6.111 Fall 2006

Here's a Design Approach

Truth Table

1) Write out our functional spec as
a truth table

2) Write down a Boolean expression
for every 'l’ in the output

= = == 00000

-it’s systematic!
-it works!
-it’s easy!
'. -are we done yet?22?
\

-

= =00 OO

P OFLrOFr O O|>»

= = 0O 0O+ O = 0O|X

—

Y =CBA+CBA +CBA + CBA
M

3) Wire up the gates, call it a day,
and declare success!

This approach will always give us
Boolean expressions in a
particular form:

SUM-OF -PRODUCTS

Lecture 3, Slide 1

We can implement

SUM-OF -PRODUCTS
with just three levels of
logic.

INVERTERS/AND/OR

Propagation delay --
No more than "3" gate delays

Bl

Straightforward Synthesis

:>__

:>_ .

> |

OTWH>OT>OJ>OT >

:>__

(well, it's actually O(log N) gate delays)

6.111 Fall 2006

Lecture 3, Slide 2

PALs: Programmable Array Logic

User-programmable ANDs Fixid ORs

| it L L]
i %“I sl o/ _E Another approach to structured
Siis S — logic design is Programmable
S 181154 ’H?"‘J— Array Logic (PAL). These were
g : _- once popular off-the-shelf

|

t

‘|" devices. They basically replaced
TTL gates in the '80s and fueled
the minicomputer revolution.

5
LLTTELLE
T

KF:.‘-‘:H:EE
e
LT

)
0

.,

:
8

SHIR I * PALs have a programmable

: decoder (AND plane) with fixed
selector logic (OR plane). These
devices were useful for

TEIME i-EN
T

=

11

[FRODUDT
FRAESREA HETENIEE
L8

=P B — \ . :
_ implementing large fan-in gates
: : { and SOP logic expressions. They
=i (i i are purchased as unprogrammed
= chips and configured in the field
: - Fr— using an inexpensive programmer.

EEIFEEEN
5

6.111 F‘dﬂﬂl‘?;,— S=ppra i Lecture 3, Slide 3

Practical SOP Implementation

- NAND-NAND AB=A+B “Pushing Bubbles”

¢ o D

A

D
o AED>T = o dOFED
>

- NOR-NOR AB=A+B
C —C:>_ C
: B
Al o Y — A__[>__ y
= el é —D—

You mgh think all thes
inverters would make h
less attractive

B_i:j:)»]\t s

opposite is true.
6.111 Fall 2006 Lecture 3, Slide 4

Logic Simplification

Can we implement the same function with fewer gates? Before
trying we'll add a few more tricks in our bag.

BOOLEAN ALGEBRA:
OR rules: a+1=1,a+0=a,a+a=a
AND rules: al=a, a0=0, aa=a
Commutative: a+b=b+a, ab=ba
Associative: (a+b)+c=a+(b+c), (ab)c =a(bc)
Distributive: a(b+c)=ab + ac, a+ bc = (a+b)(a+c)
Complements: a+a=1 aa=0
Absorption: a+ab=a, a+ab=a+b
a(a+b)=a, a(@+b)=ab
Reduction: [ab+§b = b,] (a+b)(@a+b)=Db

DeMorgan'sLaw: zip-ab ab=a+b

6.111 Fall 2006 Lecture 3, Slide 5

Boolean Minimization:
An Algebraic Approach

Can't he come up
with a new example???

Lets (again!) simplify -
Y =CBA+CBA+CBA+CBA Y

Using the identity

aA+aA=a

For any expression 0. and variable A:

Hey, | could write
A programto do

/ That!

Y =CBA+CB+CBA U4

Y =CBA+CBA+CBA+CBA

Y =CA+CB

6.111 Fall 2006 Lecture 3, Slide 6

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by
exactly one variable are adjacent to one another so we can see

Truth Table

>

B

Y

- = = =0 O O OO0
_ = 0O 0O = =0 0

0
1
0]
1
0]
1
0]
1

0
0
1
1
0]
1
0
1

potential reductions easily.

Here's the layout of a 3-variable K-map filled
in with the values from our truth table:

C\AB|00 (0111 (10
0 010 1
1 01

It's cyclic. The left edge is adjacent to the right

edge. (It's really just a flattened out cube).

6.111 Fall 2006

Why did he
shade that
row Gray?

