y;
(Given) Initial Condition | 110 11 b = =X reg x,y;
a changes; : : 1 @ (b)
always block triggered | 010 11 c - -y Ee‘gizs aorbdore
X = a & b; 01001 X =a&b;
y =x | c;
y =x | c; 01000 end
endmodule
Nonblocking Behavior abc xy | Deferred nodule nomblocking (a,b,c.x,y)
. " _ input a,b,c;
(Given) Initial Condition | 110 11 output x,y;
a changes; reg x,y;
always block triggered 01011 always @ (a or b or c)
X <= a & b; 010 11 [x<=0 begin
X <= a & b;
y <= x | c; 010 11 |x<=0,y<=1 y <= x| o
en
Assignment completion 010 01 cndmodule

- Nonblocking and blocking assignments will synthesize correctly. Will
both styles simulate correctly?

Nonblocking assugnments do not reflect the intrinsic behavior of
multi-stage combinational logic

- While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it's not elegant

. gluidlfline: use blocking assignments for combinational always
ocks

6.111 Fall 2006 Lecture B, Slide 20

Implementation for on/off button

< [

® O ® O

modulle onoff(button, light);
input button;
output light;

button

light

reg light;
always @ (posedge button)
begin
light <= ~light; 1D Q LIGHT
end BUTTON —> Q—

endmodule

6.111 Fall 2006 Lecture 5, Slide 21

A Simple Counter

Isn’'t this a lot like
Exercise 1inlLab 2?

/ —
o by T L count
10 OI ZAN
|

eib clr 1k

4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);

input clk,enb,clr;

output [3:0] count;

reg [3:0] count;

always @ (posedge clk) begin
count <= clr ? 4°b0 : (enb ? count+l : count);
end

endmodule
6.111 Fall 2006 Lecture 5, Slide 22

