

Virtual Juggling

Chris Wilkens and David Rush
6.111

December 14, 2005

Abstract:

 The Virtual Juggling Simulator is designed to allow a user to juggle virtual balls
by moving their hands in the air. A camera is focused on a user whose hands are found
by using a threshold for the input color. The hand’s position, velocity and state (based on
past and current velocities) are calculated and passed on to a Ball Manager. The Ball
Manager determines each ball’s new position, velocity and state determined on by their
old states and the current inputs. The Ball Manager then passes on to the Output module
if and where to display each of the 31 balls on the next frame and the balls are overlaid
onto the raw image passed from the camera and displayed on a monitor. The balls’ state
includes if it is in play, in a hand, in the right hand or left hand, its direction and what its
x and y velocity and position are. The hands can be in a throw or catch state. Button and
switch inputs are wired from the labkit to reset system, add to or remove balls from the
system and to set the gravity for the system. The functionalities of the system are
controlled by the major Video Processor, Ball Manager, Output and Controller modules
each with a number of submodules.

Table of Contents
Table of Contents.. ii
List of Figures .. iii
Overview... 1
Module Structure .. 2

Camera Input Module ... 3
Controller .. 4

Level to Pulse.. 5
Video Processor .. 5

Hand Detector ... 6
Hand Logic.. 7

Ball Manager... 8
Block Random Access Memory (BRAM).. 10
Physics .. 10
Display .. 13

Output Module .. 14
Aggregate Ball Sprite Memory... 15

Testing... 16
Conclusion .. 18
Appendix: Verilog Source .. 19

 ii

List of Figures

Figure 1: Screenshot of the Simulator .. 2
Figure 2: System Block Diagram.. 3
Figure 3: Controller Simulation Results ... 4
Figure 4: Level to Pulse simulation results... 5
Figure 5: Video Processor Block Diagram ... 6
Figure 6: Ball Manager Simulation Results.. 9
Figure 7: Ball Manager Block Diagram.. 10
Figure 8: Output Block Diagram .. 15

 iii

Overview

The Juggling Simulator is designed so that a user can juggle virtual balls on a
screen by moving their hands in space. The user stands in front of a camera with their
hands exposed and they are found by taking the center of mass of the red pixels within
the screen. The video assumes that there is one hand on each side of the screen so it finds
the center of mass of the red pixels for each side of the screen and displays a small green
square where it finds each hand so that their locations can be seen by the user. The pixels
that are considered red are found by setting a threshold value to compare to the incoming
pixels. Flesh comes up as red as do most warm colors so it is important to have a dark
background and all flesh but the hands covered to reduce noise within the system.

As the hands move around their positions are updated each frame which is 60
times per second. From their current position and past positions their velocity and
acceleration are calculated and from that throw and catch signals are generated for the
hands based on empirically found threshold values. If the hand has accelerated upwards
and decelerated beyond a threshold value it is said to be in a throw state for one frame
and will release one ball from the hand at its current position and velocity if is holding a
ball. If the hand is not moving up it is said to be in a catch state and will catch a ball if
the ball is moving down and is in the proximity of the hand. The number of balls a hand
can catch is only limited by the number of balls in the system.

Once a ball has been released from the hand it is governed by the laws of virtual
physics. The new ball position is calculated each frame by using its current velocity.
Each frame the x velocity remains constant unless the ball collides with a side edge of the
screen in which case it bounces off with one half of the impact x velocity. If the ball hits
the bottom edge of the screen it rebounds with the same y velocity in the opposite
direction. If the ball collides the top edge of the screen the new y velocity is set to one
pixel per frame in the downward direction. Each frame the y velocity is updated by
subtracting the current gravity. This gives the ball acceleration in the downward
direction.

The user can modify the juggling experience by pressing buttons and setting
switches on the labkit. If the user presses the enter button the system is set to its default
setting with three balls in the system- two in the right hand and one in the left. Balls can
be added or removed from the system by pressing the up and down buttons. The
minimum number of balls is zero and the maximum is 31. When added the balls are
placed alternately in the right and left hands. Switches five through zero set the gravity
for the system with the high order switches corresponding to the more significant bits.
When switch seven is on all the pixels that are determined to be red are displayed as red
on the screen otherwise the video output is simply that of the input. With this feature it is
easy to identify sources of noise and more easily see where the hand is in relation to the
screen. When on, switch six tints each half the screen based on what state each hand is
in. If the half of the screen is tinted blue the hand is in a catch state, if gray it is neither in
a catch or throw state and when it is tinted green it is in a throw state.

 1

Figure 1: Screenshot of the Simulator

This shot shows David juggling 32 balls in the simulator. One can clearly identify his
hands (red) and the 32 cyan balls. Based on the tinting of the screen, one can see that the

left hand is not in a catch state, while the right hand is.

Module Structure

 The main module of the simulator is the VIRTUAL_JUGGLING module. This
model receives the VGA signal of the camera image and performs all necessary
processing before the signal is sent to the output. To accomplish this, it contains
instantiations of the major blocks of the system.
 Within this module are many wires that will henceforth be grouped for simplicity.
These wires come in three basic flavors: video signals, 32-bit vectors, and narrow logic
signals. The video signals are composed of three 8-bit color channels, four single-bit
control signals (sync, blank, hsync, vsync), and 11 and 10 bit hcount and vcount signals.
In general, all position and velocity measurements are carried as 32-bit vectors in which
the top 16 bits code the ‘x’ value and the bottom 16 bits code the ‘y’ value. Each of these
16 bit values is encoded as a signed, two’s-complement value with 5 fractional bits.
Finally, there are a few miscellaneous signals that represent their own unique codes. The
major modules of the system are shown below.

 2

Figure 2: System Block Diagram

This diagram shows the major modules of the system.

Camera Input Module
(by 6.111 staff and Chris Wilkens)

 The first block in the video pipeline translates the camera’s input signal into a
VGA signal. It decodes NTSC video from the camera and buffers it to the ZBT memory,
from which it is read out and formed into a VGA signal. This implementation uses the
ZBT buffering and output provided by the 6.111 staff with a few small modifications.
First, on the output end we downsample the image such that a pixel from the camera
occupies four pixels of the 1024x768 XGA display. This allows us to fill the entire output
frame with video from the camera. One advantageous result of this fact is that we need
not read from the ZBT frame buffer as frequently, which enables the second
modification. In order to do color comparisons, we modify the existing implementation to
buffer 18 bits of information for each pixel. This gives us 8 bits of the Y and Cr values
and 2 bits of the Cb (the Cb is not necessary for our color detection.) Since the Video
Processor does color detection based on the Y and Cr signals, we keep these signals intact
instead of producing reasonable RGB values at the output of this module. Once this

 3

module has generated the proper video signals, they are subsequently sent to the Video
Processor.

Controller
(by David Rush)

The Controller module takes in a number of signals from the labkit and the video
processor and outputs signals synchronized to new_frame_sync that can be used by the
ball manager.

The inputs to the Controller are clk, new_frame_raw, reset_raw, add_ball_raw,
dec_ball_raw and gravity_raw. The clock runs at 65MHZ and comes from the labkit.
The one bit new_frame_raw signal comes from the Video Processing module and signals
that a new frame has started. The reset_raw is a one bit inverted (so pressed is high and
depressed is low) and debounced button from the labkit as are the add_ball_raw and
dec_ball_raw signals. The gravity_raw is an eight bit signal from the debounced
switches on the labkit.

The outputs of the Controller are new_fram_sync, reset_sync, add_ball_sync,
dec_ball_sync and gravity_sync. They are each one bit except for the eight bit
gravity_sync signal and are all sent into the Ball Manager to be used by the Physics
module and Display module.

Figure 3: Controller Simulation Results

The controller receives signals at different times during the frame and synchronizes all
outputs with new_frame_sync

Within the Controller each of the output signals are created using the input

signals. Within an always block that triggers at each positive edge of the 65 MHZ clock
a number of signals are assigned using non blocking assignments. The new_frame_sync
is assigned to new_frame_raw and gravity_sync is assigned to gravity_raw if
new_frame_raw or it remains gravity_sync. The reset_sync signal is set to one if
new_frame_raw and reset_hold are high otherwise zero. The reset_hold signal is
assigned to one if reset_raw is high otherwise it is set to zero if new_frame_raw is high
otherwise it is left reset_hold. The process creates a reset_sync signal that is set to one

 4

for one clock cycle synchronized with new_frame_sync if the reset button was pressed
any time during the preceding frame. The same process was used to create the
add_ball_sync and dec_ball_sync signals except the _hold signals were replaced with
add_ball_hold and dec_ball_hold. Also for the assignment of add_ball_hold and
dec_ball_hold the analogous reset_raw signal was replaced with an add_ball_pulse and a
dec_ball_pulse which came from sending the add_ball_raw and dec_ball_raw signals
into their own Level to Pulse module instances to return the add_ball_pulse and
dec_ball_pulse signals that are high for only 1 clock cycle regardless of how long the
buttons were held down. Registers were created to hold values for each of the signals
that were assigned within the always block.

Level to Pulse

The level to pulse takes in an input that is high for any number of cycles and

outputs a signal that is high for only the first clock edge after the input signal went high.
The inputs are clk and level_in and the output is pulse_out. At each positive edge

of the clock level_hold is assigned to level_in and pulse out is assigned to the
combination of level_in and not level_hold. A register is used to store each level_hold
and pulse_out.

Figure 4: Level to Pulse simulation results

The level to pulse receives a level input and returns a one clock pulse

Video Processor
(by Chris Wilkens)

The VJ_VIDEO_PROCESSOR module processes the VGA signal from the
camera modules and determines the location and action of the juggler’s hands. It
determines the position and velocity information and forwards them to the appropriate
modules. When the positions are ready for a given frame, it raises the new_frame signal
to notify the ball manager that it can begin its physics calculations.

 5

Figure 5: Video Processor Block Diagram

This diagram shows the modules of the Video Processor.

As seen in the block diagram, the specific implementation of the video processor
is composed of two major parts: the hand detector, which locates the hands in the image,
and the logic parser, which translates a series of positions into action signals that can be
sent to the ball manager. In addition to providing the proper signals to these modules, the
video processor modifies the output by tinting the flesh-colored pixels red. Finally, the
new_frame signal is simply the AND of the logic_ready signals from the two hand logic
modules.

Hand Detector

 The hand detector module of the video processor watches the streaming VGA
signal to calculate the location of the hands. Abstracted as a black box, this module takes
the VGA color signal as input and returns the positions of the hands in the frame when
the frame has been completely streamed. For each pixel, it also raises the hand_pixel

 6

signal whenever the current pixel belongs to the hand (to allow the video processor to
change its color.) In order to signal other components of the video processor, a pos_ready
pulse is raised for one clock cycle when the hand positions are ready.

For our implementation, we define the position of the left hand to be the center of
mass of all flesh-colored pixels in the left half of the screen (or right half for the right
hand.) Each coordinate of each hand is calculated by keeping a running sum of the
appropriate coordinate values along with a count of the number of elements in the sum.
Once the frame has passed, these two numbers in the sums are divided and the result
becomes the appropriate coordinate of the hand. This is accomplished with four instances
of a weighted average module (one for each coordinate to be calculated.) Due to timing
delays through the divide module, it takes 32 cycles after the end of the frame in order to
perform the division. Thus, in order to ensure that the process has ample time to
complete, we wait many clock cycles until the vertical scan reaches line 770 before
raising the pos_ready signal. The output position is registered when pos_ready is raised,
and the internal sums are reset on the vertical sync signal.

Hand Logic

Two instances of the Hand Logic module sit beside the hand detector in the video
processor. They watch the hand positions to determine whether or not the hand is
throwing or catching. Abstracted, each module takes the new position and pos_ready
signal and produces the hand velocity and logic signals. The hand logic signals consist of
two bits, a catch bit and a throw bit (hand_logic[1] is throw, hand_logic[0] is catch.) The
catch bit will be high whenever the hand is in a state in which the system deems that the
hand could be catching, leaving the details of the catch timing up to the ball manager. In
contrast, the throw signal is a pulse held high for only a single frame. When these values
are computed, the module raises a logic_ready signal to notify others that the logic has
been calculated.
 This is, perhaps, the most interesting part of the video processor because it has the
most room for modifications. There are an infinite number of ways one could determine a
throw or a catch, but we chose a fairly simple implementation. First, we decided that if
the hand was moving up, then it wasn’t catching a ball. This seemed reasonable, though
we realized that it isn’t entirely true in real life. That said, we set a threshold (slightly
positive to accommodate noise) for which the hand would be considered catching if its
velocity was under that value. Another aspect we noted was that the positions tended to
fluctuate due to noise. To compensate for this, we maintained a history of the last four
velocities and took the average in order to compute the “actual” velocity of the juggler’s
hand.
 The throw signal was more complicated. If we assumed that the juggler was not
holding the balls, then a throw would occur by conservation of momentum whenever the
hand decelerated. Thus, we decided to locate throws based on the acceleration of the
hand. As with the velocity, we buffered the last four accelerations to get an average and
then put a threshold on that average. Our final dilemma was that the throws would tend to
“bounce,” just like a metal button. For this, we effectively debounced the throw signal by
specifying that the hand couldn’t throw again until it had been out of the acceleration

 7

region for six consecutive frames. This effectively ensured that we only signaled one
throw per movement from the juggler, and the appropriate output signal was raised for a
single frame.

Ultimately, these values required one clock cycle to produce, so the hand logic
module introduces a one cycle delay after the pos_ready signal before all the hand
information is ready.

Ball Manager

The Ball Manager takes in signals from the Video Processor and Controller and

based on those signals and the balls’ current states determines what to do next with the
balls and then it sends to the output module if and where to display the balls. The ball
manager is composed of three submodules and a dual port 70 bit by 32 address Block
RAM (BRAM).

The inputs to the Ball Manager are a 65 MHZ clock from the labkit, a reset, an
add_ball, a dec_ball, and an eight bit gravity signal from the Controller all synchronized
to a new_frame signal which also comes from the controller. There are also signals from
the video processor which are left_throw, right_throw, l_h_catch, r_h_catch, l_h_y,
l_h_x, l_h_y_vel, l_h_x_vel, r_h_y, r_h_x, r_h_y_vel, and r_h_x_vel. The clock
determines the cycles per second of the system. The one bit reset signal returns the ball
manager to its default state. The one bit add_ball and dec_ball signals add and remove
balls from the system with a minimum of zero and a maximum of 31 balls. The eight bit
gravity signal determines how fast to balls accelerate in the downward direction. The one
bit new_frame signals to the system that a new frame is starting and all the balls’ states
need to be recalculated. The left_throw, right_throw, l_h_catch and r_h_catch are each
one bit signals indicating that the left and right hands are in a throw or catch state for that
frame. The signals l_h_y, l_h_x, l_h_y_vel, l_h_x_vel, r_h_y, r_h_x, r_h_y_vel, and
r_h_x_vel are each 16 bit signed values and give the left and right hand’s y position, x
position, y velocity and x velocity with new values being supplied each frame.

The outputs of the Ball Manager are all sent to the output module and are
display_enb, ball_pos_out, ball_number, and write_request. The one bit display_enb
signal indicates that the ball for which information is currently being sent is to be
displayed. The ball_pos_out is a 32 bit signals with the x position in the upper 16 bits
and the y position in the lower 16 bits. The ball_number is a 5 bit signal indication
which ball’s information is currently being sent and the one bit write_request indicates
that the ball manager wants the information it is sending to be taken by the output
module. The output module can be thought of as a memory with the write_request signal
equivalent to the write enable and the other signals the values that are to be stored in the
memory.

 8

Figure 6: Ball Manager Simulation Results

The ball manager takes in all its inputs and sends values to the output module at the
appropriate times. After a throw between clock cycles 150 and 300 the outputs

write_request as well as display enable and a ball position are given at clock number 397
for ball number zero since it was thrown from the right hand and is in the air and thus

needs to be displayed by the display module

Within the Ball Manager the Physics and Display modules are instantiated and
wired together. The clock, reset, add_ball, dec_ball, gravity, new_frame, left_throw,
right_throw, l_h_catch, r_h_catch, l_h_y, l_h_x, l_h_y_vel, l_h_x_vel, r_h_y, r_h_x,
r_h_y_vel, and r_h_x_vel signals are all wire directly to up as inputs to the Physics
module. The 70 bit ball_info_in from the output of the BRAM is also wired as an input
of the Physics module. The outputs of the Physics module are the 70 bit ball_info_out,
five bit count_addr and one bit wea, which are wired up to the BRAM, and the one bit
done_calc which is sent as an input to the Display module.

The inputs of the Display module are wired up to the 65 MHZ clock. The one bit
reset and new_frame are taken directly from the inputs to the Ball Manager and the one
bit done_calc is wired from the output of the Physics module and 70 bit info_from_bram
is wired to the b port of the dual port BRAM. The outputs of the Display module are the
five bit bram_addr_b which is wired to the “b” port address of the BRAM, the 32 bit
ball_pos_out which is wire directly to the Ball Manager output as are the one bit
display_enb, five bit ball_number, and one bit write_request.

The 70 bit wide by 32 address deep Block RAM (BRAM) is wired within the Ball
Manager as well. Both the “a” and “b” clocks are wired to the 65 MHZ clock. The a port
address is wired to five bit count_addr from the Physics module and the 70 bit data input
is wired to the ball_info_out (out of the Physics module). The 70 bit “a” output is wired
to ball_info_out and sent to the Physics module. The five bit “b” address is wired to the
bram_addr_b from the Display module and the 70 bit “b” output is wired to the
info_from_bram that is given to the Display module.

 9

Figure 7: Ball Manager Block Diagram

This diagram shows the smaller modules of the ball manager.

Block Random Access Memory (BRAM)

The dual port Block Random Access Memory stores the state of each ball in its 70

bit wide by 32 location memory. The “a” port is read/write and is used by the Physics
module to retrieve ball data from the BRAM and store the new ball data back into it. The
“b” port is read only and is used by the Display module to take the ball data and extract
the current position and state and send it onto the output module.

Physics

The Physics module is the biggest and most complex part of the ball controller.
The calculations for each ball’s position, velocity and state are done within this module
and results are stored in a dual port 70 bit by 32 location BRAM. The Physics module
takes in inputs from the Controller, the Video Processor and the BRAM and it outputs

 10

data to the BRAM and a signal indicating the calculations for that frame are done. The
Controller inputs (wired in through the Ball Manager) control whether the system should
be reset, a new frame should be processed whether a ball should be added or removed
from the system and what gravity is. Video Processor inputs (also wired in through the
Ball Manager) give the left and right hand’s x and y positions and velocities as well as
the left and right hand throw and catch signals. The input from the BRAM gives each
ball’s current state, position and velocity. The outputs determine if, what and where in
the BRAM the ball data should be stored as well as indicate if the Physics module is done
with its calculations and storage for the frame.