Lecture 3, Slide 7

On to Hyperspace _
4-variable K-map for a multipurpose logic gate:

AxB ifCD=-00 [~Toofo1[11]10

A+B ifcdb-0r |oo[o|o]1]o0
Y=! _

| B8 ifcp-z0 [O21O11 111

1m1lo|1]o]1

A@B ifcD=11 [10(1 0] 0] 1

Again it's cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

6.111 Fall 2006 Lecture 3, Slide 8

Finding Subcubes

We can identify clusters of “irrelevent” variables by circling
adjacent subcubes of 1s. A subcube is just a lower
dimensional cube.

o |00]01(11(10
C\AB| 00|01 |11 (10 o0l o

0
O OO U1l 1 010@__@
0
0

1)

1 Jo @ [11){ 0] (11| o |l

10/1] 0

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1's)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes
(even if they overlap previous ones)

- Circle smaller and smaller subcubes until no 1s are left.

6.111 Fall 2006 Lecture 3, Slide 9

Write Down Equations

Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1's are covered. Result: a minimal
sum of products expression for the truth table.

6.111 Fall 2006

c\aBloo o1 11]10

o (oo l_ﬁCA+CB

i 0 LlUW‘dl
4

e 4,

CD\ :

00| o o/[T'o/\ S~ |

o1| o [[1)|W[fT)| Y °ABC+ABD

11 | o L] o 1\jD+BCD

10 1)o o]t /

Lecture 3, Slide 10

Recap: K-map Minimization

1) Copy truth table into K-Map
2) Identify subcubes,

selecting the largest available subcube at each step, even if
it involves some overlap with previous cubes, until all ones are
covered. (Try: 4x4, 2x4 and 4x2, 1x4 and 4x1, 2x2, 2x1 and
1x2, finally 1x1)

3) Write down the minimal SOP realization

Truth Table JARGON: The circled terms are called implicants. An
C B A|Y implicant not completely contained in another
0O 0 O0jO0 implicant is called a prime implicant.
0O 0 11
0O 1 0jo0O
O 1 1|1
1 0 O0jO L
t o 1o Y =CA+CB
1 1 01
1 1 1|1

6.111 Fall 2006 Lecture 3, Slide 11

Logic that defies SOP simplification

S
FU" Adder c/aB Joo o1]11] 10

CIAB SC O JOoOj11]1O01]11
00000 AB
001[10 L by

O 10 10 Co‘— FA<— Ci c/ABloojo1]11]10
011/01 1 o To T o[
1 00|10 4

1 01|01 >

1 10|01 S=ABC+ ABC + ABC + ABC
1 11|11

C, = ABC + ABC + ABC + ABC
Can simplify the carry out easily enough, eg...
C, = BC + AB + AC

But, the sum, S, doesn't have a simple sum-of-products
implementation even though it can be implemented using only
two 2-input XOR gates.

6.111 Fall 2006 Lecture 3, Slide 12

Logic Synthesis Using MUXes

Truth Table
A c B Ay
) If Cis 1 then Y g g (1) ?
copyBtoY, [
c otherwise copy O 1 ofo
AtoY o t 1yl A 4-input Mux
1 0 ofo .
implemented as
1 0 1o
2-input Multiplexer A Lo o>
1]]
B y
I, P\
E——, ’ L)
< > 1> B <
a—— > .
C
schematic Gate

symbol

6.111 Fall 2006 Lecture 3, Slide 13

Systematic Implementation of
Combinational Logic

Consider implementation of some
arbitrary Boolean function, F(A,B)

Full-Adder
g ':Jsingla MULTIPII_EXER Carry Out Logic
as the only circuit element:

0 B
A B Cin COUT/O ?\
00 1fo0 /1 c
1 0 1|1 / —

117 -~
1 1 o1 / 7
1 1 11 A.B.G

6.111 Fall 2006 Lecture 3, Slide 14

Systematic Implementation of
Combinational Logic

Same function as on previous slide, but
this time let's use a 4-input mux

Full- Adder
A B Ci|Cout Carry Out Logic
0 0 O 0} ~_
0o 1|lo/] —— 0—o
01t ojo; —C—1 c
O 1 1 1} C_Z out
1 00 0}/1—3
1 0 11 /
1 1 of1 ‘
A
1 1 1 1} B

6.111 Fall 2006 Lecture 3, Slide 15

General Table Lookup Synthesis

Muxes are UNIVERSAL!

A B

AB|Fn(A.B) | Y= >0
A

oo| o
01 1\;
_—

10
11 0]

MUX ‘ _
Logic > Fn(A,B) B e

Generalizing: 1 - Bi_'_>_

In theory, we can build any 1-output combinational

logic block with multiplexers.
In future technologies

muxes might be the
“natural gate”.

