Here's a Design Approach

1) Write out our functional spec as

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

3) Wire up the gates, call it a day, and declare success!

This approach will always give us Boolean expressions in a particular form: SUM-OF-PRODUCTS

Straightforward Synthesis

We can implement

SUM-OF-PRODUCTS

with just three levels of logic.

INVERTERS/AND/OR

Propagation delay --
No more than "3" gate delays
(well, it's actually $O(\log N)$ gate delays)

PALs: Programmable Array Logic

Another approach to structured logic design is Programmable Array Logic (PAL). These were once popular off-the-shelf devices. They basically replaced TTL gates in the '80s and fueled the minicomputer revolution.

PALs have a programmable decoder (AND plane) with fixed selector logic (OR plane). These devices were useful for implementing large fan-in gates and SOP logic expressions. They are purchased as unprogrammed chips and configured in the field using an inexpensive programmer.

Practical SOP Implementation

- NAND-NAND $\overline{A B}=\bar{A}+\bar{B}$

- NOR-NOR
$\bar{A} \bar{B}=\overline{A+B}$

Logic Simplification

Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag.
BOOLEAN ALGEBRA:

OR rules:
AND rules:
Commutative:
Associative:
Distributive:
Complements:
Absorption:

$$
\begin{aligned}
& a+1=1, a+O=a, a+a=a \\
& a 1=a, a O=O, a a=a \\
& a+b=b+a, a b=b a \\
& (a+b)+c=a+(b+c),(a b) c=a(b c) \\
& a(b+c)=a b+a c, a+b c=(a+b)(a+c) \\
& a+\bar{a}=1, \quad a \bar{a}=0 \\
& a+a b=a, \quad a+\bar{a} b=a+b \\
& a(a+b)=a, \quad a(\bar{a}+b)=a b
\end{aligned}
$$

Reduction:

$$
a b+\bar{a} b=b, \quad(a+b)(\bar{a}+b)=b
$$

DeMorgan's Law: $\quad \bar{a}+\bar{b}=\overline{a b}, \quad \bar{a} \bar{b}=\overline{a+b}$

$$
\bar{a}+\bar{b}=\overline{a b}, \quad \bar{a} \bar{b}=\overline{a+b}
$$

Boolean Minimization:

An Algebraic Approach

Lets (again!) simplify

$$
Y=\bar{C} \bar{B} A+C B \bar{A}+C B A+\bar{C} B A
$$

Using the identity

$$
\alpha A+\alpha \bar{A}=\alpha
$$

Can't he come up
with a new example???

For any expression α and variable A:

$$
\begin{gathered}
Y=\bar{C} \bar{B} A+C B \bar{A}+C B A+\bar{C} B A \\
Y=\bar{C} \bar{B} A+C B+\bar{C} B A \\
Y=\bar{C} A+C B
\end{gathered}
$$

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.
Here's the layout of a 3 -variable K-map filled in with the values from our truth table:

Truth Table			
C	A	B	y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Why did he shade that row Gray?

It's cyclic. The left edge is adjacent to the right edge. (It's really just a flattened out cube).

On to Hyperspace

4-variable K-map for a multipurpose logic gate:

$$
y=\left\{\begin{array}{cl}
A \times B & \text { if } C D=00 \\
A+B & \text { if } C D=01 \\
\bar{B} & \text { if } C D=10 \\
A \oplus B & \text { if } C D=11
\end{array}\right.
$$

COA	00	01	11	10
00	0	0	1	0
01	0	1	1	1
11	0	1	0	1
10	1	0	0	1

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

Finding Subcubes

We can identify clusters of "irrelevent" variables by circling adjacent subcubes of 1 s . A subcube is just a lower dimensional cube.

CDB	00	01	11	10
00	0	0	1	0
01	0	1	1	1
11	0	1	0	1
10	1	0	0	1

The best strategy is generally a greedy one.

- Circle the largest N -dimensional subcube (2^{N} adjacent 1 's) $4 \times 4,4 \times 2,4 \times 1,2 \times 2,2 \times 1,1 \times 1$
- Continue circling the largest remaining subcubes (even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

Write Down Equations

Write down a product term for the portion of each cluster/subcube that is invariant. You only need to include enough terms so that all the 1's are covered. Result: a minimal sum of products expression for the truth table.

Recap: K-map Minimization

1) Copy truth table into K-Map
2) Identify subcubes,
selecting the largest available subcube at each step, even if it involves some overlap with previous cubes, until all ones are covered. (Try: $4 \times 4,2 \times 4$ and $4 \times 2,1 \times 4$ and $4 \times 1,2 \times 2,2 \times 1$ and 1×2, finally 1×1)
3) Write down the minimal SOP realization

Truth Table

C	B	A	y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

```
JARGON: The circled terms are called implicants. An implicant not completely contained in another implicant is called a prime implicant.
```


$$
Y=\bar{C} A+C B
$$

Logic that defies SOP simplification

C_{i}	A	B	S	C_{0}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Can simplify the carry out easily enough, eg...

$$
C_{0}=B C+A B+A C
$$

But, the sum, S, doesn't have a simple sum-of-products implementation even though it can be implemented using only two 2 -input XOR gates.

Logic Synthesis Using MUXes

2-input Multiplexer
Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

A 4-input Mux
implemented as

Gate symbol

Systematic Implementation of Combinational Logic

Consider implementation of some arbitrary Boolean function, $F(A, B)$

Full-Adder
... using a MULTIPLEXER as the only circuit element:

Systematic Implementation of Combinational Logic

Same function as on previous slide, but this time let's use a 4-input mux

General Table Lookup Synthesis

Generalizing:
In theory, we can build any 1-output combinational logic block with multiplexers.

For an N -input function we need a 2^{N} input mux.

BIG Multiplexers?

How about 10 -input function? 20-input?

Lecture 3, Slide 16

A Mux's Guts

Multiplexers can be constructed into two sections:

A DECODER that identifies the desired input, and a SELECTOR that enables that input onto the output.

Hmmm, by sharing the decoder part of the logic MUXs could be adapted to make lookup tables with any number of outputs

Using Memory as a Programmable Logic Device

Xilinx Virtex II FPGA

Virtex-II Architecture Overview

XC2V6000:

- 957 pins, 684 IOBs
- CLB array: 88 cols $\times 96 / \mathrm{col}=8448$ CLBs
- 18 Kbit BRAMs $=6$ cols $\times 24 / \mathrm{col}=144$ BRAMs $=2.5 \mathrm{Mbits}$
- 18×18 multipliers $=6$ cols $\times 24 / \mathrm{col}=144$ multipliers

Virtex II CLB

16 bits of RAM which can be configured as a 16×1 single- or dual-port RAM, a 16-bit shift register, or a 16-location lookup table

Virtex II Slice Schematic

Virtex II Sum-of-products

Horizontal Cascade Chain