The inputs to the Physics module are a 65 MHZ clock from the labkit, a reset, an
add_ball, a dec_ball, and an eight bit gravity signal from the Controller all synchronized
to a new_frame signal which also comes from the controller. There are also signals from
the video processor which are left_throw, right_throw, l_h_catch, r_h_catch, l_h_y,
l_h_x, l_h_y_vel, l_h_x_vel, r_h_y, r_h_x, r_h_y_vel, and r_h_x_vel. The final input is
ball_info_in from the BRAM. The clock determines the cycles per second of the system.
The one bit reset signal returns the Physics module to its default state. The one bit
add_ball and dec_ball signals add and remove balls from the system with a minimum of
zero and a maximum of 31 balls. The eight bit gravity signal determines how fast to balls
accelerate in the downward direction. The one bit new_frame signals to the system that a
new frame is starting and all the balls’ states need to be recalculated. The left_throw,
right_throw, l_h_catch and r_h_catch are each one bit signals indicating that the left and
right hands are in a throw or catch state for that frame. The signals l_h_y, l_h_x,
l_h_y_vel, l_h_x_vel, r_h_y, r_h_x, r_h_y_vel, and r_h_x_vel are each 16 bit signed
values and give the left and right hand’s y position, x position, y velocity and x velocity
with new values being supplied each frame. The 70 bit ball_info_in from the BRAM is
contains each balls’ state, position and velocity and is used to determine the new state,
position and velocity in combination with the inputs.

The outputs for the Physics module are ball_info_out, count_addr, done_calc and
wea. The 70 bit ball_info_out signal is the new position, velocity and state of each ball
and the count_addr is the current ball that is being updated and written back into memory
at the address corresponding to it’s ball number. The done_calc signal is a one bit signal
to indicate to the display module that all the physics for the frame has been calculated.
The wea is the write enable for the BRAM.

A number of parameters were used to simplify expressions and keep the code
from being cluttered with numbers. They are ball_w, ball_h, hand_h, hand_w, screenw,
screenh, ball_right, ball_left, ball_down, ball_up, read_state and write_state. The first
six are just the sizes of the balls, hands and screen and can be changed to optimize the
system. Bigger hands made it easier to catch. Bigger balls meant they hit walls sooner
an different screen sizes would have affected the display. The ball_ parameters are the
states of the balls when moving around when in play and not in the hands. The _states
signal if the system is in a read state (reading from BRAM) or write state (writing to
BRAM).

The first thing the system does is parse the incoming 70 bit ball_info_in and
assign in_play_in, in_hand_in, in_left_in, in_right_in, y_dir_in, x_dir_in, ball_y_in,
ball_x_in, y_vel_in, and x_vel_in based on those signals. The first six signals are each
one bit and are stored in the high six bits of the incoming signal. The remaining signals

 11

are each 16 bits and are stored in the given order within the ball_info_in. The Physics
module takes these signals as input and creates new values for each in_play_out,
in_hand_out and so on and appends them together in a 70 bit ball_info_out that is stored
back into the BRAM for each ball.

On the positive edge of the 65 MHZ clock the always block is evaluated. If there
is a new_frame, done_calc, count_addr, wea and read_hold are set to zero. The
read_hold signal holds the system in the read state for two cycles so the data is retrieved
and assigned to the ball input values before going into the write state. On new_frame
count_divider is set to three. Count divider is a signal that counts to 2 and each time it
reaches two it is set back to zero and the count_addr is incremented (each ball takes three
clock cycles in the Physics module and this ensures that each ball gets three cycles).
Setting the count_divider to three here means that when the first time it incremented after
a reset it will return to the zero count that it needs to start with after its initial increment.
Also on the new_frame, reset_level is set to the reset input, left_throw_level is set to
left_throw, right_throw_level is set to right_throw, add_ball_level is set to add_ball, and
dec_ball_level is set to dec_ball, this ensures that each of those signals values are valid
for the entire frame. The which_hand is also flipped if the add_ball signal is high. This
signal determines which hand each new ball is placed into (alternating each time a ball is
added). If it’s not a new_frame then if the count_addr signal has reached 31 then the
done_calc signal is set high and no more physics is calculated that frame. Else if
done_calc is not high the count_divider is incremented or set back to zero if it equals
two, the count_addr is incremented if count_divider is equal to two or it remains
unchanged and the read_or_write case statement is evauated. If the system is in the
read_state the read_hold bit is flipped, wea is set to zero and read_or_write is set to
read_hold. This means that after two cycles in the read state it will enter the write state.

In the write state the state read_or_write is set back to the read_state and wea is
set to one since at the rising edge of the next clock there will be new data ready to write
into the BRAM.

The rest of the write state within the Physics module is a large if else block that
assigns the output values that are put assigned into ball_info_out and stored back into the
BRAM. The overview is that if the system is being reset put balls zero and one in the
right hand and ball two in the left and leave the rest out of the system. If the ball is in
play then if the dec_ball_level is high take the ball out of play and set dec_ball_level
back to zero so no more balls get removed. Otherwise if the ball is in a hand if it’s in the
right hand, the right hand is in a throw state and a fall hasn’t already been thrown
(right_thrown signal is low) then have the ball in play, don’t have it in a hand, assign it
the hand’s current position, velocity and direction and raise the right_thrown signal so no
more balls are thrown this frame out of the right hand. The analogous case is true for the
left hand. Otherwise if the ball is in a hand and no hand is throwing, assign all the
outputs to the original inputs since nothing is changing for them this frame.

If the ball is not in a hand but is in play and is not removed leave it in play and check to
see if it has been caught. It is caught if the right or left hand is in a catch state, the y
direction of the ball is down and the ball is within a given rectangle area above the center
of the hand that can be set by the hand width and length. It is placed in the hand that it is
caught in if it is caught otherwise the new position velocity and direction of ball are

 12

calculated. In the in play, not removed, not caught state the x and y velocities and
positions are calculated separately depending on which direction the ball is moving. If
the x_dir_in is ball_right the balls x postion if it’s input position plus it’s input velocity.
The new x velocity remains the same unless it comes within a distance of two times the
velocity of the right wall and then it is halved and the x direction is also switched. If the
ball is moving left the new ball_x_out is the ball_x_in minus the x_vel_in and the
velocity and direction remain the same unless the ball is within two times the x_vel_in in
which case the x direction is flipped and the velocity is halved. The y direction and
velocity are done similarly except if the ball is moving down the balls position is the old
position plus the velocity and the direction is the same unless it comes within two times
the y velocity of the bottom of the screen in which case the direction changes and the
velocity does not. Otherwise the velocity is updated by adding gravity to it each frame.
If the ball is moving up the new position is the input position minus the input velocity.
The direction remains the same unless the gravity is greater than the current velocity or
the ball comes within two times the velocity of the top of the screen. In the later case the
velocity is set to one pixel per frame. The velocity in this state is updated by subtracting
gravity from the input velocity.

If the ball is not in play then if a ball is added (add_ball_level) is high the
in_play_out and in_hand_out bits are set high and the in_left_out and in_right_out are set
to which_hand and ~which_hand respectively The rest of the outputs. The rest of the
output values are set to zero as is add_ball_level so no more balls are added that frame.
If the ball is not in play and no ball is added then all the output signals are set to zero.

Display

When triggered to do so the Display module reads through the BRAM memory

and extracts the balls’ positions and logic to send onto the output module along with
which ball that data is for so it can know if and where to display each of the balls.

The inputs to the display are the clock, reset, new_frame, done_calc and info_from_bram
signals. The clock is 65 MHZ from the labkit. The reset is synchronized to new_frame
and both come from the controller. The done_calc signal comes from the Physics
module and signals that the Physics has been calculated and stored for this frame and that
the Display module can begin extracting the needed data to give to the output module.
The info_from_bram is a 70 bit signal holding all the information about each ball that the
Display module parses and sends to the output module.

The outputs are bram_addr_b, ball_pos_out, display_enb, ball_number and
write_request. The five bit bram_addr_b is the address the data is going to come from
out of the BRAM. The ball_pos_out is the 32 bit signal with the x position of the current
ball stored in the high 16 bits and the y position in the low 16 bits. The diplay_enb is a
one bit signal that determines that particular ball is to be displayed. The five bit
ball_number is the number corresponding to the ball for which the current position and
display logic are being outputted. The write_request is a one bit signal sent to the Output
module which indicates that the data coming in is valid and should be stored.

 13

Registers were created for each of the outputs and three internally used signals
since all are assigned in a procedural block. The three internally used signals are a one
bit stop_calc that indicates that all 31 of the balls that can be used have been processed
and the Display module should wait for a new_frame to do anything. The five bit
ball_number_hold is used to store the bram_addr_b signal before it is passed onto
ball_number to pipeline the process since it takes a clock cycle to retrieve the data and
another cycle to do the logic on it. A write_request_hold register is used for the same
reason.

Within the procedural block a number of if statement may be evaluated. If reset it
high stop_calc, bram_addr_b, write_request and ball_number are all set to zero since the
system is going to be reset and old values in the BRAM don’t matter so we’ll wait until
they’ve been rewritten during the reset frame before giving the Output module anything
to display. The system will wait until it receives a done_calc from the Physics module
before doing anything. Else if the reset isn’t high if stop_calc is high the system is in a
waiting state for new frame. The stop_calc signal is set back to zero if new_frame is high
otherwise it takes on its old value. The same happens for bram_addr_b and ball_number.
The write_request is set to zero. Else if neither reset or stop calc then if done_calc is
high (signaling the Physics module is completed with calculations and writing into
memory for the frame) the following happens: bram_addr_b is incremented, stop_calc is
set to one if ball_number equals 31 (which means all 31 balls have been processed and
their data sent on) otherwise it stays zero, write_request_hold is set to 0 if ball_number
equals 30 (which means all 31 balls will have been processed and their data sent on…not
32 balls due to pipelining) otherwise one, write_request is assigned to
write_request_hold, ball_pos_out is assigned to the appended bits 47-32 and 63-48 from
info_from_bram (where the x and y positions are stored respectively), display_enb is set
to zero if ball_number equals 31 otherwise it is set to the logical value of bits 69 and not
68 or 67 from info_from_bram (in play, in left hand and in right hand bits respectively)
and ball_number_hold is set to bram_addr_b.

Output Module
(by Chris Wilkens)

The fourth major block of the implementation is the output module. This module
sits in the path of the outgoing VGA signal and overlays the hands and balls. In our
implementation, this is accomplished by instantiating a sprite for each object to be
displayed. For the two hands, we instantiate two separate directly within the output
module and connect them to the position signals from the video processor. However, the
situation is slightly more complicated for the 32 balls. From the output module’s
perspective, these are implemented using a single “aggregate sprite” that can be queried
for a pixel location and returns the color based on the location of all 32 balls in the
system. This requires a set of connections resembling a memory, which are received from
the ball manager’s display module and passed directly through to the aggregate ball sprite
module.

 14

Figure 8: Output Block Diagram

This diagram shows the structure of the output module.

Aggregate Ball Sprite Memory

 The ball sprite memory module acts like a memory for the 32 output ball sprites.
From the perspective of the output module, it behaves like a single sprite that can be
queried for a pixel value. However, it also has a set of “memory” signals that can be used
to configure the output. The ball manager uses these signals to sequentially set the
positions of the 32 balls. On a given cycle, the ball manager can supply a write enable, a
ball number (similar to a memory address,) the position in which the specified ball is to
be displayed (similar to memory data,) and whether or not the specified ball is actually to
appear on the screen (more memory data.) This information is stored internally such that
when the output module queries for a certain location on the screen, the sprite memory
can check each ball simultaneously to determine whether or not it claims the given pixel.
 We implemented this module as an array of sprite modules. The connections to
these sprite modules are large arrays of registers that hold the position and enable signals
for the balls. On cycles when the write enable bit is high, this module stores the position
and enable signals in the registers for the appropriate ball number. As a consequence, the
position of that sprite is updated, such that when a pixel request comes, the module can

 15

simply OR the outputs of each of its 32 sprites, allowing the output module to see it as
one sprite.

Testing

Our testing strategy for the project consisted of three facets: independent testing
of the video modules in hardware, independent testing of the ball manager in simulation,
and combined testing of the modules in hardware. For the video modules, we
incrementally tested them in hardware because simulation, in general, would be
prohibitively difficult. The first step was to demonstrate that we could buffer and display
the proper video. Because we were originally using an older module provided by the
staff, this process took time. We did not reach our final design until the staff released a
new module that buffered video to the ZBT instead of to the BRAM. At this point, what
was supposed to be a simple set of modifications to the existing verilog were confounded
by what appeared to be issues computing the address. Once these were fixed, however,
the video was ready to go.

The next step, though it was started concurrently with testing video input, was to
develop the hand detector module that located the hands on the screen. For this, we first
tested thresholds for detecting flesh colored pixels. By connecting our thresholds to the
switches of the labkit and coloring the selected pixels red, we were able to tweak the
parameters and determine good limits for the Y and Cr channels of the input. With the
critical pixels selected, it remained to compute the appropriate centers of mass. This was
implemented and debugged by connecting the positions of the hands to sprites in order to
display them in the video. This process was marginally complicated because the
calculations required many clock cycles, but seemed simple enough. However, it proved
to be our first major but silly snag. For some inexplicable reason, the positions were not
changing, and it wasn’t clear why. Simulation testing revealed that the hand detector
worked according to specification, so it was unclear why things appeared to break on
synthesis. After an exorbitantly large amount of debugging, it was discovered that the
clock signal being passed to the hand detector was not in fact a valid signal at all and that
the synthesizer had missed it. Once that was fixed, the module worked as promised.

With the position information, it was necessary to compute the hand logic values.
Our first attempt was to compute the velocity of the hand by taking the difference with
the last data point. This, however, proved to be a torturous task, as early attempts to
subtract the two positions simply yielded zero velocities. After days of debugging, it was
finally determined that the source of the error was the pos_ready signal. This signal was
only supposed to be high for one clock cycle per frame in order to notify the hand logic
module to calculate the velocities. Instead, the signal was high for many clock cycles,
effectively erasing the memory of the logic calculator. Unfortunately, this took days of
debugging to discover. Again, once it was discovered, everything ran smoothly. We then
proceeded to hook the throw and catch signals up to simple logic for testing purposes. We
also modified the video processor to tint the screen whenever a throw or a catch was
detected. This was an extremely simple modification that allowed us to clearly visualize
and tune the hand logic. Using this method, we iterated on the original, simple logic to
produce more complicated throw and catch algorithms.

 16

Concurrent with development of the video processor was development of the
output module. The first stage of testing was to simply wire the hand sprites to the
positions generated by the video processor. However, the ball sprites remained untested.
For this, we created a test jig that cycled through each ball and modified it for each
frame. This allowed us to test the sprite “memory” aspect of the module independent of
the ball manager. With this testing complete, the video processor and output modules
were ready for integration.

While Chris was developing the video input an output, I (David Rush) was
developing the ball manager. The biggest thing I learned during the creation of the
juggling simulator is that small modules are much better. Building a big system and
trying to test it is a disaster because many things are likely to be wrong. Basic
functionality should first be established with each small component before more
complexity should be added. The basic inputs should be tested first and only once they
are working should more complex inputs be added. I made the mistake of writing a huge
Physics module and had no way but to enter a combination of inputs into the simulator
and check to see that nothing came out. I ended up wiring every signal I had to an output
to check that any of them were correct and try to figure out where along the chain there
was a problem. I iterated this process dozens of times because there were dozens of
mistakes that were made. Velocities were wired to position outputs, mot all the outputs
were assigned in the right places, wires were missing or mismatched, some code didn’t
do what I thought and many times my timing was off by a clock cycle. After many,
many iterations of trying to simulate the Physics module and getting a little more correct
each time after hours of debugging I learned that small was better and each of the
subsequent modules I wrote were much smaller and easier to debug.

For each of the modules within the Ball Manager testing in simulation was the
easiest way to initially see if the desired results were had. The level to pulse module was
easiest and it can be seen in it’s graph that level signals were put in and pulses came out.

The Controller was similar in that it had a limited number of inputs and the
expected outputs could easily be checked against the actual outputs. If the outputs
weren’t all synchronized it wasn’t working right.

Within the display module I (David) found in simulation that my ball addresses
weren’t matching up with the right data and after drawing out the timing diagrams I
realized I needed a two clock cycle delay between sending the input address and having
the valid data to give to the output module. I pipelined the process by buffering the ball
number and write enable and that way each ball only took one clock cycle even if the first
ball data didn’t come out for 3 cycles.

After testing in simulation I visually tested the Ball Manager since looking at 32
bits worth of position data can’t very well tell you if the ball is being displayed at the
right position after many seconds since the frame updates 60 times per second. At first it
was noticed that all the balls were in the upper left of the screen and moving only a little
bit. After checking the position calculations I noticed that I had wired the output position
bits to the velocity which was always much smaller. It was later noticed that one ball was
always displayed and never moved and that was due to an off by one error in the display
module. The balls were also very jittery at one point and it was found to be because one
signal wasn’t set for an entire frame when it should have been.

 17

After 100 hours of work there were many more errors and bugs that were worked
through and in the end though the system worked. This is just a highlight of some of the
more interesting errors.

Conclusion

 Overall, this project provided an excellent demonstration of the principles of
system design, including modularity and simplicity. In the end, the project worked fairly
well. Though it couldn’t truly simulate the experience of juggling real balls, it could
reliably simulate simple juggling moves. Moreover, when configured properly, it was
simple enough that even those who couldn’t juggle in real life could juggle in the
simulator. The net result was a pleasantly functional system.

One of the most prominent design principles in the project was the supremacy of
simplicity in system design. For example, our method of hand detection was hardly
revolutionary, and calculating the center of mass of the pixels on each side of the screen
was very straightforward. However, despite the lack of complexity, this method of hand
detection was extremely reliable when the proper precautions were taken. Another simple
yet innovative idea was displaying the hand logic by tinting the screen. The
implementation was simple – only one line of verilog code was modified – but it allowed
the untrained user to gain a much better understanding of the system’s interpretation of
his or her movements. It also greatly facilitated debugging, as it provided insight into
what the system was “thinking.” Yet another innovation of simplicity was the idea to
allow the user to fix the release velocities of the balls when they are thrown. While this
may significantly detract from the usefulness of the simulator for an experienced user, it
greatly enhances playability for novices and allows them to become acclimated to the
system before enabling the more complex mode.
 While the simulator performs fairly well, there are a number of things that could
be changed. If one were to rebuild the system from scratch, the system should be better
modularized, particularly the ball manager. Also, as with any similar system, there are an
infinite number of ways to tweak the video processing that could potentially improve the
project’s operation. In addition to enhancements to the existing foundation, there are
many small additions that could be made. For instance, there were many corner cases that
we largely ignored, such as balls on the floor and balls flying above the ceiling. The
graphics used in the simulation were also fairly basic and could certainly use
improvement. Overall, however, the project was successful. None of its shortcomings
dramatically affected its functionality, and it was an enjoyable project to build and use.