For an N-input function we need a ZN input mux,

BIG Multiplexers.? > What does

How about 10-input function? 20-input? Y E/thatonedo?
A

6.111 Fall 2006 Lecture 3, Slide 16

A Mux's Guts

Decoder I, Selector Multiplexers
A C \ _} can be constructed
o B —C_O/ I info two sections:
Greretes JAQ 4) _} A DECODER that
product 2 / I L Y identifies the
rerms for arN desired input,and
inputs A 2 \ /
/ B C J I a SELECTOR that
11 -
% = enables that input
A 3) } onto the output.
B i)

Hmmm, by sharing the decoder part of the logic MUXs
could be adapted to make lookup tables with any number
of outputs

6.111 Fall 2006 Lecture 3, Slide 17

Using Memory as a Programmable Logic Device

6.111 Fall 2006

M+N INPUTS bit lines word lines
Col. Col. Col. Col.
1 2 3 v 2M /
. Row 1
i gEyryryr

NS Mo Lh g e
I
NprEyrararar bk

memﬁr'y

I/V\ (onceebi'l')

Y

Column Multiplexer

|

F(INPUTS)

Lecture 3, Slide 18

Xilinx Virtex II FPGA

DCM DCM :;C}B
Global Clock Mux—— =7 _ __HHjini
=
T |, E
Configurable Logic \
\ f fr HEE E
\ | E| g
Ill H |I
Programmable 1/Os |

f
CLB Bln}clk SelectRAM Multiplier

Virtex-ll Architecture Overview

XC2V6000:
- 957 pins, 684 IOBs
* CLB array: 88 cols x 96/col = 8448 CLBs
-+ 18Kbit BRAMs = 6 cols x 24/col = 144 BRAMs = 2.5Mbits
-+ 18x18 multipliers = 6 cols x 24/col = 144 multipliers

6.111 Fall 2006 Figures from Xilinx Virtex Il datasheet Lecture 3, Slide 19

Virtex IT CLB

*,
Y
[> TBUF X0Y1 RAM16
[>TBUF XoY0
= -
™, ™
SRL16"
B - ™ Y Register
. COUT LUT =~
Switch ["
e { RAM16 |
Slice CIN LY
=1 xov1 [= . MUXF5
Y ™,
Fast N
Slice N - Connects SRL16 .
=1 xovo [| to neighbors 2\ LU}\\ CY Register
™ F ™,
CIN
Virtex-ll CLB Element) Arithmetic Logic

Virtex-ll Slice Configuration

16 bits of RAM which can be configured as a
16x1 single- or dual-port RAM, a 16-bit shift
register, or a 16-location lookup table

6.111 Fall 2006 Figures from Xilinx Virtex Il datasheet Lecture 3, Slide 20

Virtex IT Slice Schematic

SHIFTIN 22U
SOPIN —> I\| bt
Ty — SOPOUT
0 —
0 Dual-Port — YEMUX vE
Shift-R —
Cshit-Heg | MUXCY .
Gé4 > A oY
oLuT
GA A3
CIRAM
G2 > A2 SnoM
Gl > Al D " GYMUX
WG4 WG4 | |
Wes waz © L] >)
WG2 1
WG2 = MC15 HORG < DY
WG —> WiG1 OFF
\] ws Dl CILATCH
ALTDIG > :
,J & DYMUX D Ql—r—a
+— oo Frop ce—lece ¥
| BY CYOG CLK— CK
F_ o SH REV
BY T
D—| - -]
L
SLICEWE[2:0] WSG SHIFTOUT SR
— WE[2:0] —DIG
WE

| CHK MUXCY
WSF] 1

|

|

|

CE |:>—| :
Shared betwean |

|

CLK = ED ¥ & vy Registers

6.111 Fall 2006 Figures from Xilinx Virtex Il datasheet

Virtex-1l Slice (Top Half)

Lecture 3, Slide 21

Virtex II Sum-of-products

TR T T
VY rsha sk
kst RGN
e = RS
_ _
I - _
_ - | - _

| |
_ _

= .ﬂ./_l
= S
' reha S
L1 X1 5] 7
| S SER
_ _
I - _
= - |

_ | |
_ _

= .ﬂ./_/

)
P b 1 Py _
10 (Y =1 & = I <18 =138
1S o | @ o |1 8 | @ of'=1
_ 3 = HE =21, |
I = Hi .rr.-..lu..r.l___ | _ = Hn = Hi |
it i
_ = = = = _
| = 2] T |2 2] !
| | I |
N =
= |

o S I s L 8l

Horizontal Cascade Chain

Lecture 3, Slide 22

Figures from Xilinx Virtex Il datasheet

6.111 Fall 2006