 18

Appendix: Verilog Source
 This appendix contains the verilog source for our modules. The modules
described above are in files as follows:
System Block Associated Files
General Modules Labkit.v

Debounce.v
Display_16hex.v
Virtual_juggling.v

Camera Input Ntsc2zbt.v
Video_decoder.v
Video_zbt.v
6111zbt.v

Controller Vj_controller.v
Vj_level_to_pulse.v

Video Processor Vj_video_processor.v
Divide.v
Yuv_to_rgb.v

Ball Manager Vj_ball_manager.v
Vj_bm_physics.v
Vj_bm_display.v
Bram70x32.v

Output Vj_output.v

 19

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

//
// File: zbt_6111_sample.v
// Date: 26-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Sample code for the MIT 6.111 labkit demonstrating use of the ZBT
// memories for video display. Video input from the NTSC digitizer is
// displayed within an XGA 1024x768 window. One ZBT memory (ram0) is used
// as the video frame buffer, with 8 bits used per pixel (black & white).
//
// Since the ZBT is read once for every four pixels, this frees up time for
// data to be stored to the ZBT during other pixel times. The NTSC decoder
// runs at 27 MHz, whereas the XGA runs at 65 MHz, so we synchronize
// signals between the two (see ntsc2zbt.v) and let the NTSC data be
// stored to ZBT memory whenever it is available, during cycles when
// pixel reads are not being performed.
//
// We use a very simple ZBT interface, which does not involve any clock
// generation or hiding of the pipelining. See zbt_6111.v for more info.
//
// switch[7] selects between display of NTSC video and test bars
// switch[6] is used for testing the NTSC decoder
// switch[1] selects between test bar periods; these are stored to ZBT
// during blanking periods
// switch[0] selects vertical test bars (hardwired; not stored in ZBT)

///
//
// 6.111 FPGA Labkit -- Template Toplevel Module
//
// For Labkit Revision 004
//
//
// Created: October 31, 2004, from revision 003 file
// Author: Nathan Ickes
//
///
//
// CHANGES FOR BOARD REVISION 004
//
// 1) Added signals for logic analyzer pods 2-4.

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (1 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

// 2) Expanded "tv_in_ycrcb" to 20 bits.
// 3) Renamed "tv_out_data" to "tv_out_i2c_data" and "tv_out_sclk" to
// "tv_out_i2c_clock".
// 4) Reversed disp_data_in and disp_data_out signals, so that "out" is an
// output of the FPGA, and "in" is an input.
//
// CHANGES FOR BOARD REVISION 003
//
// 1) Combined flash chip enables into a single signal, flash_ce_b.
//
// CHANGES FOR BOARD REVISION 002
//
// 1) Added SRAM clock feedback path input and output
// 2) Renamed "mousedata" to "mouse_data"
// 3) Renamed some ZBT memory signals. Parity bits are now incorporated into
// the data bus, and the byte write enables have been combined into the
// 4-bit ram#_bwe_b bus.
// 4) Removed the "systemace_clock" net, since the SystemACE clock is now
// hardwired on the PCB to the oscillator.
//
///
//
// Complete change history (including bug fixes)
//
// 2005-Sep-09: Added missing default assignments to "ac97_sdata_out",
// "disp_data_out", "analyzer[2-3]_clock" and
// "analyzer[2-3]_data".
//
// 2005-Jan-23: Reduced flash address bus to 24 bits, to match 128Mb devices
// actually populated on the boards. (The boards support up to
// 256Mb devices, with 25 address lines.)
//
// 2004-Oct-31: Adapted to new revision 004 board.
//
// 2004-May-01: Changed "disp_data_in" to be an output, and gave it a default
// value. (Previous versions of this file declared this port to
// be an input.)
//
// 2004-Apr-29: Reduced SRAM address busses to 19 bits, to match 18Mb devices
// actually populated on the boards. (The boards support up to
// 72Mb devices, with 21 address lines.)
//
// 2004-Apr-29: Change history started

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (2 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

//
///

module labkit(beep, audio_reset_b,
 ac97_sdata_out, ac97_sdata_in, ac97_synch,
 ac97_bit_clock,

 vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
 vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
 vga_out_vsync,

 tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
 tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
 tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

 tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
 tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
 tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
 tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

 ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,
 ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,

 ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
 ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,

 clock_feedback_out, clock_feedback_in,

 flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
 flash_reset_b, flash_sts, flash_byte_b,

 rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

 mouse_clock, mouse_data, keyboard_clock, keyboard_data,

 clock_27mhz, clock1, clock2,

 disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_in,

 button0, button1, button2, button3, button_enter, button_right,
 button_left, button_down, button_up,

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (3 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 switch,

 led,

 user1, user2, user3, user4,

 daughtercard,

 systemace_data, systemace_address, systemace_ce_b,
 systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,

 analyzer1_data, analyzer1_clock,
 analyzer2_data, analyzer2_clock,
 analyzer3_data, analyzer3_clock,
 analyzer4_data, analyzer4_clock);

 output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
 input ac97_bit_clock, ac97_sdata_in;

 output [7:0] vga_out_red, vga_out_green, vga_out_blue;
 output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
 vga_out_hsync, vga_out_vsync;

 output [9:0] tv_out_ycrcb;
 output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
 tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
 tv_out_subcar_reset;

 input [19:0] tv_in_ycrcb;
 input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,
 tv_in_hff, tv_in_aff;
 output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
 tv_in_reset_b, tv_in_clock;
 inout tv_in_i2c_data;

 inout [35:0] ram0_data;
 output [18:0] ram0_address;
 output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;
 output [3:0] ram0_bwe_b;

 inout [35:0] ram1_data;
 output [18:0] ram1_address;
 output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (4 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 output [3:0] ram1_bwe_b;

 input clock_feedback_in;
 output clock_feedback_out;

 inout [15:0] flash_data;
 output [23:0] flash_address;
 output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
 input flash_sts;

 output rs232_txd, rs232_rts;
 input rs232_rxd, rs232_cts;

 input mouse_clock, mouse_data, keyboard_clock, keyboard_data;

 input clock_27mhz, clock1, clock2;

 output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
 input disp_data_in;
 output disp_data_out;

 input button0, button1, button2, button3, button_enter, button_right,
 button_left, button_down, button_up;
 input [7:0] switch;
 output [7:0] led;

 inout [31:0] user1, user2, user3, user4;

 inout [43:0] daughtercard;

 inout [15:0] systemace_data;
 output [6:0] systemace_address;
 output systemace_ce_b, systemace_we_b, systemace_oe_b;
 input systemace_irq, systemace_mpbrdy;

 output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
 analyzer4_data;
 output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;

 //
 //
 // I/O Assignments
 //

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (5 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 //

 // Audio Input and Output
 assign beep= 1'b0;
 assign audio_reset_b = 1'b0;
 assign ac97_synch = 1'b0;
 assign ac97_sdata_out = 1'b0;
/*
*/
 // ac97_sdata_in is an input

 // Video Output
 assign tv_out_ycrcb = 10'h0;
 assign tv_out_reset_b = 1'b0;
 assign tv_out_clock = 1'b0;
 assign tv_out_i2c_clock = 1'b0;
 assign tv_out_i2c_data = 1'b0;
 assign tv_out_pal_ntsc = 1'b0;
 assign tv_out_hsync_b = 1'b1;
 assign tv_out_vsync_b = 1'b1;
 assign tv_out_blank_b = 1'b1;
 assign tv_out_subcar_reset = 1'b0;

 // Video Input
 //assign tv_in_i2c_clock = 1'b0;
 assign tv_in_fifo_read = 1'b1;
 assign tv_in_fifo_clock = 1'b0;
 assign tv_in_iso = 1'b1;
 //assign tv_in_reset_b = 1'b0;
 assign tv_in_clock = clock_27mhz;//1'b0;
 //assign tv_in_i2c_data = 1'bZ;
 // tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
 // tv_in_aef, tv_in_hff, and tv_in_aff are inputs

 // SRAMs

/* change lines below to enable ZBT RAM bank0 */

/*
 assign ram0_data = 36'hZ;
 assign ram0_address = 19'h0;
 assign ram0_clk = 1'b0;
 assign ram0_we_b = 1'b1;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (6 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 assign ram0_cen_b = 1'b0; // clock enable
*/

/* enable RAM pins */

 assign ram0_ce_b = 1'b0;
 assign ram0_oe_b = 1'b0;
 assign ram0_adv_ld = 1'b0;
 assign ram0_bwe_b = 4'h0;

/**********/

 assign ram1_data = 36'hZ;
 assign ram1_address = 19'h0;
 assign ram1_adv_ld = 1'b0;
 assign ram1_clk = 1'b0;
 assign ram1_cen_b = 1'b1;
 assign ram1_ce_b = 1'b1;
 assign ram1_oe_b = 1'b1;
 assign ram1_we_b = 1'b1;
 assign ram1_bwe_b = 4'hF;

 assign clock_feedback_out = 1'b0;
 // clock_feedback_in is an input

 // Flash ROM
 assign flash_data = 16'hZ;
 assign flash_address = 24'h0;
 assign flash_ce_b = 1'b1;
 assign flash_oe_b = 1'b1;
 assign flash_we_b = 1'b1;
 assign flash_reset_b = 1'b0;
 assign flash_byte_b = 1'b1;
 // flash_sts is an input

 // RS-232 Interface
 assign rs232_txd = 1'b1;
 assign rs232_rts = 1'b1;
 // rs232_rxd and rs232_cts are inputs

 // PS/2 Ports
 // mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (7 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 // LED Displays
/*
 assign disp_blank = 1'b1;
 assign disp_clock = 1'b0;
 assign disp_rs = 1'b0;
 assign disp_ce_b = 1'b1;
 assign disp_reset_b = 1'b0;
 assign disp_data_out = 1'b0;
*/
 // disp_data_in is an input

 // Buttons, Switches, and Individual LEDs
 //lab3 assign led = 8'hFF;
 // button0, button1, button2, button3, button_enter, button_right,
 // button_left, button_down, button_up, and switches are inputs

 // User I/Os
 assign user1 = 32'hZ;
 assign user2 = 32'hZ;
 assign user3 = 32'hZ;
 assign user4 = 32'hZ;

 // Daughtercard Connectors
 assign daughtercard = 44'hZ;

 // SystemACE Microprocessor Port
 assign systemace_data = 16'hZ;
 assign systemace_address = 7'h0;
 assign systemace_ce_b = 1'b1;
 assign systemace_we_b = 1'b1;
 assign systemace_oe_b = 1'b1;
 // systemace_irq and systemace_mpbrdy are inputs

 // Logic Analyzer
 assign analyzer1_data = 16'h0;
 assign analyzer1_clock = 1'b1;
 assign analyzer2_data = 16'h0;
 assign analyzer2_clock = 1'b1;
 assign analyzer3_data = 16'h0;
 assign analyzer3_clock = 1'b1;
 assign analyzer4_data = 16'h0;
 assign analyzer4_clock = 1'b1;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (8 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 //
 // Demonstration of ZBT RAM as video memory

 // use FPGA's digital clock manager to produce a
 // 65MHz clock (actually 64.8MHz)
 wire clock_65mhz_unbuf,clock_65mhz;
 DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
 // synthesis attribute CLKFX_DIVIDE of vclk1 is 10
 // synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
 // synthesis attribute CLK_FEEDBACK of vclk1 is NONE
 // synthesis attribute CLKIN_PERIOD of vclk1 is 37
 BUFG vclk2(.O(clock_65mhz),.I(clock_65mhz_unbuf));

 wire clk = clock_65mhz;

 // power-on reset generation
 wire power_on_reset; // remain high for first 16 clocks
 SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power_on_reset),
 .A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
 defparam reset_sr.INIT = 16'hFFFF;

 // ENTER button is user reset
 wire reset,user_reset;
 debounce db1(power_on_reset, clk, ~button_enter, user_reset);
 assign reset = user_reset | power_on_reset;

 // DEBOUNCE other signals
 wire db_button_up, db_button_down,db_button_right,db_button_left;
 debounce incdb(power_on_reset, clock_65mhz, ~button_up, db_button_up);
 debounce decdb(power_on_reset, clock_65mhz, ~button_down, db_button_down);
 debounce butdr(power_on_reset, clock_65mhz, ~button_right, db_button_right);
 debounce butdl(power_on_reset, clock_65mhz, ~button_left, db_button_left);
 wire [7:0] db_switch;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (9 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 debounce switchdb[7:0](power_on_reset, clk, switch, db_switch);
 wire db_button0, db_button1, db_button2, db_button3;
 debounce b0db(power_on_reset, clock_65mhz, ~button0, db_button0);
 debounce b1db(power_on_reset, clock_65mhz, ~button1, db_button1);
 debounce b2db(power_on_reset, clock_65mhz, ~button2, db_button2);
 debounce b3db(power_on_reset, clock_65mhz, ~button3, db_button3);

 // display module for debugging

 reg [63:0] dispdata;
 display_16hex hexdisp1(reset, clock_65mhz, dispdata,// was clk
 disp_blank, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_out);

 // generate basic XVGA video signals
 wire [10:0] hcount;
 wire [9:0] vcount;
 wire hsync,vsync,blank;
 xvga xvga1(clk,hcount,vcount,hsync,vsync,blank);

 // wire up to ZBT ram

 wire [35:0] vram_write_data;
 wire [35:0] vram_read_data;
 wire [18:0] vram_addr;
 wire vram_we;

 zbt_6111 zbt1(clk, 1'b1, vram_we, vram_addr,
 vram_write_data, vram_read_data,
 ram0_clk, ram0_we_b, ram0_address, ram0_data, ram0_cen_b);

 // generate pixel value from reading ZBT memory
 wire [17:0] vr_pixel;
 wire [18:0] vram_addr1;

 vram_display vd1(reset,clk,hcount,vcount,vr_pixel,
 vram_addr1,vram_read_data);

 // ADV7185 NTSC decoder interface code
 // adv7185 initialization module
 adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),
 .source(1'b0), .tv_in_reset_b(tv_in_reset_b),

file:///C|/Documents%20and%20Settings/cwilkens/My%20...ilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (10 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 .tv_in_i2c_clock(tv_in_i2c_clock),
 .tv_in_i2c_data(tv_in_i2c_data));

 wire [29:0] ycrcb; // video data (luminance, chrominance)
 wire [2:0] fvh; // sync for field, vertical, horizontal
 wire dv; // data valid

 ntsc_decode decode (.clk(tv_in_line_clock1), .reset(reset),
 .tv_in_ycrcb(tv_in_ycrcb[19:10]),
 .ycrcb(ycrcb), .f(fvh[2]),
 .v(fvh[1]), .h(fvh[0]), .data_valid(dv));

 // code to write NTSC data to video memory

 wire [18:0] ntsc_addr;
 wire [35:0] ntsc_data;
 wire ntsc_we;
 ntsc_to_zbt n2z (clk, tv_in_line_clock1, fvh, dv, ycrcb[29:0],
 ntsc_addr, ntsc_data, ntsc_we, db_button2);

 // code to write pattern to ZBT memory
 reg [31:0] count;
 always @(posedge clk) count <= reset ? 0 : count + 1;

 wire [18:0] vram_addr2 = count[0+18:0];
 wire [35:0] vpat = (db_button0 ? {4{count[3+3:3],4'b0}}
 : {4{count[3+4:4],4'b0}});

 // mux selecting read/write to memory based on which write-enable is chosen

 wire sw_ntsc = ~db_button3;
 wire my_we = sw_ntsc ? (hcount[1:0]==2'd2) : blank;
 wire [18:0] write_addr = sw_ntsc ? ntsc_addr : vram_addr2;
 wire [35:0] write_data = sw_ntsc ? ntsc_data : vpat;

// wire write_enable = sw_ntsc ? (my_we & ntsc_we) : my_we;
// assign vram_addr = write_enable ? write_addr : vram_addr1;
// assign vram_we = write_enable;

 assign vram_addr = my_we ? write_addr : vram_addr1;
 assign vram_we = my_we;
 assign vram_write_data = write_data;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...ilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (11 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 // select output pixel data

 reg [17:0] pixel; // pixel[8:4] are the top five bits of Y, pixel[3:0] are the top 4 bits of U
 wire b,hs,vs;

 delayN dn1(clk,hsync,hs); // delay by 3 cycles to sync with ZBT read
 delayN dn2(clk,vsync,vs);
 delayN dn3(clk,blank,b);

 always @(posedge clk)
 begin
 pixel <= db_button0 ? {hcount[8:6],5'b0,hcount[8:6],5'b0,hcount[8:7]} : vr_pixel;
 end

 // VGA Output. In order to meet the setup and hold times of the
 // AD7125, we send it ~clock_65mhz.

 wire [63:0] hex_debug;

 assign vga_out_pixel_clock = ~clock_65mhz;
 virtual_juggling juggler(clock_65mhz,reset,1'b1,~b,
 pixel[17:10],pixel[9:2],{pixel[1:0],6'b0},hs,vs,
 hcount,vcount,
 vga_out_sync_b,vga_out_blank_b,
 vga_out_red,vga_out_green,vga_out_blue,
 vga_out_hsync,vga_out_vsync,
 db_button_up,db_button_down,db_button_left,db_button_right,db_switch,
 hex_debug);

 /*assign vga_out_red = pixel;
 assign vga_out_green = pixel;
 assign vga_out_blue = pixel;
 assign vga_out_sync_b = 1'b1; // not used
 assign vga_out_pixel_clock = ~clock_65mhz;
 assign vga_out_blank_b = ~b;
 assign vga_out_hsync = hs;
 assign vga_out_vsync = vs;*/

 // debugging

 assign led = ~{vram_addr[18:13],reset,db_button0};

file:///C|/Documents%20and%20Settings/cwilkens/My%20...ilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (12 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

 always @(posedge clock_65mhz)// was clk
 // dispdata <= {vram_read_data,9'b0,vram_addr};
 dispdata <= hex_debug;//{ntsc_data,9'b0,ntsc_addr};

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20...ilog%20Files/Verilog%20Source%20as%20Text/labkit.txt (13 of 13)12/13/2005 6:59:23 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...ct/Verilog%20Files/Verilog%20Source%20as%20Text/virtual_juggling.txt

/*

This module represents the entire VirtualJuggling simulator.

*/
module virtual_juggling(clock_65mhz, reset,
 vga_in_sync_b, vga_in_blank_b,
 y, u, v,
 vga_in_hsync, vga_in_vsync,
 hcount_in, vcount_in,

 vga_out_sync_b, vga_out_blank_b,
 vga_out_red, vga_out_green, vga_out_blue,
 vga_out_hsync, vga_out_vsync,

 ball_inc,ball_dec,left_throw_button,right_throw_button,db_switch,
 hex_display);
 input clock_65mhz;
 input reset;
 input vga_in_sync_b, vga_in_blank_b;
 input [7:0] y, u, v;
 input vga_in_hsync, vga_in_vsync;
 input [10:0] hcount_in;
 input [9:0] vcount_in;

 output vga_out_sync_b, vga_out_blank_b;
 output [7:0] vga_out_red, vga_out_green, vga_out_blue;
 output vga_out_hsync, vga_out_vsync;

 input ball_inc,ball_dec;
 input left_throw_button,right_throw_button;
 input [7:0] db_switch;
 output [63:0] hex_display;

 // PASS THROUGH with delay FOR DEBUGGING
 /*reg vga_out_sync_b, vga_out_blank_b;
 reg [7:0] vga_out_red, vga_out_green, vga_out_blue;
 reg vga_out_hsync, vga_out_vsync;

 always @ (posedge clock_65mhz) begin
 vga_out_sync_b <= vga_in_sync_b;

file:///C|/Documents%20and%20Settings/cwilkens/My%20Do...iles/Verilog%20Source%20as%20Text/virtual_juggling.txt (1 of 5)12/13/2005 6:59:02 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...ct/Verilog%20Files/Verilog%20Source%20as%20Text/virtual_juggling.txt

 vga_out_blank_b <= vga_in_blank_b;
 {vga_out_red,vga_out_green,vga_out_blue} <= {y,u,v};
 vga_out_hsync <= vga_in_hsync;
 vga_out_vsync <= vga_in_vsync;
 end*/

 // Logic wires
 wire new_frame;
 wire [31:0] left_hand_pos, right_hand_pos;
 wire [31:0] left_hand_vel, right_hand_vel;
 wire [1:0] left_hand_logic, right_hand_logic;

 // Intermediate video wires between video processor and output
 wire vga_mid_sync_b, vga_mid_blank_b;
 wire [10:0] hcount_mid;
 wire [9:0] vcount_mid;
 wire [7:0] vga_mid_red, vga_mid_green, vga_mid_blue;
 wire vga_mid_hsync, vga_mid_vsync;

 // Video processor module
 wire [31:0] VP_DEBUG;
 vj_video_processor video_proc(clock_65mhz,reset,
 vga_in_sync_b,vga_in_blank_b,hcount_in,vcount_in,
 vga_in_hsync,vga_in_vsync,
 y,u,v,
 db_switch,
 vga_mid_red,vga_mid_green,vga_mid_blue,
 vga_mid_sync_b,vga_mid_blank_b,
 hcount_mid,vcount_mid,
 vga_mid_hsync,vga_mid_vsync,
 new_frame,
 left_hand_pos,right_hand_pos,
 left_hand_vel,right_hand_vel,
 left_hand_logic,right_hand_logic,
 VP_DEBUG,8'b0);

 //Signals from ball manager to output module
 wire bm_we,bm_be;
 wire [4:0] bm_ball_number;
 wire [31:0] bm_ball_pos;
 wire [7:0] db_switch; //added for color debugging

 /*

file:///C|/Documents%20and%20Settings/cwilkens/My%20Do...iles/Verilog%20Source%20as%20Text/virtual_juggling.txt (2 of 5)12/13/2005 6:59:02 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...ct/Verilog%20Files/Verilog%20Source%20as%20Text/virtual_juggling.txt

 // Test the ball sprites
 wire [31:0] TEST_JIG_DEBUG;
 vj_output_test_jig outputtest(clock_65mhz,reset,
 new_frame,bm_we,bm_ball_number,bm_ball_pos,bm_be,
 TEST_JIG_DEBUG,db_switch[5:1]);
 */

 // Output module
 vj_output outputmodule(clock_65mhz,reset,
 vga_mid_red,vga_mid_green,vga_mid_blue,
 hcount_mid,vcount_mid,
 vga_mid_sync_b,vga_mid_blank_b,vga_mid_hsync,vga_mid_vsync,
 left_hand_pos,right_hand_pos,
 bm_we,bm_ball_number,bm_ball_pos,bm_be,
 vga_out_red,vga_out_green,vga_out_blue,
 vga_out_sync_b,vga_out_blank_b,
 vga_out_hsync,vga_out_vsync);

 // DEBUG OUTPUT
 //assign hex_display = {left_hand_pos,right_hand_pos};
 //assign hex_display = {new_frame,29'b0,left_hand_logic,30'b0,right_hand_logic};
 //assign hex_display = {left_hand_vel,VP_DEBUG};
 //assign hex_display = {left_hand_vel,right_hand_vel};
 //assign hex_display = {left_hand_pos,TEST_JIG_DEBUG};
 //assign hex_display = {20'hABCDE,2'b0,bm_we,bm_be,3'b0,bm_ball_number,bm_ball_pos};

 //Controller modual instantiation

 wire new_frame_sync;
 wire reset_sync;
 wire add_ball_sync;
 wire dec_ball_sync;
 wire [7:0] gravity_sync;
 wire left_throw_sync,right_throw_sync;

 vj_controller vj_control_instan(.clk(clock_65mhz),.new_frame_raw(new_frame),.reset_raw(reset),.
add_ball_raw(ball_inc),
 .dec_ball_raw(ball_dec),.left_throw_raw(left_throw_button),.right_throw_raw
(right_throw_button),
 .gravity_raw(db_switch),.new_frame_sync(new_frame_sync),
 .reset_sync(reset_sync),.add_ball_sync(add_ball_sync),.dec_ball_sync(dec_ball_sync),
 .left_throw_sync(left_throw_sync),.right_throw_sync(right_throw_sync),
 .gravity_sync(gravity_sync));

file:///C|/Documents%20and%20Settings/cwilkens/My%20Do...iles/Verilog%20Source%20as%20Text/virtual_juggling.txt (3 of 5)12/13/2005 6:59:02 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...ct/Verilog%20Files/Verilog%20Source%20as%20Text/virtual_juggling.txt

// wire [31:0] left_hand_pos, right_hand_pos;
// wire [31:0] left_hand_vel, right_hand_vel;
// wire [1:0] left_hand_logic, right_hand_logic;

 wire [15:0] l_h_x, l_h_y, r_h_x, r_h_y;
// wire [15:0] l_h_x_vel, l_h_y_vel, r_h_x_vel, r_h_y_vel;
/* wire left_throw, l_h_catch, right_throw, r_h_catch;
 assign left_throw =left_hand_logic[1];
 assign l_h_catch =left_hand_logic[0];
 assign right_throw =right_hand_logic[1];
 assign r_h_catch =right_hand_logic[0];
 */
 assign l_h_x = left_hand_pos[31:16];
 assign l_h_y = left_hand_pos[15:0];
 assign r_h_x = right_hand_pos[31:16];
 assign r_h_y = right_hand_pos[15:0];
// assign l_h_x_vel = left_hand_vel[31:16];
// assign l_h_y_vel = left_hand_vel[15:0];
// assign r_h_x_vel = right_hand_vel[31:16];
// assign r_h_y_vel = right_hand_vel[15:0];

 wire signed [16:0] control_left_y_vel;
 wire signed [16:0] control_right_y_vel;
 wire signed [16:0] control_left_x_vel;
 wire signed [16:0] control_right_x_vel;
 assign control_left_y_vel = (17'b11111111100000000 + {1,left_hand_vel[15:0]});
 assign control_right_y_vel = (17'b11111111100000000 + {1,right_hand_vel[15:0]});
 assign control_left_x_vel = (17'b00000000001111111 + {0,left_hand_vel[31:16]});
 assign control_right_x_vel = (17'b11111111110000001 + {1,right_hand_vel[31:16]});

 vj_ball_manager vj_bm_instan(.vclock(clock_65mhz),.reset(reset_sync),.new_frame
(new_frame_sync),.gravity(gravity_sync),
 .add_ball(add_ball_sync),.dec_ball(dec_ball_sync),
 .left_throw(left_hand_logic[1]),//1'b1),// (left_throw_force|left_hand_logic[1]),
 .l_h_catch(left_hand_logic[0]),//|left_hand_logic[0]),
 .right_throw(right_hand_logic[1]),//1'b1),// (right_throw_force)|right_hand_logic[1]),
 .r_h_catch(right_hand_logic[0]),//|right_hand_logic[0]),
 .l_h_y(l_h_y),.l_h_x(l_h_x),.l_h_y_vel(left_hand_vel[15:0]),//)16'b1111111100000000,//
control_left_y_vel[16:1]),
 .l_h_x_vel(control_left_x_vel[16:1]),//left_hand_vel[31:16]),16'b0000000001111111

file:///C|/Documents%20and%20Settings/cwilkens/My%20Do...iles/Verilog%20Source%20as%20Text/virtual_juggling.txt (4 of 5)12/13/2005 6:59:02 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...ct/Verilog%20Files/Verilog%20Source%20as%20Text/virtual_juggling.txt

 .r_h_y(r_h_y),.r_h_x(r_h_x),.r_h_y_vel(right_hand_vel[15:0]),//),16'b1111111100000000//
control_right_y_vel[16:1]),
 .r_h_x_vel(control_right_x_vel[16:1]),//right_hand_vel[31:16]),16'b1111111110000001
 .display_enb(bm_be),.ball_pos_out(bm_ball_pos),.ball_number(bm_ball_number),.write_request
(bm_we));
 assign hex_display = {bm_ball_pos,l_h_x,3'b000,new_frame_sync,3'b000,add_ball_sync,3'b000,
bm_be,3'b000,bm_we};

 /*

 vj_ball_manager vj_bm_instan(.vclock(clock_65mhz),.reset(reset_sync),.new_frame
(new_frame_sync),.gravity(gravity_sync),
 .add_ball(add_ball_sync),.dec_ball(dec_ball_sync),
 .left_throw(left_hand_logic[1]),//1'b1),// (left_throw_force|left_hand_logic[1]),
 .l_h_catch(left_hand_logic[0]),//|left_hand_logic[0]),
 .right_throw(right_hand_logic[1]),//1'b1),// (right_throw_force)|right_hand_logic[1]),
 .r_h_catch(right_hand_logic[0]),//|right_hand_logic[0]),
 .l_h_y(l_h_y),.l_h_x(l_h_x),.l_h_y_vel(left_hand_vel[15:0]),//l16'b1111111100000000),
 .l_h_x_vel(left_hand_vel[31:16]),//16'b0000000001111111),
 .r_h_y(r_h_y),.r_h_x(r_h_x),.r_h_y_vel(right_hand_vel[15:0]),//16'b1111111100000000),
 .r_h_x_vel(right_hand_vel[31:16]),//16'b1111111111000000),
 .display_enb(bm_be),.ball_pos_out(bm_ball_pos),.ball_number(bm_ball_number),.write_request
(bm_we));
 assign hex_display = {bm_ball_pos,l_h_x,3'b000,new_frame_sync,3'b000,add_ball_sync,3'b000,
bm_be,3'b000,bm_we}; */
endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20Do...iles/Verilog%20Source%20as%20Text/virtual_juggling.txt (5 of 5)12/13/2005 6:59:02 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

/*
vj_video_processor

This is the main video processing module for the
juggling simulator. It receives the raw camera
image as a VGA stream (with colors in the YUV
space instead of RGB) and locates the hands
in the frame. It also converts the signal to
RGB video so it can be displayed later.

Notes:
1. This module delays the video by one clock cycle.

2. This module displays the camera image in B&W

*/
module vj_video_processor(clock_65mhz,reset,
 sync_in,blank_in,hcount_in,vcount_in,
 hsync_in,vsync_in,
 y,u,v,
 db_switch,
 vga_red,vga_green,vga_blue,
 sync_out,blank_out,hcount_out,vcount_out,
 hsync_out,vsync_out,
 new_frame,
 left_pos,right_pos,
 left_vel,right_vel,
 left_logic,right_logic,
 DEBUG_OUT,DEBUG_SETTINGS);

 // VGA signals for incoming video
 input clock_65mhz;
 input reset;
 input sync_in,blank_in;
 input [10:0] hcount_in;
 input [9:0] vcount_in;
 input hsync_in;
 input vsync_in;
 // Incoming color signals are 8-bit YUV values, not RGB
 input [7:0] y,u,v;
 input [7:0] db_switch;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (1 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 // The module converts the YUV signal to RGB and outputs
 // it to these ports, 8 bits per channel
 output [7:0] vga_red,vga_green,vga_blue;
 // Since the module must delay the signal, the output
 // video signal is sent to the following ports
 output sync_out,blank_out;
 output [10:0] hcount_out;
 output [9:0] vcount_out;
 output hsync_out,vsync_out;

 // Output signals
 // new_frame is raised on the clock cycle when the hand
 // information for the current frame has been calculated.
 // This signals the beginning of the space between the
 // frame and vsync.
 output new_frame;
 // Hand position/velocity signals
 // bits [31:16] are for x, [15:0] are for y
 // the low order bit of each value (e.g. 16 or 0)
 // corresponds to 2^-5 (i.e. each value has 5 fractional bits)
 output [31:0] left_pos,right_pos;
 output [31:0] left_vel,right_vel;
 //
 output [1:0] left_logic,right_logic;

 output [31:0] DEBUG_OUT;
 input [7:0] DEBUG_SETTINGS;

 reg [31:0] DEBUG_OUT;

 // We delay the video by one clock cycle in order to calculate hand information.
 reg [24:0] video_delay;

 reg sync_out,blank_out;
 reg [10:0] hcount_out;
 reg [9:0] vcount_out;
 reg hsync_out,vsync_out;

 reg [7:0] vga_red,vga_green,vga_blue;

 wire pos_ready,left_ready, right_ready;

 assign new_frame = left_ready & right_ready;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (2 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 // Modules for computing the velocity and logical motions of the hands
 vj_vp_hand_logic left_hand(clock_65mhz,reset,pos_ready,left_pos,left_vel,left_logic,left_ready,
DEBUG_SETTINGS);
 vj_vp_hand_logic right_hand(clock_65mhz,reset,pos_ready,right_pos,right_vel,right_logic,
right_ready,DEBUG_SETTINGS);

 wire hand_pixel; // Receives output from hand detector stating whether or not this pixel
belongs to a hand.
 wire [7:0] red, green, blue; // Outputs from the YUV to RGB converter.

 vj_vp_hand_detector hand_detector(clock_65mhz,reset,hcount_in,vcount_in,vsync_in,y,u,v,
pos_ready,left_pos,right_pos,hand_pixel, DEBUG_SETTINGS);

 yuv_to_rgb video_converter(y, u, v, red, green, blue);

 reg test = 0;

 always @ (posedge clock_65mhz) begin
 {sync_out,blank_out,hcount_out,vcount_out,hsync_out,vsync_out} <=
 {sync_in,blank_in,hcount_in,vcount_in,hsync_in,vsync_in};
 {vga_red, vga_green, vga_blue} <= (hand_pixel & db_switch[7]) ? 24'hFF0000 : (~db_switch
[6]) ? {red, green, blue} :
 hcount_out < 11'd512 ? (left_logic[1] ? {8'h00, green, 8'h00} : left_logic[0] ?
{8'h00, 8'h00, blue} : {red, green, blue}) :
 right_logic[1] ? {8'h00, green, 8'h00} : right_logic[0] ? {8'h00, 8'h00, blue} :
{red, green, blue};
 DEBUG_OUT <= left_logic[1] ? left_vel : DEBUG_OUT;
 end

endmodule

/*
Hand detector module
*/
module vj_vp_hand_detector(clock_65mhz,reset,
 hcount,vcount,vsync,y,u,v,
 pos_ready,left_pos,right_pos,hand_pixel,
 DEBUG_COLOR_TOLERANCE);

 input clock_65mhz;
 input reset;
 input [7:0] y, u, v;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (3 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 input [10:0] hcount;
 input [9:0] vcount;
 input vsync;

 output pos_ready;
 output [31:0] left_pos, right_pos;
 output hand_pixel;

 input [7:0] DEBUG_COLOR_TOLERANCE;

 parameter RED_U_THRESHOLD = 8'b10010000;
 parameter RED_Y_MIN = 8'b00011000;
 parameter RED_Y_MAX = 8'b11111111;
 parameter V_BACK_PORCH_START = 10'd770;// time to get off the screen and compute the
COMs

 reg new_frame;
 reg stale_frame;
 reg pos_ready;

 reg [31:0] left_pos, right_pos;

 reg hand_pixel;

 reg left_hand_pixel, right_hand_pixel;

 wire [15:0] left_x, left_y;
 wire [15:0] right_x, right_y;

 reg average_reset = 0;

 // We need to hold the hcount and vcount values so
 // that the averager uses the correct position
 reg [10:0] x_inc;
 reg [9:0] y_inc;

 always @ (posedge clock_65mhz) begin
 // Intentional use of blocking assignment to effect sequential execution.
 hand_pixel = ((u > RED_U_THRESHOLD) & (RED_Y_MIN < y) & (y < RED_Y_MAX));
 left_hand_pixel <= hand_pixel & (hcount < 11'd512);
 right_hand_pixel <= hand_pixel & (hcount > 11'd511) & (hcount < 11'd1024);

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (4 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 // Hold the hcount and vcount values so that they are ready for the divider on the next cycle.
 x_inc <= hcount;
 y_inc <= vcount;

 // CODE FOR TESTING COLOR TOLERANCES...
 //hand_pixel = DEBUG_COLOR_TOLERANCE[1] ?
 //({1'b0,(DEBUG_COLOR_TOLERANCE[0] ? v : u)} > {DEBUG_COLOR_TOLERANCE
[6:2],4'b0}) :
 //({1'b0,(DEBUG_COLOR_TOLERANCE[0] ? v : u)} < {DEBUG_COLOR_TOLERANCE
[6:2],4'b0});

 // If we have reached the end of the displayed frame, then grab the COM's
 if ((vcount == V_BACK_PORCH_START) & ~stale_frame) begin
 pos_ready <= 1;
 left_pos <= {left_x[13:0],2'b0,left_y[13:0],2'b0}; // We calculate the COM with 4
fractional bits, but want 5.
 right_pos <= {right_x[13:0],2'b0,right_y[13:0],2'b0};
 stale_frame <= 1;
 end
 // Make sure that new_frame is only high for one cycle.
 else if (pos_ready) begin
 pos_ready <= 0;
 end
 else if (~vsync) begin
 stale_frame <=0;
 end

 // On vsync, reset the COMs.
 if (~vsync) average_reset <= 1;
 else average_reset <= 0;
 end

 // The parameters are defined to ignore the porches, in case that is an issue.
 weighted_average left_x_com(clock_65mhz,reset,left_hand_pixel,average_reset,{2'b0,x_inc,3'b0},
left_x);
 //defparam left_x_com.IN_MIN = 16'd0;
 //defparam left_x_com.IN_MAX = 16'd1023;
 weighted_average left_y_com(clock_65mhz,reset,left_hand_pixel,average_reset,{3'b0,y_inc,3'b0},
left_y);
 //defparam left_y_com.IN_MIN = 16'd0;
 //defparam left_y_com.IN_MAX = 16'd767;

 weighted_average right_x_com(clock_65mhz,reset,right_hand_pixel,average_reset,{2'b0,

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (5 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

x_inc,3'b0},right_x);
 //defparam right_x_com.IN_MIN = 16'd0;
 //defparam right_x_com.IN_MAX = 16'd1023;
 weighted_average right_y_com(clock_65mhz,reset,right_hand_pixel,average_reset,{3'b0,
y_inc,3'b0},right_y);
 //defparam right_y_com.IN_MIN = 16'd0;
 //defparam right_y_com.IN_MAX = 16'd767;

endmodule

module vj_vp_hand_logic(clk,reset,
 pos_ready,pos,vel,logic,logic_ready,DEBUG);
 input clk;
 input reset;
 input pos_ready;
 input [31:0] pos;

 output [31:0] vel;
 output [1:0] logic;
 output logic_ready;

 input [7:0] DEBUG;

 parameter CATCH_THRESHOLD = 12'b111111111100; // the y velocity must be greater than this
(negative) value
 parameter THROW_THRESHOLD = 12'b000000000110; // the acceleration must be greater than
this value
 parameter THROW_HISTORY_DEPTH = 6;

 // the output velocity is an average
 reg signed [15:0] x_vel[3:0];
 reg signed [15:0] y_vel[3:0];
 reg signed [15:0] y_accel[3:0];
 reg throw_logic,catch_logic;
 reg [THROW_HISTORY_DEPTH-1:0] throw_history;
 reg [31:0] old_pos;
 reg logic_ready;

 //added this
 parameter X_VEL_CONST = 19'b0; // LINE ADDED
 parameter Y_VEL_CONST = 19'b1111111110000000000; // LINE ADDED

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (6 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 wire signed [18:0] x_vel_sum = x_vel[3]+x_vel[2]+x_vel[1]+x_vel[0]+X_VEL_CONST; // LINE
CHANGED

 wire signed [18:0] y_vel_sum = y_vel[3]+y_vel[2]+y_vel[1]+y_vel[0]+Y_VEL_CONST; // LINE
CHANGED

 wire signed [17:0] y_accel_sum = y_accel[3]+y_accel[2]+y_accel[1]+y_accel[0];

 assign vel = {x_vel_sum[17:2],y_vel_sum[18:3]};// LINE CHANGED

 /*
 wire signed [17:0] x_vel_sum = x_vel[3]+x_vel[2]+x_vel[1]+x_vel[0];
 wire signed [17:0] y_vel_sum = y_vel[3]+y_vel[2]+y_vel[1]+y_vel[0];

 wire signed [17:0] y_accel_sum = y_accel[3]+y_accel[2]+y_accel[1]+y_accel[0];

 assign vel = {x_vel_sum[17:2],y_vel_sum[17:2]};//{x_vel_sum[17:2],y_vel[3]};//
*/
 assign logic = {throw_logic, catch_logic & (!throw_logic)};

 always @ (posedge clk) begin
 if (reset) begin
 {x_vel[3],x_vel[2],x_vel[1],x_vel[0]} <= 64'b0;
 {y_vel[3],y_vel[2],y_vel[1],y_vel[0]} <= 64'b0;

 {y_accel[3],y_accel[2],y_accel[1],y_accel[0]} <= 64'b0;

 throw_history <= 0;

 old_pos <= 0;
 catch_logic <= 0;
 throw_logic <= 0;
 end
 else if (pos_ready) begin
 old_pos <= pos;
 {x_vel[3],x_vel[2],x_vel[1],x_vel[0]} <= {x_vel[2],x_vel[1],x_vel[0],pos[31:16]-old_pos
[31:16]};
 {y_vel[3],y_vel[2],y_vel[1],y_vel[0]} <= {y_vel[2],y_vel[1],y_vel[0],pos[15:0]-old_pos
[15:0]};

 {y_accel[3],y_accel[2],y_accel[1],y_accel[0]} <= {y_accel[2],y_accel[1],y_accel[0],pos
[15:0]-old_pos[15:0]-y_vel[0]};

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (7 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 catch_logic <= (y_vel_sum[17:6] < 12'h7FF) | (y_vel_sum[17:6] >
CATCH_THRESHOLD);
 throw_history[THROW_HISTORY_DEPTH-1:0] <= {throw_history
[THROW_HISTORY_DEPTH-2:0],(y_accel_sum[17:6] < 12'h7FF) & (y_accel_sum[17:6] >
THROW_THRESHOLD) & !catch_logic};//(y_vel[3][15:4] + y_vel[2][15:4])-(y_vel[1][15:4]+y_vel[0]
[15:4]) > {8'hFF,DEBUG[7:4]};
 throw_logic <= throw_history[0] & (!throw_history[THROW_HISTORY_DEPTH-1:1]);
 logic_ready <= 1;
 end
 else if (logic_ready) begin
 logic_ready <= 0;
 end
 end
endmodule

/*
weighted_average
calculates a weighted average of
sequentially supplied values.
*/
module weighted_average(clk,reset,enable,average_reset,inval,average
 /*,sum,count,raw_average,unused_remainder*/);
 input clk;
 input reset;
 input enable;
 input average_reset;

 input [15:0] inval;
 output [15:0] average;

 //output [31:0] sum;
 //output [31:0] count;

 parameter IN_MIN = 16'h0000;
 parameter IN_MAX = 16'hFFFF;

 reg [31:0] sum = 0;
 reg [31:0] count = 0;

 reg [15:0] average;

 wire [31:0] raw_average; // The top 16 bits of AVERAGE should always be 0
 wire [31:0] unused_remainder; // We ignore the remainder output.

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (8 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

 wire unused_rfd;

 always @ (posedge clk) begin
 if (reset | average_reset) begin
 sum <= 0;
 count <= 0;
 //average <= raw_average[15:0];
 end
 else if (enable && (inval > IN_MIN) && (inval < IN_MAX)) begin
 sum <= sum + {16'b0,inval};
 count <= count + 1;
 end
 average <= (|sum) ? raw_average[15:0] : 16'b0; // Force the average to be 0 if the sum is 0
 end

 divide average_divide(sum, count, raw_average, unused_remainder, clk, unused_rfd, 1'b0, 1'b0,
1'b1);

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...s/Verilog%20Source%20as%20Text/vj_video_processor.txt (9 of 9)12/13/2005 6:59:12 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...Project/Verilog%20Files/Verilog%20Source%20as%20Text/yuv_to_rgb.txt

module yuv_to_rgb(y,u,v,vga_r,vga_g,vga_b);
 input [7:0] y;
 input [7:0] u;
 input [7:0] v;
 output [7:0] vga_r;
 output [7:0] vga_g;
 output [7:0] vga_b;

 assign vga_r = y;
 assign vga_g = y;
 assign vga_b = y;

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20Docu...ilog%20Files/Verilog%20Source%20as%20Text/yuv_to_rgb.txt12/13/2005 6:59:13 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...oject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_controller.txt

module vj_controller(clk,new_frame_raw,reset_raw,add_ball_raw,dec_ball_raw,left_throw_raw,
right_throw_raw,gravity_raw,
 new_frame_sync,reset_sync,add_ball_sync,dec_ball_sync,left_throw_sync,right_throw_sync,
gravity_sync);
 input clk;
 input new_frame_raw;
 input reset_raw;
 input add_ball_raw;
 input dec_ball_raw;
 input left_throw_raw;
 input right_throw_raw;
 input [7:0] gravity_raw;

 output new_frame_sync;
 output reset_sync;
 output add_ball_sync;
 output dec_ball_sync;
 output left_throw_sync;
 output right_throw_sync;
 output [7:0] gravity_sync;

 reg [7:0] gravity_sync = 7'b0;
 reg reset_sync=0;
 reg reset_hold=0;
 reg right_throw_sync=0;
 reg right_throw_hold=0;
 reg left_throw_sync=0;
 reg left_throw_hold=0;
 reg new_frame_sync=0;
 reg add_ball_hold=0;
 reg add_ball_sync=0;
 reg dec_ball_hold=0;
 reg dec_ball_sync=0;

 wire dec_ball_pulse;
 wire add_ball_pulse;
 wire right_throw_force_pulse;
 wire left_throw_force_pulse;
// reg right_throw_force_hold=0; //to hold right throw that is a pulse until new frame
// reg left_throw_force_hold=0;
// reg right_throw_force=0;
// reg left_throw_force=0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/vj_controller.txt (1 of 2)12/13/2005 6:59:07 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...oject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_controller.txt

 vj_level_to_pulse foradd(clk,add_ball_raw,add_ball_pulse);
 vj_level_to_pulse fordec(clk,dec_ball_raw,dec_ball_pulse);
 vj_level_to_pulse forleft(clk,left_throw_raw,left_throw_force_pulse);
 vj_level_to_pulse forright(clk,right_throw_raw,right_throw_force_pulse);

 always @ (posedge clk) begin
 new_frame_sync <= new_frame_raw;
 gravity_sync <= new_frame_raw ? gravity_raw : gravity_sync;

 reset_sync <= (new_frame_raw && reset_hold) ? 1 : 0;
 reset_hold <= reset_raw ? 1 : (new_frame_raw ? 0 : reset_hold);

 right_throw_sync <= (new_frame_raw && right_throw_hold) ? 1 : 0;
 right_throw_hold <= right_throw_force_pulse ? 1 : (new_frame_raw ? 0 : right_throw_hold);

 left_throw_sync <= (new_frame_raw && left_throw_hold) ? 1 : 0;
 left_throw_hold <= left_throw_force_pulse ? 1 : (new_frame_raw ? 0 : left_throw_hold);

 add_ball_sync <= (new_frame_raw && add_ball_hold) ? 1 : 0;
 add_ball_hold <= add_ball_pulse ? 1 : (new_frame_raw ? 0 : add_ball_hold);

 dec_ball_sync <= (new_frame_raw && dec_ball_hold) ? 1 : 0;
 dec_ball_hold <= dec_ball_pulse ? 1 : (new_frame_raw ? 0 : dec_ball_hold);
/*
 right_throw_force <= new_frame_raw ? right_throw_force_hold : right_throw_force;
 right_throw_force_hold <= new_frame_raw ? 0 : (right_throw_force_pulse ? 1 :
right_throw_force_hold);

 left_throw_force <= new_frame_raw ? left_throw_force_hold : left_throw_force;
 left_throw_force_hold <= new_frame_raw ? 0 : (left_throw_force_pulse ? 1 :
left_throw_force_hold);
*/
 end

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/vj_controller.txt (2 of 2)12/13/2005 6:59:07 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colleg...t/Verilog%20Files/Verilog%20Source%20as%20Text/vj_level_to_pulse.txt

module vj_level_to_pulse(clk,level_in,pulse_out);
 input clk;
 input level_in;

 output pulse_out;

 reg level_hold=0;
 reg pulse_out=0;

 always @ (posedge clk) begin
 level_hold <= level_in;
 pulse_out <= (level_in && ~level_hold);
 end

 endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20Docu...Files/Verilog%20Source%20as%20Text/vj_level_to_pulse.txt12/13/2005 6:59:08 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Coll...erilog%20Files/Verilog%20Source%20as%20Text/vj_bm_ball_manager.txt

module vj_ball_manager(vclock,reset,new_frame,gravity,
 add_ball,dec_ball,
 left_throw,l_h_catch,right_throw,r_h_catch,
 l_h_y,l_h_x,l_h_y_vel,l_h_x_vel,
 r_h_y,r_h_x,r_h_y_vel,r_h_x_vel,

 display_enb,ball_pos_out,ball_number,write_request);

 input vclock; // 65MHz clock
 input reset; // 1 to initialize module -- IS COMING in syncronized to new_frame
 input new_frame; //from Controller
 input [7:0] gravity; // gravity from switches debounced and synchronized to new_frame
 input add_ball; //adds a ball when button 1 is pressed
 input dec_ball; //removes a ball when button 0 is pressed
 input left_throw; //pulse when left hand is in throwing position
 input l_h_catch; //signal when left hand is in catch position
 input right_throw; //when right hand throws
 input r_h_catch; //when right hand catches
 input [15:0] l_h_y; //left hand y position
 input [15:0] l_h_x; // left hand x position
 input [15:0] l_h_y_vel; //left hand y velocity
 input [15:0] l_h_x_vel; // left hand x velocity
 input [15:0] r_h_y; //right hand y position
 input [15:0] r_h_x; // right hand x position
 input [15:0] r_h_y_vel; //right hand y velocity
 input [15:0] r_h_x_vel; // right hand x velocity

 output display_enb; //says the ball is to be displayed
 output [31:0] ball_pos_out;
 output [4:0] ball_number;
 output write_request;

 wire display_enb;
 wire [31:0] ball_pos_out;
 wire [4:0] ball_number;
 wire write_request;
 wire [69:0] info_from_bram;
 wire [4:0] bram_addr_b;
 wire wea;
 wire done_calc;
 wire [69:0] ball_info_in;// = 70'b0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20.../Verilog%20Source%20as%20Text/vj_bm_ball_manager.txt (1 of 2)12/13/2005 6:59:03 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Coll...erilog%20Files/Verilog%20Source%20as%20Text/vj_bm_ball_manager.txt

 wire [69:0] ball_info_out;// = 70'b0;
 wire [4:0] count_addr;// = 5'b0;

 vj_bm_physics instan_ball_m(vclock,reset,new_frame,gravity,
 add_ball,dec_ball,
 left_throw,l_h_catch,right_throw,r_h_catch,
 l_h_y,l_h_x,l_h_y_vel,l_h_x_vel,
 r_h_y,r_h_x,r_h_y_vel,r_h_x_vel,
 ball_info_in,ball_info_out,count_addr,done_calc,wea);

 vj_bm_display instan_bm_disp(.vclock(vclock),.reset(reset),.new_frame(new_frame),.done_calc
(done_calc),
 .info_from_bram(info_from_bram),.bram_addr_b(bram_addr_b),
 .ball_pos_out(ball_pos_out),.display_enb(display_enb),
 .ball_number(ball_number),.write_request(write_request));

 bram70x32 instan(
 .addra(count_addr),
 .addrb(bram_addr_b),
 .clka(vclock),
 .clkb(vclock),
 .dina(ball_info_out),
 .douta(ball_info_in),
 .doutb(info_from_bram),
 .wea(wea)); // synthesis black_box

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20.../Verilog%20Source%20as%20Text/vj_bm_ball_manager.txt (2 of 2)12/13/2005 6:59:03 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

module vj_bm_physics (vclock,reset,new_frame,gravity,
 add_ball,dec_ball,
 left_throw,l_h_catch,right_throw,r_h_catch,
 l_h_y,l_h_x,l_h_y_vel,l_h_x_vel,
 r_h_y,r_h_x,r_h_y_vel,r_h_x_vel,
 ball_info_in,ball_info_out,count_addr,done_calc,wea);

 input vclock; // 65MHz clock
 input reset; // 1 to initialize module -- IS COMING in syncronized to new_frame
 input new_frame; //from Controller
 input [7:0] gravity; // gravity from switches
 input add_ball; //is 1 for whole frame synced to new_frame
 input dec_ball; //is 1 for whole frame and synced to new_frame
 input left_throw; //pulse when left hand is in throwing position
 input l_h_catch; //signal when left hand is in catch position
 input right_throw; //when right hand throws
 input r_h_catch; //when right hand catches
 input [15:0] l_h_y; //left hand y position
 input [15:0] l_h_x; // left hand x position
 input [15:0] l_h_y_vel; //left hand y velocity
 input [15:0] l_h_x_vel; // left hand x velocity
 input [15:0] r_h_y; //right hand y position
 input [15:0] r_h_x; // right hand x position
 input [15:0] r_h_y_vel; //right hand y velocity
 input [15:0] r_h_x_vel; // right hand x velocity
 input [69:0] ball_info_in; //ball data from BRAM

 output [69:0] ball_info_out; // //ball data to BRAM
 output [4:0] count_addr; //address to bram
 output done_calc;
 output wea; //write enable to BRAM

 parameter ball_r = {11'd40,5'b00000};

 parameter ball_w = {11'd33,5'b00000};
 parameter ball_h = {11'd33,5'b00000};

 parameter hand_h = {11'd50,5'b00000};

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (1 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 parameter hand_w = {11'd140,5'b00000};

 parameter ball_right=0; //to keep track of states within case statement
 parameter ball_left=1;
 parameter ball_down=0;
 parameter ball_up=1;

 parameter screenw = {11'd1023,5'b00000};
 parameter screenh = {11'd767,5'b00000};

 wire in_play_in;
 wire in_hand_in;
 wire in_left_in;
 wire in_right_in;
 wire y_dir_in;
 wire x_dir_in;
 wire [15:0] ball_y_in;
 wire [15:0] ball_x_in;
 wire [15:0] y_vel_in;
 wire [15:0] x_vel_in;

 assign in_play_in = ball_info_in[69];
 assign in_hand_in = ball_info_in[68];
 assign in_left_in = ball_info_in[67];
 assign in_right_in = ball_info_in[66];
 assign y_dir_in = ball_info_in[65];
 assign x_dir_in = ball_info_in[64];
 assign ball_y_in = ball_info_in[63:48];
 assign ball_x_in = ball_info_in[47:32];
 assign y_vel_in = ball_info_in[31:16];
 assign x_vel_in = ball_info_in[15:0];

 reg [15:0] ball_x_out = 16'h0000;
 reg [15:0] ball_y_out = 16'd0;
 //keep track of x and y velocities
 reg [15:0] x_vel_out = 16'd0;
 reg [15:0] y_vel_out = 16'd0;

 reg x_dir_out = 0; //controls movement in x dir left or right
 reg y_dir_out = 0; //controls movement in y dir up or down

 wire [15:0] two_x_vel_in;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (2 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 assign two_x_vel_in = (2 * x_vel_in);

 wire [15:0] two_y_vel_in;
 assign two_y_vel_in = (2 * y_vel_in);

 //so i have a comparative value to know if the ball is too close to the edge
 wire [15:0] far_right; //
 assign far_right = ball_x_in + ball_w; // how far toward right the ball is
 wire [15:0] far_bot;
 assign far_bot = ball_y_in + ball_h; //how far toward botton the ball is

 //ball movement control with everything else around it

parameter read_state = 0;
parameter write_state = 1;
reg read_hold=0; //so the program stays in the read_state two cycles per round.
reg read_or_write=0; // to determine whether we're reading or writing to the BRAM alternating the we
signal
reg [6:0]balls= 7'b0; //keeps track of how many balls are currenlty in the system
reg [4:0]count_addr= 5'b0; //keeps track of which BRAM address the ball controller is at
reg done_calc=0; //all the balls have been read and written during a frame when high
reg in_play_out=0; //ball is in play when high
reg in_hand_out=0; //ball is in a hand when high
reg in_left_out=0; //ball in in left hand when high
reg in_right_out=0; //ball is in right hand when high
reg wea=0; // write enable on BRAM
reg which_hand=0; //switches which hand the added ball goes into
reg reset_level=0; // leveled reset to be high for one entire frame to reset each value
reg add_ball_level=0; //high when add ball goes high and stays until a ball is added (add_ball synced to
new_frame)
reg dec_ball_level=0; //high when dec_ball goes high until ball is deleted (dec_ball synced to
new_frame)
//reg ball_added=0; //high when ball has been added and set low every new frame
//reg ball_deced=0; //high when ball has been removed and set low every new frame
reg [1:0] count_divider= 2'b0; //so count_addr increments only once per 3 clock cycles
reg left_thrown = 0; //signals within one frame that a ball has been thrown from the left hand so no
more that frame
reg right_thrown = 0; //signals within one frame that a ball has been thrown from right hand and no
more that frame
reg left_throw_level=0;
reg right_throw_level=0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (3 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

//display_16hex hexInstan(reset, vclock, {ball_x,x_vel,two_x_vel,neg_two_x_vel}, disp_blank,
disp_clock, disp_rs, disp_ce_b, disp_reset_b, disp_data_out);

always @ (posedge vclock) begin

// reset_level <= reset ? 1 : (new_frame ? 0 : reset_level); //makes a reset level signal for one frame
// add_ball_level <= add_ball ? 1 : (new_frame ? 0 : add_ball_level); //,makes add ball level for one
frame
// dec_ball_level <= dec_ball ? 1 : (new_frame ? 0 : dec_ball_level);
// right_thrown <= new_frame ? 0 : right_thrown;
// left_thrown <= new_frame ? 0 : left_thrown;

// right_throw_level <= ?

/* if(~add_ball_level) begin
 add_ball_level <= add_ball ? 1 : add_ball_level;
 end

 if(~dec_ball_level) begin
 dec_ball_level <= dec_ball ? 1 : dec_ball_level;
 end
*/
 if (new_frame) begin
 done_calc <= 0;
 count_addr <= 0;
 count_divider <= 3;
 wea <= 0; ///added for debugging
 read_hold <= 0;
 reset_level <= reset;
 left_throw_level <= left_throw;
 right_throw_level <= right_throw;
 which_hand <= add_ball ? ~which_hand : which_hand; //switches which hand ball goes into each
time you add one
 add_ball_level <= add_ball;
 dec_ball_level <= dec_ball;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (4 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 right_thrown <= 0;
 left_thrown <= 0;
 end
 else if (count_addr == 31) begin
 done_calc <= 1;
 end

 else if (~done_calc) begin //includes case statement
 count_divider <= (count_divider == 2) ? 0 : (count_divider + 1);
 count_addr <= (count_divider == 2) ? (count_addr + 1) : count_addr;

 case (read_or_write)
 read_state: begin
 read_hold <= ~read_hold;
 wea <= 0;
 read_or_write <= read_hold; //sent it to write_state after 2nd cycle in read_state
 end
 write_state: begin
 read_or_write <= read_state; //send it back to read state after 1 cycle in write state
 wea <= 1;
 if (reset || reset_level) begin
 if (count_addr < 2) begin
 in_play_out <= 1;
 in_hand_out <= 1;
 in_left_out <= 0;
 in_right_out <= 1;
 y_dir_out <= 1'b0;
 x_dir_out <= 1'b0;
 ball_y_out <= 16'b0;
 ball_x_out <= 16'b0;
 y_vel_out <= 16'b0;
 x_vel_out <= 16'b0;
 end
 else if (count_addr == 2)begin
 in_play_out <= 1;
 in_hand_out <= 1;
 in_left_out <= 1;
 in_right_out <= 0;
 y_dir_out <= 1'b0;
 x_dir_out <= 1'b0;
 ball_y_out <= 16'b0;
 ball_x_out <= 16'b0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (5 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 y_vel_out <= 16'b0;
 x_vel_out <= 16'b0;
 end
 else begin
 in_play_out <= 0;
 in_hand_out <= 0;
 in_left_out <= 0;
 in_right_out <= 0;
 y_dir_out <= 1'b0;
 x_dir_out <= 1'b0;
 ball_y_out <= 16'b0;
 ball_x_out <= 16'b0;
 y_vel_out <= 16'b0;
 x_vel_out <= 16'b0;
 end
 end
 else if (in_play_in) begin //if it's in play do all this
 if (dec_ball_level) begin
 in_play_out <= 0;
 dec_ball_level <= 0;
 end

 else if (in_hand_in) begin // if it is in a hand do this
 if (in_right_in && right_throw_level && ~right_thrown) begin // if it's in the right
hand and right hand is throwing do this ball_x <= r_h_x; // set ball position and velocity
and direction
 in_play_out <= 1;
 in_hand_out <= 0;
 in_left_out <= 0;
 in_right_out <= 0;
 ball_x_out <= r_h_x;
 ball_y_out <= r_h_y;
 x_vel_out <= r_h_x_vel[15] ? -r_h_x_vel : r_h_x_vel;
 y_vel_out <= r_h_y_vel[15] ? -r_h_y_vel : r_h_y_vel;
 y_dir_out <= r_h_y_vel[15] ? ball_up : ball_down;
 x_dir_out <= r_h_x_vel[15] ? ball_left : ball_right;
 right_thrown <= 1;
 end
 else if (in_left_in && left_throw_level && ~left_thrown) begin
 in_play_out <= 1;
 in_hand_out <= 0;
 in_left_out <= 0;
 in_right_out <= 0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (6 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 ball_x_out <= l_h_x;
 ball_y_out <= l_h_y;
 x_vel_out <= l_h_x_vel[15] ? -l_h_x_vel : l_h_x_vel;
 y_vel_out <= l_h_y_vel[15] ? -l_h_y_vel : l_h_y_vel;
 y_dir_out <= l_h_y_vel[15] ? ball_up : ball_down;
 x_dir_out <= l_h_x_vel[15] ? ball_left : ball_right;
 left_thrown <= 1;
 end
 else begin
 in_play_out <= in_play_in;
 in_hand_out <= in_hand_in;
 in_left_out <= in_left_in;
 in_right_out <= in_right_in;
 ball_x_out <= ball_x_in;
 ball_y_out <= ball_y_in;
 x_vel_out <= x_vel_in;
 y_vel_out <= y_vel_in;
 y_dir_out <= y_dir_in;
 x_dir_out <= x_dir_in;
 end
 end
 else begin //if not in hand do all this
 in_play_out <= 1;
 if (l_h_catch && ~y_dir_in &&
 (ball_x_in < (l_h_x + (hand_w / 2))) &&
 (((hand_w / 2) + ball_x_in) > l_h_x) &&
 (ball_y_in < l_h_y) &&
 ((ball_y_in + ball_h + (hand_h / 2)) > l_h_y)) begin
 //((((ball_y_in - l_h_y) * (ball_y_in - l_h_y)) +
 //((ball_x_in - l_h_x) * (ball_x_in - l_h_x))) < (ball_r * ball_r))) begin
 // if it the left hand is in a catch position and the hand
 // is in the radius of the ball then catch it and set new states
 in_hand_out <= 1;
 in_right_out <= 0;
 in_left_out <= 1;
 end
 else if (r_h_catch && ~y_dir_in &&
 (ball_x_in < (r_h_x + (hand_w / 2))) &&
 (((hand_w / 2) + ball_x_in) > r_h_x) &&
 (ball_y_in < r_h_y) &&
 ((ball_y_in + ball_h + (hand_h / 2)) > r_h_y)) begin
 //((((ball_y_in - r_h_y) * (ball_y_in - r_h_y)) + ((ball_x_in - r_h_x) * (ball_x_in - r_h_x)))
< (ball_r * ball_r))) begin

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (7 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 in_hand_out <= 1;
 in_right_out <= 1;
 in_left_out <= 0;
 end
 else begin
 //x_vel_out <= x_vel_in;
 in_left_out <= in_left_in;
 in_right_out <= in_right_in;
 in_hand_out <= 0; //needs to be set otherwise if a ball is added to the hand in_hand is
then one
 in_right_out <= 0;
 in_left_out <= 0;
 if (x_dir_in == ball_right) begin
 ball_x_out <= ball_x_in + x_vel_in;
 x_dir_out <= (screenw < (two_x_vel_in + far_right)) ? ball_left : ball_right;
 x_vel_out <= (screenw < (two_x_vel_in + far_right)) ? (x_vel_in / 2) : x_vel_in;
 end
 else begin
 ball_x_out <= ball_x_in - x_vel_in;
 x_dir_out <= (ball_x_in < (two_x_vel_in/* + ball_w*/)) ? ball_right : ball_left;
 x_vel_out <= (ball_x_in < (two_x_vel_in/* + ball_w*/)) ? (x_vel_in / 2) : x_vel_in;
 end
 if (y_dir_in == ball_down) begin
 ball_y_out <= ball_y_in + y_vel_in;
 y_dir_out <= (screenh < (far_bot + (two_y_vel_in + gravity))) ? ball_up : ball_down;
 y_vel_out <= (y_vel_in + gravity);
 end
 else begin
 ball_y_out <= ball_y_in - y_vel_in;
 y_dir_out <= ((ball_y_in < two_y_vel_in) || (y_vel_in < gravity)) ? ball_down : ball_up;
 y_vel_out <= (ball_y_in < two_y_vel_in) ? 16'd32 : ((y_vel_in < gravity) ? (gravity -
y_vel_in) : (y_vel_in - gravity));
 end
 end
 end
 end
 else begin //when not in play do this
 if (add_ball_level) begin
 in_play_out <= 1;
 in_hand_out <= 1;
 in_left_out <= which_hand;
 in_right_out <= ~which_hand;
 y_dir_out <= 1'b0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (8 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

 x_dir_out <= 1'b0;
 ball_y_out <= 16'b0;
 ball_x_out <= 16'b0;
 y_vel_out <= 16'b0;
 x_vel_out <= 16'b0;
 add_ball_level <= 0;
 end
 else begin
 in_play_out <= 1'b0;
 in_hand_out <= 1'b0;
 in_left_out <= 1'b0;
 in_right_out <= 1'b0;
 y_dir_out <= 1'b0;
 x_dir_out <= 1'b0;
 ball_y_out <= 16'b0;
 ball_x_out <= 16'b0;
 y_vel_out <= 16'b0;
 x_vel_out <= 16'b0;
 end
 end
 end
 endcase
 end
end

assign ball_info_out = {in_play_out,in_hand_out,in_left_out,in_right_out,y_dir_out,x_dir_out,
ball_y_out,ball_x_out,y_vel_out,x_vel_out};

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt (9 of 9)12/13/2005 6:59:06 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_display.txt

module vj_bm_display (vclock,reset,new_frame,done_calc,info_from_bram,
 bram_addr_b,ball_pos_out,display_enb,ball_number,write_request);

 input vclock; // 65MHz clock
 input reset; // 1 to initialize module -- IS COMING in syncronized to new_frame
 input new_frame; //from Controller
 input done_calc;
 input [69:0] info_from_bram;

 output [4:0] bram_addr_b;
 output [31:0] ball_pos_out;
 output display_enb;
 output [4:0] ball_number;
 output write_request;
 // output stop_calc;

 reg [4:0]bram_addr_b=0;
 reg [31:0] ball_pos_out=0;
 reg display_enb=0; //need to set equal to 0
 reg [4:0] ball_number=0;
 reg write_request=0;

 reg stop_calc=0;
 reg [4:0]ball_number_hold=0;
 reg write_request_hold=0;

 always @ (posedge vclock) begin
 if (reset) begin
 stop_calc <= 0;
 bram_addr_b <= 0;
 write_request <= 0;
 ball_number <= 0;
 end
 else if (stop_calc) begin
 stop_calc <= new_frame ? 0 : stop_calc;
 bram_addr_b <= new_frame ? 0 : bram_addr_b;
 write_request <= 0;
 ball_number <= new_frame ? 0 : ball_number;
 end
 else if (done_calc) begin

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/vj_bm_display.txt (1 of 2)12/13/2005 6:59:04 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_display.txt

 bram_addr_b <= (bram_addr_b + 1); //inc bram_addr until is reaches the last value then reset
 stop_calc <= (ball_number == 31) ? 1 : stop_calc; //stop_calculations when you hit the last bram
address
 write_request_hold <= (ball_number == 30) ? 0 : 1; //stop at 30 because of delay in pipeline
 write_request <= write_request_hold;
 ball_pos_out <= {info_from_bram[47:32],info_from_bram[63:48]}; //x now in high and y in low
16 bits
 display_enb <= (ball_number == 31) ? 0 : (info_from_bram[69] && ~(info_from_bram[68] ||
info_from_bram[67]));
 ball_number <= ball_number_hold; //to delay ball_number
 ball_number_hold <= bram_addr_b;
 end
 end

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/vj_bm_display.txt (2 of 2)12/13/2005 6:59:04 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

/*
vj_output

This is the output module for the juggling simulator.
It takes a video feed and overlays the hand and ball
sprites.

Notes:

This module delays the video feed by TWO clock cycles.
The first cycle allows the system to

*/
module vj_output(clock_65mhz,reset,
 // Video inputs
 r,g,b,
 hcount,vcount,
 sync_in,blank_in,hsync_in,vsync_in,

 // Sprite position inputs
 left_hand_pos,right_hand_pos,
 we,ball_num,new_pos,be,

 // Video outputs
 vga_out_red,vga_out_green,vga_out_blue,
 vga_out_sync_b,vga_out_blank_b,
 vga_out_hsync,vga_out_vsync);
 input clock_65mhz;
 input reset;

 // Incoming XGA video signals
 input [7:0] r, g, b;
 input [10:0] hcount;
 input [9:0] vcount;
 input sync_in, blank_in, hsync_in, vsync_in;

 // Incoming hand locations
 input [31:0] left_hand_pos, right_hand_pos;

 // Incoming ball-sprite memory signals
 input we;
 input [4:0] ball_num;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (1 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

 input [31:0] new_pos;
 input be;

 // Output XGA signals
 output [7:0] vga_out_red, vga_out_green, vga_out_blue;
 output vga_out_sync_b, vga_out_blank_b;
 output vga_out_hsync, vga_out_vsync;

 reg vga_out_sync_b, vga_out_blank_b;
 reg vga_out_hsync, vga_out_vsync;
 reg vga_out_red, vga_out_green, vga_out_blue;

 wire [23:0] overlay_pixel, left_hand_pixel, right_hand_pixel, ball_pixel;

 vj_output_hand_sprite left_hand_sprite(left_hand_pos[31:21],left_hand_pos[14:5],
 hcount,vcount,left_hand_pixel);
 vj_output_hand_sprite right_hand_sprite(right_hand_pos[31:21],right_hand_pos[14:5],
 hcount,vcount,right_hand_pixel);

 vj_output_agregate_ball_sprite_memory ball_sprite(clock_65mhz,reset,hcount,vcount,
 ball_pixel,we,ball_num,new_pos,be);

 // We OR the output of the left hand, right hand, and ball pixels
 // to determine the overlay pixel. A black overlay pixel is not displayed.
 assign overlay_pixel = left_hand_pixel | right_hand_pixel | ball_pixel;

 // Registers for pipelining the output
 reg [3:0] vga_signal_pipeline;
 reg [23:0] vga_color_pipeline;

 always @ (posedge clock_65mhz) begin
 // Delay the video by TWO clock cycles
 // one cycle is for computing output,
 // the other is to guarantee good setup/hold times
 vga_signal_pipeline <= {sync_in,blank_in,hsync_in,vsync_in};
 {vga_out_sync_b,vga_out_blank_b,vga_out_hsync,vga_out_vsync} <= vga_signal_pipeline;

 vga_color_pipeline <= (|overlay_pixel) ? overlay_pixel : {r,g,b};
 {vga_out_red,vga_out_green,vga_out_blue} <= vga_color_pipeline;
 end

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (2 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

/*
This module acts as a single sprite for displaying
all the balls on the screen. The output module provides
hcount and vcount, while the module returns an output
pixel color. As with other sprites, this logic is purely
combinational.

This module also acts as a form of memory. By providing
synchronous inputs, other modules may modify the location
of a given ball on the screen.
*/
module vj_output_agregate_ball_sprite_memory(clk,reset,hcount,vcount,pixel_out,
 we,ball_num,new_pos,be/*debug ,x_out,y_out,ball_enable_out end debug*/);
 input clk; // This is the clock used for synchronous functions
 input reset;
 input [10:0] hcount; // The current hcount being queried
 input [9:0] vcount; // The current vcount being queried
 output [23:0]pixel_out; // The color value of the pixel at (hcount,vcount)

 input we; // Write enable signal (syncronous)
 input [4:0] ball_num; // Number of ball to modify (synchronous)
 input [31:0] new_pos; // New position of ball (synchronous)
 input be;

 //DEBUG
 //output [11*4-1:0] x_out;
 //output [10*4-1:0] y_out;
 //output [4-1:0] ball_enable_out;

 parameter NUM_BALLS = 32;

 reg [11*32-1:0] x = 0;
 reg [10*32-1:0] y = 0;
 reg [32-1:0] ball_enable = 0;
 wire [32-1:0] ball_pixels;

 //DEBUG
 //assign x_out = x[11*4-1:0];
 //assign y_out = y[10*4-1:0];
 //assign ball_enable_out = ball_enable[4-1:0];

 vj_output_ball_sprite ball_sprites[32-1:0](x,y,ball_enable,hcount,vcount,ball_pixels);

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (3 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

 assign pixel_out = (|ball_pixels) ? 24'h00FFFF : 24'h0;

 always @ (posedge clk) begin
 if (reset) begin
 x <= 0;
 y <= 0;
 ball_enable <= 0;
 end
 else if (we) begin
 //x[ball_num+10:ball_num] <= new_pos[26:16];
 //y[ball_num+9:ball_num] <= new_pos[9:0];
 x[11*ball_num+10] <= new_pos[31];
 x[11*ball_num+9] <= new_pos[30];
 x[11*ball_num+8] <= new_pos[29];
 x[11*ball_num+7] <= new_pos[28];
 x[11*ball_num+6] <= new_pos[27];
 x[11*ball_num+5] <= new_pos[26];
 x[11*ball_num+4] <= new_pos[25];
 x[11*ball_num+3] <= new_pos[24];
 x[11*ball_num+2] <= new_pos[23];
 x[11*ball_num+1] <= new_pos[22];
 x[11*ball_num] <= new_pos[21];

 y[10*ball_num+9] <= new_pos[14];
 y[10*ball_num+8] <= new_pos[13];
 y[10*ball_num+7] <= new_pos[12];
 y[10*ball_num+6] <= new_pos[11];
 y[10*ball_num+5] <= new_pos[10];
 y[10*ball_num+4] <= new_pos[9];
 y[10*ball_num+3] <= new_pos[8];
 y[10*ball_num+2] <= new_pos[7];
 y[10*ball_num+1] <= new_pos[6];
 y[10*ball_num] <= new_pos[5];

 ball_enable[ball_num] <= be;
 end
 end
endmodule

/*
This module is a sprite for displaying a single hand on the screen.

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (4 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

Note that this sprite doesn't contain its own color information.

CODE BASE TAKEN FROM LAB 4
*/

module vj_output_hand_sprite(x,y,hcount,vcount,pixel);
 parameter WIDTH = 16;
 parameter HEIGHT = 16;
 parameter COLOR = 24'h00FF00;
 input [10:0] x;
 input [9:0] y;
 input [10:0] hcount;
 input [9:0] vcount;
 output [23:0] pixel;
 reg [23:0] pixel;
 always @ (x or y or hcount or vcount) begin
 if ((hcount >= x && hcount < (x+WIDTH)) &&
 (vcount >= y && vcount < (y+HEIGHT)))
 pixel = COLOR;
 else pixel = 0;
 end
endmodule

/*
This module is a sprite for displaying a single ball on the screen.

CODE BASE TAKEN FROM LAB 4
*/
module vj_output_ball_sprite(x,y,enable,hcount,vcount,pixel);
 parameter RADIUS = 16;
 input [10:0] x;
 input [9:0] y;
 input enable;
 input [10:0] hcount;
 input [9:0] vcount;
 output pixel;
 reg pixel;

 // Compute the position deltas before we use them
 wire [10:0] delta_x = x-hcount;
 wire [9:0] delta_y = y-vcount;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (5 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

 always @ (enable or x or y or hcount or vcount) begin
 if (enable &&
 (hcount >= (x-RADIUS) && hcount <= (x+RADIUS)) &&
 (vcount >= (y-RADIUS) && vcount <= (y+RADIUS))) begin
 //pixel = 1;
 // In order to avoid delaying the video signal, we hard-wire the hands
 /*if ((delta_x <= 11'b00000000010) || (delta_x >= 11'b11111111101))
 pixel = 1;
 else if ((delta_y <= 10'b0000000010) || (delta_y >= 10'b1111111101))
 pixel = 1;
 else if ((((delta_x <= 11'b00000000100) || (delta_x >= 11'b11111111011)))
 && (((delta_y <= 10'b000001000) || (delta_y >= 10'b1111110111))))
 pixel = 1;
 else if ((((delta_x <= 11'b0000001000) || (delta_x >= 11'b11111110111)))
 && (((delta_y <= 10'b000000100) || (delta_y >= 10'b1111111011))))
 pixel = 1;
 else if ((delta_x+delta_y <= 11'b00000001010) || (delta_x+delta_y >= 11'b11111110101))
 pixel = 1;*/
 if (((delta_x+delta_y <= 2*RADIUS) || (delta_x+delta_y >= 2*RADIUS))&&
 ((delta_x-delta_y <= 2*RADIUS) || (delta_x-delta_y >= 2*RADIUS)))
 pixel = 1;
 else
 pixel = 0;
 end
 else pixel = 0;
 end
endmodule

/*
This module is used for testing the output module. It displays
the hand sprites and all 32 balls on the screen.

*/
module vj_output_test_jig(clock_65mhz,reset,new_frame,we,ball_number,new_pos,be,DEBUG_DATA,
SWITCHES);

 input clock_65mhz;
 input reset;
 input new_frame;

 output we;
 output [4:0] ball_number;
 output [31:0] new_pos;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (6 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

 output be;

 input [4:0] SWITCHES;
 output [31:0] DEBUG_DATA;

 reg counting = 0;

 reg we,be;
 reg [4:0] ball_number;
 reg [31:0] new_pos;

 reg [31:0] inner_counter = 32'b0;
 assign DEBUG_DATA = inner_counter;

 always @ (posedge clock_65mhz) begin
 if (reset) begin
 inner_counter <= 0;
 counting <= 0;
 ball_number <= 0;
 end
 if (new_frame) begin
 counting <= 1;
 ball_number <= 0;
 inner_counter <= inner_counter + 1;
 end
 else if (counting) begin
 if (ball_number == 5'b11111) counting <= 0;//stop counting.
 ball_number <= ball_number+1;
 we <= 1;
 be <= inner_counter[4+ball_number[0]];
 new_pos <= {({1'b0,ball_number[2:0],inner_counter[10:4],5'b0})+16'd64,
 ({2'b0,ball_number[4:3],inner_counter[10:4],5'b0})+16'd64};
 end
 else begin
 we <= 0;
 be <= 0;
 end
 end

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/vj_output.txt (7 of 7)12/13/2005 6:59:10 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/divide.txt

/***
* This file is owned and controlled by Xilinx and must be used *
* solely for design, simulation, implementation and creation of *
* design files limited to Xilinx devices or technologies. Use *
* with non-Xilinx devices or technologies is expressly prohibited *
* and immediately terminates your license. *
* *
* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" *
* SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR *
* XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION *
* AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION *
* OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS *
* IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, *
* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE *
* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY *
* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE *
* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR *
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF *
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *
* FOR A PARTICULAR PURPOSE. *
* *
* Xilinx products are not intended for use in life support *
* appliances, devices, or systems. Use in such applications are *
* expressly prohibited. *
* *
* (c) Copyright 1995-2004 Xilinx, Inc. *
* All rights reserved. *
***/
// The synopsys directives "translate_off/translate_on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file divide.v when simulating
// the core, divide. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Guide".

module divide (
 dividend,
 divisor,
 quot,
 remd,

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/divide.txt (1 of 3)12/13/2005 6:59:21 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/divide.txt

 clk,
 rfd,
 aclr,
 sclr,
 ce); // synthesis black_box

input [31 : 0] dividend;
input [31 : 0] divisor;
output [31 : 0] quot;
output [31 : 0] remd;
input clk;
output rfd;
input aclr;
input sclr;
input ce;

// synopsys translate_off

 SDIVIDER_V3_0 #(
 0, // c_has_aclr
 0, // c_has_ce
 0, // c_has_sclr
 1, // c_sync_enable
 1, // divclk_sel
 32, // dividend_width
 32, // divisor_width
 0, // fractional_b
 32, // fractional_width
 0) // signed_b
 inst (
 .DIVIDEND(dividend),
 .DIVISOR(divisor),
 .QUOT(quot),
 .REMD(remd),
 .CLK(clk),
 .RFD(rfd),
 .ACLR(aclr),
 .SCLR(sclr),
 .CE(ce));

// synopsys translate_on

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/divide.txt (2 of 3)12/13/2005 6:59:21 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...l%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/divide.txt

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of divide is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of divide is "black_box"

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...rilog%20Files/Verilog%20Source%20as%20Text/divide.txt (3 of 3)12/13/2005 6:59:21 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/bram70x32.txt

/***
* This file is owned and controlled by Xilinx and must be used *
* solely for design, simulation, implementation and creation of *
* design files limited to Xilinx devices or technologies. Use *
* with non-Xilinx devices or technologies is expressly prohibited *
* and immediately terminates your license. *
* *
* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" *
* SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR *
* XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION *
* AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION *
* OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS *
* IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT, *
* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE *
* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY *
* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE *
* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR *
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF *
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *
* FOR A PARTICULAR PURPOSE. *
* *
* Xilinx products are not intended for use in life support *
* appliances, devices, or systems. Use in such applications are *
* expressly prohibited. *
* *
* (c) Copyright 1995-2004 Xilinx, Inc. *
* All rights reserved. *
***/
// The synopsys directives "translate_off/translate_on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file bram70x32.v when simulating
// the core, bram70x32. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Guide".

module bram70x32 (
 addra,
 addrb,
 clka,
 clkb,

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/bram70x32.txt (1 of 4)12/13/2005 6:59:16 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/bram70x32.txt

 dina,
 douta,
 doutb,
 wea); // synthesis black_box

input [4 : 0] addra;
input [4 : 0] addrb;
input clka;
input clkb;
input [69 : 0] dina;
output [69 : 0] douta;
output [69 : 0] doutb;
input wea;

// synopsys translate_off

 BLKMEMDP_V6_1 #(
 5, // c_addra_width
 5, // c_addrb_width
 "0", // c_default_data
 32, // c_depth_a
 32, // c_depth_b
 0, // c_enable_rlocs
 1, // c_has_default_data
 1, // c_has_dina
 0, // c_has_dinb
 1, // c_has_douta
 1, // c_has_doutb
 0, // c_has_ena
 0, // c_has_enb
 0, // c_has_limit_data_pitch
 0, // c_has_nda
 0, // c_has_ndb
 0, // c_has_rdya
 0, // c_has_rdyb
 0, // c_has_rfda
 0, // c_has_rfdb
 0, // c_has_sinita
 0, // c_has_sinitb
 1, // c_has_wea
 0, // c_has_web
 18, // c_limit_data_pitch
 "mif_file_16_1", // c_mem_init_file

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/bram70x32.txt (2 of 4)12/13/2005 6:59:16 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/bram70x32.txt

 0, // c_pipe_stages_a
 0, // c_pipe_stages_b
 0, // c_reg_inputsa
 0, // c_reg_inputsb
 "0", // c_sinita_value
 "0", // c_sinitb_value
 70, // c_width_a
 70, // c_width_b
 0, // c_write_modea
 0, // c_write_modeb
 "0", // c_ybottom_addr
 1, // c_yclka_is_rising
 1, // c_yclkb_is_rising
 1, // c_yena_is_high
 1, // c_yenb_is_high
 "hierarchy1", // c_yhierarchy
 0, // c_ymake_bmm
 "16kx1", // c_yprimitive_type
 1, // c_ysinita_is_high
 1, // c_ysinitb_is_high
 "1024", // c_ytop_addr
 0, // c_yuse_single_primitive
 1, // c_ywea_is_high
 1, // c_yweb_is_high
 1) // c_yydisable_warnings
 inst (
 .ADDRA(addra),
 .ADDRB(addrb),
 .CLKA(clka),
 .CLKB(clkb),
 .DINA(dina),
 .DOUTA(douta),
 .DOUTB(doutb),
 .WEA(wea),
 .DINB(),
 .ENA(),
 .ENB(),
 .NDA(),
 .NDB(),
 .RFDA(),
 .RFDB(),
 .RDYA(),
 .RDYB(),

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/bram70x32.txt (3 of 4)12/13/2005 6:59:16 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/bram70x32.txt

 .SINITA(),
 .SINITB(),
 .WEB());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of bram70x32 is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of bram70x32 is "black_box"

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/bram70x32.txt (4 of 4)12/13/2005 6:59:16 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...20Project/Verilog%20Files/Verilog%20Source%20as%20Text/debounce.txt

///
//
// Pushbutton Debounce Module
//
///

module debounce (reset, clk, noisy, clean);
 input reset, clk, noisy;
 output clean;

 parameter NDELAY = 650000;
 parameter NBITS = 20;

 reg [NBITS-1:0] count;
 reg xnew, clean;

 always @(posedge clk)
 if (reset) begin xnew <= noisy; clean <= noisy; count <= 0; end
 else if (noisy != xnew) begin xnew <= noisy; count <= 0; end
 else if (count == NDELAY) clean <= xnew;
 else count <= count+1;

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20Docu...erilog%20Files/Verilog%20Source%20as%20Text/debounce.txt12/13/2005 6:59:18 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

///
//
// 6.111 FPGA Labkit -- Hex display driver
//
//
// File: display_16hex.v
// Date: 24-Sep-05
//
// Created: April 27, 2004
// Author: Nathan Ickes
//
// This module drives the labkit hex displays and shows the value of
// 8 bytes (16 hex digits) on the displays.
//
// 24-Sep-05 Ike: updated to use new reset-once state machine, remove clear
// 02-Nov-05 Ike: updated to make it completely synchronous
//
// Inputs:
//
// reset - active high
// clock_27mhz - the synchronous clock
// data - 64 bits; each 4 bits gives a hex digit
//
// Outputs:
//
// disp_* - display lines used in the 6.111 labkit (rev 003 & 004)
//
///

module display_16hex (reset, clock_27mhz, data_in,
 disp_blank, disp_clock, disp_rs, disp_ce_b,
 disp_reset_b, disp_data_out);

 input reset, clock_27mhz; // clock and reset (active high reset)
 input [63:0] data_in; // 16 hex nibbles to display

 output disp_blank, disp_clock, disp_data_out, disp_rs, disp_ce_b,
 disp_reset_b;

 reg disp_data_out, disp_rs, disp_ce_b, disp_reset_b;

 //

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/display_16hex.txt (1 of 6)12/13/2005 6:59:19 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

 //
 // Display Clock
 //
 // Generate a 500kHz clock for driving the displays.
 //
 //

 reg [5:0] count;
 reg [7:0] reset_count;
// reg old_clock;
 wire dreset;
 wire clock = (count<27) ? 0 : 1;

 always @(posedge clock_27mhz)
 begin
 count <= reset ? 0 : (count==53 ? 0 : count+1);
 reset_count <= reset ? 100 : ((reset_count==0) ? 0 : reset_count-1);
// old_clock <= clock;
 end

 assign dreset = (reset_count != 0);
 assign disp_clock = ~clock;
 wire clock_tick = ((count==27) ? 1 : 0);
// wire clock_tick = clock & ~old_clock;

 //
 //
 // Display State Machine
 //
 //

 reg [7:0] state; // FSM state
 reg [9:0] dot_index; // index to current dot being clocked out
 reg [31:0] control; // control register
 reg [3:0] char_index; // index of current character
 reg [39:0] dots; // dots for a single digit
 reg [3:0] nibble; // hex nibble of current character
 reg [63:0] data;

 assign disp_blank = 1'b0; // low <= not blanked

 always @(posedge clock_27mhz)
 if (clock_tick)

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/display_16hex.txt (2 of 6)12/13/2005 6:59:19 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

 begin
 if (dreset)
 begin
 state <= 0;
 dot_index <= 0;
 control <= 32'h7F7F7F7F;
 end
 else
 casex (state)
 8'h00:
 begin
 // Reset displays
 disp_data_out <= 1'b0;
 disp_rs <= 1'b0; // dot register
 disp_ce_b <= 1'b1;
 disp_reset_b <= 1'b0;
 dot_index <= 0;
 state <= state+1;
 end

 8'h01:
 begin
 // End reset
 disp_reset_b <= 1'b1;
 state <= state+1;
 end

 8'h02:
 begin
 // Initialize dot register (set all dots to zero)
 disp_ce_b <= 1'b0;
 disp_data_out <= 1'b0; // dot_index[0];
 if (dot_index == 639)
 state <= state+1;
 else
 dot_index <= dot_index+1;
 end

 8'h03:
 begin
 // Latch dot data
 disp_ce_b <= 1'b1;
 dot_index <= 31; // re-purpose to init ctrl reg

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/display_16hex.txt (3 of 6)12/13/2005 6:59:19 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

 state <= state+1;
 end

 8'h04:
 begin
 // Setup the control register
 disp_rs <= 1'b1; // Select the control register
 disp_ce_b <= 1'b0;
 disp_data_out <= control[31];
 control <= {control[30:0], 1'b0}; // shift left
 if (dot_index == 0)
 state <= state+1;
 else
 dot_index <= dot_index-1;
 end

 8'h05:
 begin
 // Latch the control register data / dot data
 disp_ce_b <= 1'b1;
 dot_index <= 39; // init for single char
 char_index <= 15; // start with MS char
 data <= data_in;
 state <= state+1;
 end

 8'h06:
 begin
 // Load the user's dot data into the dot reg, char by char
 disp_rs <= 1'b0; // Select the dot register
 disp_ce_b <= 1'b0;
 disp_data_out <= dots[dot_index]; // dot data from msb
 if (dot_index == 0)
 if (char_index == 0)
 state <= 5; // all done, latch data
 else
 begin
 char_index <= char_index - 1; // goto next char
 data <= data_in;
 dot_index <= 39;
 end
 else
 dot_index <= dot_index-1; // else loop thru all dots

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/display_16hex.txt (4 of 6)12/13/2005 6:59:19 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

 end

 endcase // casex(state)
 end

 always @ (data or char_index)
 case (char_index)
 4'h0: nibble <= data[3:0];
 4'h1: nibble <= data[7:4];
 4'h2: nibble <= data[11:8];
 4'h3: nibble <= data[15:12];
 4'h4: nibble <= data[19:16];
 4'h5: nibble <= data[23:20];
 4'h6: nibble <= data[27:24];
 4'h7: nibble <= data[31:28];
 4'h8: nibble <= data[35:32];
 4'h9: nibble <= data[39:36];
 4'hA: nibble <= data[43:40];
 4'hB: nibble <= data[47:44];
 4'hC: nibble <= data[51:48];
 4'hD: nibble <= data[55:52];
 4'hE: nibble <= data[59:56];
 4'hF: nibble <= data[63:60];
 endcase

 always @(nibble)
 case (nibble)
 4'h0: dots <= 40'b00111110_01010001_01001001_01000101_00111110;
 4'h1: dots <= 40'b00000000_01000010_01111111_01000000_00000000;
 4'h2: dots <= 40'b01100010_01010001_01001001_01001001_01000110;
 4'h3: dots <= 40'b00100010_01000001_01001001_01001001_00110110;
 4'h4: dots <= 40'b00011000_00010100_00010010_01111111_00010000;
 4'h5: dots <= 40'b00100111_01000101_01000101_01000101_00111001;
 4'h6: dots <= 40'b00111100_01001010_01001001_01001001_00110000;
 4'h7: dots <= 40'b00000001_01110001_00001001_00000101_00000011;
 4'h8: dots <= 40'b00110110_01001001_01001001_01001001_00110110;
 4'h9: dots <= 40'b00000110_01001001_01001001_00101001_00011110;
 4'hA: dots <= 40'b01111110_00001001_00001001_00001001_01111110;
 4'hB: dots <= 40'b01111111_01001001_01001001_01001001_00110110;
 4'hC: dots <= 40'b00111110_01000001_01000001_01000001_00100010;
 4'hD: dots <= 40'b01111111_01000001_01000001_01000001_00111110;
 4'hE: dots <= 40'b01111111_01001001_01001001_01001001_01000001;
 4'hF: dots <= 40'b01111111_00001001_00001001_00001001_00000001;

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/display_16hex.txt (5 of 6)12/13/2005 6:59:19 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

 endcase

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...0Files/Verilog%20Source%20as%20Text/display_16hex.txt (6 of 6)12/13/2005 6:59:19 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...20Project/Verilog%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt

//
// File: ntsc2zbt.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Example for MIT 6.111 labkit showing how to prepare NTSC data
// (from Javier's decoder) to be loaded into the ZBT RAM for video
// display.
//
// The ZBT memory is 36 bits wide; we only use 32 bits of this, to
// store 4 bytes of black-and-white intensity data from the NTSC
// video input.

///
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data, ntsc_we, sw);

 input clk; // system clock
 input vclk; // video clock from camera
 input [2:0] fvh;
 input dv;
 input [29:0] din;
 output [18:0] ntsc_addr;
 output [35:0] ntsc_data;
 output ntsc_we; // write enable for NTSC data
 input sw; // switch which determines mode (for debugging)

 parameter COL_START = 10'd30;
 parameter ROW_START = 10'd30;

 // here put the luminance data from the ntsc decoder into the ram
 // this is for 1024 x 768 XGA display

 reg [9:0] col = 0;
 reg [9:0] row = 0;
 reg [17:0] vdata = 0;
 reg vwe;
 reg old_dv;
 reg old_frame; // frames are even / odd interlaced
 reg even_odd; // decode interlaced frame to this wire

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...log%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt (1 of 3)12/13/2005 6:58:57 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...20Project/Verilog%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt

 wire frame = fvh[2];
 wire frame_edge = frame & ~old_frame;

 always @ (posedge vclk) //LLC1 is reference
 begin
 old_dv <= dv;
 vwe <= dv && !fvh[2] & ~old_dv; // if data valid, write it
 old_frame <= frame;
 even_odd = frame_edge ? ~even_odd : even_odd;

 if (!fvh[2])
 begin
 col <= fvh[0] ? COL_START :
 (!fvh[2] && !fvh[1] && dv && (col < 1024)) ? col + 1 : col;
 row <= fvh[1] ? ROW_START :
 (!fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
 vdata <= (dv && !fvh[2]) ? {din[29:22],din[19:12],din[9:8]} : vdata;
 end
 end

 // synchronize with system clock

 reg [9:0] x[1:0],y[1:0];
 reg [17:0] data[1:0];
 reg we[1:0];
 reg eo[1:0];

 always @(posedge clk)
 begin
 {x[1],x[0]} <= {x[0],col};
 {y[1],y[0]} <= {y[0],row};
 {data[1],data[0]} <= {data[0],vdata};
 {we[1],we[0]} <= {we[0],vwe};
 {eo[1],eo[0]} <= {eo[0],even_odd};
 end

 // edge detection on write enable signal

 reg old_we;
 wire we_edge = we[1] & ~old_we;
 always @(posedge clk) old_we <= we[1];

 // shift each set of four bytes into a large register for the ZBT

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...log%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt (2 of 3)12/13/2005 6:58:57 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...20Project/Verilog%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt

 reg [35:0] mydata;
 always @(posedge clk)
 if (we_edge)
 mydata <= { mydata[17:0], data[1] };

 // compute address to store data in

 wire [18:0] myaddr = {y[1][8:0], eo[1], x[1][9:1]};

 // alternate (256x192) image data and address
 wire [35:0] mydata2 = {data[1],data[1],data[1],data[1]};
 wire [18:0] myaddr2 = {1'b0, y[1][8:0], eo[1], x[1][7:0]};

 // update the output address and data only when four bytes ready // WRITE EVERY 2!!!

 reg [18:0] ntsc_addr;
 reg [35:0] ntsc_data;
 wire ntsc_we = sw ? we_edge : (we_edge & (x[1][0]==1'b0));

 always @(posedge clk)
 if (ntsc_we)
 begin
 ntsc_addr <= sw ? myaddr2 : myaddr; // normal and expanded modes
 ntsc_data <= sw ? {4'b0,mydata2} : {4'b0,mydata};
 end

endmodule // ntsc_to_zbt

file:///C|/Documents%20and%20Settings/cwilkens/My%20D...log%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt (3 of 3)12/13/2005 6:58:57 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

//
// File: video_decoder.v
// Date: 31-Oct-05
// Author: J. Castro (MIT 6.111, fall 2005)
//
// This file contains the ntsc_decode and adv7185init modules
//
// These modules are used to grab input NTSC video data from the RCA
// phono jack on the right hand side of the 6.111 labkit (connect
// the camera to the LOWER jack).
//

///
//
// NTSC decode - 16-bit CCIR656 decoder
// By Javier Castro
// This module takes a stream of LLC data from the adv7185
// NTSC/PAL video decoder and generates the corresponding pixels,
// that are encoded within the stream, in YCrCb format.

// Make sure that the adv7185 is set to run in 16-bit LLC2 mode.

module ntsc_decode(clk, reset, tv_in_ycrcb, ycrcb, f, v, h, data_valid);

 // clk - line-locked clock (in this case, LLC1 which runs at 27Mhz)
 // reset - system reset
 // tv_in_ycrcb - 10-bit input from chip. should map to pins [19:10]
 // ycrcb - 24 bit luminance and chrominance (8 bits each)
 // f - field: 1 indicates an even field, 0 an odd field
 // v - vertical sync: 1 means vertical sync
 // h - horizontal sync: 1 means horizontal sync

 input clk;
 input reset;
 input [9:0] tv_in_ycrcb; // modified for 10 bit input - should be P[19:10]
 output [29:0] ycrcb;
 output f;
 output v;
 output h;
 output data_valid;
 // output [4:0] state;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (1 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 parameter SYNC_1 = 0;
 parameter SYNC_2 = 1;
 parameter SYNC_3 = 2;
 parameter SAV_f1_cb0 = 3;
 parameter SAV_f1_y0 = 4;
 parameter SAV_f1_cr1 = 5;
 parameter SAV_f1_y1 = 6;
 parameter EAV_f1 = 7;
 parameter SAV_VBI_f1 = 8;
 parameter EAV_VBI_f1 = 9;
 parameter SAV_f2_cb0 = 10;
 parameter SAV_f2_y0 = 11;
 parameter SAV_f2_cr1 = 12;
 parameter SAV_f2_y1 = 13;
 parameter EAV_f2 = 14;
 parameter SAV_VBI_f2 = 15;
 parameter EAV_VBI_f2 = 16;

 // In the start state, the module doesn't know where
 // in the sequence of pixels, it is looking.

 // Once we determine where to start, the FSM goes through a normal
 // sequence of SAV process_YCrCb EAV... repeat

 // The data stream looks as follows
 // SAV_FF | SAV_00 | SAV_00 | SAV_XY | Cb0 | Y0 | Cr1 | Y1 | Cb2 | Y2 | ... | EAV sequence
 // There are two things we need to do:
 // 1. Find the two SAV blocks (stands for Start Active Video perhaps?)
 // 2. Decode the subsequent data

 reg [4:0] current_state = 5'h00;
 reg [9:0] y = 10'h000; // luminance
 reg [9:0] cr = 10'h000; // chrominance
 reg [9:0] cb = 10'h000; // more chrominance

 assign state = current_state;

 always @ (posedge clk)
 begin
 if (reset)

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (2 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 begin

 end
 else
 begin
 // these states don't do much except allow us to know where we are in the stream.
 // whenever the synchronization code is seen, go back to the sync_state before
 // transitioning to the new state
 case (current_state)
 SYNC_1: current_state <= (tv_in_ycrcb == 10'h000) ? SYNC_2 : SYNC_1;
 SYNC_2: current_state <= (tv_in_ycrcb == 10'h000) ? SYNC_3 : SYNC_1;
 SYNC_3: current_state <= (tv_in_ycrcb == 10'h200) ? SAV_f1_cb0 :
 (tv_in_ycrcb == 10'h274) ? EAV_f1 :
 (tv_in_ycrcb == 10'h2ac) ? SAV_VBI_f1 :
 (tv_in_ycrcb == 10'h2d8) ? EAV_VBI_f1 :
 (tv_in_ycrcb == 10'h31c) ? SAV_f2_cb0 :
 (tv_in_ycrcb == 10'h368) ? EAV_f2 :
 (tv_in_ycrcb == 10'h3b0) ? SAV_VBI_f2 :
 (tv_in_ycrcb == 10'h3c4) ? EAV_VBI_f2 : SYNC_1;

 SAV_f1_cb0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f1_y0;
 SAV_f1_y0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f1_cr1;
 SAV_f1_cr1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f1_y1;
 SAV_f1_y1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f1_cb0;

 SAV_f2_cb0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f2_y0;
 SAV_f2_y0: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f2_cr1;
 SAV_f2_cr1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f2_y1;
 SAV_f2_y1: current_state <= (tv_in_ycrcb == 10'h3ff) ? SYNC_1 : SAV_f2_cb0;

 // These states are here in the event that we want to cover these signals
 // in the future. For now, they just send the state machine back to SYNC_1
 EAV_f1: current_state <= SYNC_1;
 SAV_VBI_f1: current_state <= SYNC_1;
 EAV_VBI_f1: current_state <= SYNC_1;
 EAV_f2: current_state <= SYNC_1;
 SAV_VBI_f2: current_state <= SYNC_1;
 EAV_VBI_f2: current_state <= SYNC_1;

 endcase
 end
 end // always @ (posedge clk)

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (3 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 // implement our decoding mechanism

 wire y_enable;
 wire cr_enable;
 wire cb_enable;

 // if y is coming in, enable the register
 // likewise for cr and cb
 assign y_enable = (current_state == SAV_f1_y0) ||
 (current_state == SAV_f1_y1) ||
 (current_state == SAV_f2_y0) ||
 (current_state == SAV_f2_y1);
 assign cr_enable = (current_state == SAV_f1_cr1) ||
 (current_state == SAV_f2_cr1);
 assign cb_enable = (current_state == SAV_f1_cb0) ||
 (current_state == SAV_f2_cb0);

 // f, v, and h only go high when active
 assign {v,h} = (current_state == SYNC_3) ? tv_in_ycrcb[7:6] : 2'b00;

 // data is valid when we have all three values: y, cr, cb
 assign data_valid = y_enable;
 assign ycrcb = {y,cr,cb};

 reg f = 0;

 always @ (posedge clk)
 begin
 y <= y_enable ? tv_in_ycrcb : y;
 cr <= cr_enable ? tv_in_ycrcb : cr;
 cb <= cb_enable ? tv_in_ycrcb : cb;
 f <= (current_state == SYNC_3) ? tv_in_ycrcb[8] : f;
 end

endmodule

///
//
// 6.111 FPGA Labkit -- ADV7185 Video Decoder Configuration Init
//
// Created:

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (4 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

// Author: Nathan Ickes
//
///

///
// Register 0
///

`define INPUT_SELECT 4'h0
 // 0: CVBS on AIN1 (composite video in)
 // 7: Y on AIN2, C on AIN5 (s-video in)
 // (These are the only configurations supported by the 6.111 labkit hardware)
`define INPUT_MODE 4'h0
 // 0: Autodetect: NTSC or PAL (BGHID), w/o pedestal
 // 1: Autodetect: NTSC or PAL (BGHID), w/pedestal
 // 2: Autodetect: NTSC or PAL (N), w/o pedestal
 // 3: Autodetect: NTSC or PAL (N), w/pedestal
 // 4: NTSC w/o pedestal
 // 5: NTSC w/pedestal
 // 6: NTSC 4.43 w/o pedestal
 // 7: NTSC 4.43 w/pedestal
 // 8: PAL BGHID w/o pedestal
 // 9: PAL N w/pedestal
 // A: PAL M w/o pedestal
 // B: PAL M w/pedestal
 // C: PAL combination N
 // D: PAL combination N w/pedestal
 // E-F: [Not valid]

`define ADV7185_REGISTER_0 {`INPUT_MODE, `INPUT_SELECT}

///
// Register 1
///

`define VIDEO_QUALITY 2'h0
 // 0: Broadcast quality
 // 1: TV quality
 // 2: VCR quality
 // 3: Surveillance quality
`define SQUARE_PIXEL_IN_MODE 1'b0
 // 0: Normal mode
 // 1: Square pixel mode

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (5 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

`define DIFFERENTIAL_INPUT 1'b0
 // 0: Single-ended inputs
 // 1: Differential inputs
`define FOUR_TIMES_SAMPLING 1'b0
 // 0: Standard sampling rate
 // 1: 4x sampling rate (NTSC only)
`define BETACAM 1'b0
 // 0: Standard video input
 // 1: Betacam video input
`define AUTOMATIC_STARTUP_ENABLE 1'b1
 // 0: Change of input triggers reacquire
 // 1: Change of input does not trigger reacquire

`define ADV7185_REGISTER_1 {`AUTOMATIC_STARTUP_ENABLE, 1'b0, `BETACAM,
`FOUR_TIMES_SAMPLING, `DIFFERENTIAL_INPUT, `SQUARE_PIXEL_IN_MODE,
`VIDEO_QUALITY}

///
// Register 2
///

`define Y_PEAKING_FILTER 3'h4
 // 0: Composite = 4.5dB, s-video = 9.25dB
 // 1: Composite = 4.5dB, s-video = 9.25dB
 // 2: Composite = 4.5dB, s-video = 5.75dB
 // 3: Composite = 1.25dB, s-video = 3.3dB
 // 4: Composite = 0.0dB, s-video = 0.0dB
 // 5: Composite = -1.25dB, s-video = -3.0dB
 // 6: Composite = -1.75dB, s-video = -8.0dB
 // 7: Composite = -3.0dB, s-video = -8.0dB
`define CORING 2'h0
 // 0: No coring
 // 1: Truncate if Y < black+8
 // 2: Truncate if Y < black+16
 // 3: Truncate if Y < black+32

`define ADV7185_REGISTER_2 {3'b000, `CORING, `Y_PEAKING_FILTER}

///
// Register 3
///

`define INTERFACE_SELECT 2'h0

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (6 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 // 0: Philips-compatible
 // 1: Broktree API A-compatible
 // 2: Broktree API B-compatible
 // 3: [Not valid]
`define OUTPUT_FORMAT 4'h0
 // 0: 10-bit @ LLC, 4:2:2 CCIR656
 // 1: 20-bit @ LLC, 4:2:2 CCIR656
 // 2: 16-bit @ LLC, 4:2:2 CCIR656
 // 3: 8-bit @ LLC, 4:2:2 CCIR656
 // 4: 12-bit @ LLC, 4:1:1
 // 5-F: [Not valid]
 // (Note that the 6.111 labkit hardware provides only a 10-bit interface to
 // the ADV7185.)
`define TRISTATE_OUTPUT_DRIVERS 1'b0
 // 0: Drivers tristated when ~OE is high
 // 1: Drivers always tristated
`define VBI_ENABLE 1'b0
 // 0: Decode lines during vertical blanking interval
 // 1: Decode only active video regions

`define ADV7185_REGISTER_3 {`VBI_ENABLE, `TRISTATE_OUTPUT_DRIVERS,
`OUTPUT_FORMAT, `INTERFACE_SELECT}

///
// Register 4
///

`define OUTPUT_DATA_RANGE 1'b0
 // 0: Output values restricted to CCIR-compliant range
 // 1: Use full output range
`define BT656_TYPE 1'b0
 // 0: BT656-3-compatible
 // 1: BT656-4-compatible

`define ADV7185_REGISTER_4 {`BT656_TYPE, 3'b000, 3'b110, `OUTPUT_DATA_RANGE}

///
// Register 5
///

`define GENERAL_PURPOSE_OUTPUTS 4'b0000
`define GPO_0_1_ENABLE 1'b0

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (7 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 // 0: General purpose outputs 0 and 1 tristated
 // 1: General purpose outputs 0 and 1 enabled
`define GPO_2_3_ENABLE 1'b0
 // 0: General purpose outputs 2 and 3 tristated
 // 1: General purpose outputs 2 and 3 enabled
`define BLANK_CHROMA_IN_VBI 1'b1
 // 0: Chroma decoded and output during vertical blanking
 // 1: Chroma blanked during vertical blanking
`define HLOCK_ENABLE 1'b0
 // 0: GPO 0 is a general purpose output
 // 1: GPO 0 shows HLOCK status

`define ADV7185_REGISTER_5 {`HLOCK_ENABLE, `BLANK_CHROMA_IN_VBI,
`GPO_2_3_ENABLE, `GPO_0_1_ENABLE, `GENERAL_PURPOSE_OUTPUTS}

///
// Register 7
///

`define FIFO_FLAG_MARGIN 5'h10
 // Sets the locations where FIFO almost-full and almost-empty flags are set
`define FIFO_RESET 1'b0
 // 0: Normal operation
 // 1: Reset FIFO. This bit is automatically cleared
`define AUTOMATIC_FIFO_RESET 1'b0
 // 0: No automatic reset
 // 1: FIFO is autmatically reset at the end of each video field
`define FIFO_FLAG_SELF_TIME 1'b1
 // 0: FIFO flags are synchronized to CLKIN
 // 1: FIFO flags are synchronized to internal 27MHz clock

`define ADV7185_REGISTER_7 {`FIFO_FLAG_SELF_TIME, `AUTOMATIC_FIFO_RESET,
`FIFO_RESET, `FIFO_FLAG_MARGIN}

///
// Register 8
///

`define INPUT_CONTRAST_ADJUST 8'h80

`define ADV7185_REGISTER_8 {`INPUT_CONTRAST_ADJUST}

///

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (8 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

// Register 9
///

`define INPUT_SATURATION_ADJUST 8'h8C

`define ADV7185_REGISTER_9 {`INPUT_SATURATION_ADJUST}

///
// Register A
///

`define INPUT_BRIGHTNESS_ADJUST 8'h00

`define ADV7185_REGISTER_A {`INPUT_BRIGHTNESS_ADJUST}

///
// Register B
///

`define INPUT_HUE_ADJUST 8'h00

`define ADV7185_REGISTER_B {`INPUT_HUE_ADJUST}

///
// Register C
///

`define DEFAULT_VALUE_ENABLE 1'b0
 // 0: Use programmed Y, Cr, and Cb values
 // 1: Use default values
`define DEFAULT_VALUE_AUTOMATIC_ENABLE 1'b0
 // 0: Use programmed Y, Cr, and Cb values
 // 1: Use default values if lock is lost
`define DEFAULT_Y_VALUE 6'h0C
 // Default Y value

`define ADV7185_REGISTER_C {`DEFAULT_Y_VALUE,
`DEFAULT_VALUE_AUTOMATIC_ENABLE, `DEFAULT_VALUE_ENABLE}

///
// Register D
///

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (9 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

`define DEFAULT_CR_VALUE 4'h8
 // Most-significant four bits of default Cr value
`define DEFAULT_CB_VALUE 4'h8
 // Most-significant four bits of default Cb value

`define ADV7185_REGISTER_D {`DEFAULT_CB_VALUE, `DEFAULT_CR_VALUE}

///
// Register E
///

`define TEMPORAL_DECIMATION_ENABLE 1'b0
 // 0: Disable
 // 1: Enable
`define TEMPORAL_DECIMATION_CONTROL 2'h0
 // 0: Supress frames, start with even field
 // 1: Supress frames, start with odd field
 // 2: Supress even fields only
 // 3: Supress odd fields only
`define TEMPORAL_DECIMATION_RATE 4'h0
 // 0-F: Number of fields/frames to skip

`define ADV7185_REGISTER_E {1'b0, `TEMPORAL_DECIMATION_RATE,
`TEMPORAL_DECIMATION_CONTROL, `TEMPORAL_DECIMATION_ENABLE}

///
// Register F
///

`define POWER_SAVE_CONTROL 2'h0
 // 0: Full operation
 // 1: CVBS only
 // 2: Digital only
 // 3: Power save mode
`define POWER_DOWN_SOURCE_PRIORITY 1'b0
 // 0: Power-down pin has priority
 // 1: Power-down control bit has priority
`define POWER_DOWN_REFERENCE 1'b0
 // 0: Reference is functional
 // 1: Reference is powered down
`define POWER_DOWN_LLC_GENERATOR 1'b0
 // 0: LLC generator is functional
 // 1: LLC generator is powered down

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (10 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

`define POWER_DOWN_CHIP 1'b0
 // 0: Chip is functional
 // 1: Input pads disabled and clocks stopped
`define TIMING_REACQUIRE 1'b0
 // 0: Normal operation
 // 1: Reacquire video signal (bit will automatically reset)
`define RESET_CHIP 1'b0
 // 0: Normal operation
 // 1: Reset digital core and I2C interface (bit will automatically reset)

`define ADV7185_REGISTER_F {`RESET_CHIP, `TIMING_REACQUIRE,
`POWER_DOWN_CHIP, `POWER_DOWN_LLC_GENERATOR, `POWER_DOWN_REFERENCE,
`POWER_DOWN_SOURCE_PRIORITY, `POWER_SAVE_CONTROL}

///
// Register 33
///

`define PEAK_WHITE_UPDATE 1'b1
 // 0: Update gain once per line
 // 1: Update gain once per field
`define AVERAGE_BIRIGHTNESS_LINES 1'b1
 // 0: Use lines 33 to 310
 // 1: Use lines 33 to 270
`define MAXIMUM_IRE 3'h0
 // 0: PAL: 133, NTSC: 122
 // 1: PAL: 125, NTSC: 115
 // 2: PAL: 120, NTSC: 110
 // 3: PAL: 115, NTSC: 105
 // 4: PAL: 110, NTSC: 100
 // 5: PAL: 105, NTSC: 100
 // 6-7: PAL: 100, NTSC: 100
`define COLOR_KILL 1'b1
 // 0: Disable color kill
 // 1: Enable color kill

`define ADV7185_REGISTER_33 {1'b1, `COLOR_KILL, 1'b1, `MAXIMUM_IRE,
`AVERAGE_BIRIGHTNESS_LINES, `PEAK_WHITE_UPDATE}

`define ADV7185_REGISTER_10 8'h00
`define ADV7185_REGISTER_11 8'h00
`define ADV7185_REGISTER_12 8'h00
`define ADV7185_REGISTER_13 8'h45

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (11 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

`define ADV7185_REGISTER_14 8'h18
`define ADV7185_REGISTER_15 8'h60
`define ADV7185_REGISTER_16 8'h00
`define ADV7185_REGISTER_17 8'h01
`define ADV7185_REGISTER_18 8'h00
`define ADV7185_REGISTER_19 8'h10
`define ADV7185_REGISTER_1A 8'h10
`define ADV7185_REGISTER_1B 8'hF0
`define ADV7185_REGISTER_1C 8'h16
`define ADV7185_REGISTER_1D 8'h01
`define ADV7185_REGISTER_1E 8'h00
`define ADV7185_REGISTER_1F 8'h3D
`define ADV7185_REGISTER_20 8'hD0
`define ADV7185_REGISTER_21 8'h09
`define ADV7185_REGISTER_22 8'h8C
`define ADV7185_REGISTER_23 8'hE2
`define ADV7185_REGISTER_24 8'h1F
`define ADV7185_REGISTER_25 8'h07
`define ADV7185_REGISTER_26 8'hC2
`define ADV7185_REGISTER_27 8'h58
`define ADV7185_REGISTER_28 8'h3C
`define ADV7185_REGISTER_29 8'h00
`define ADV7185_REGISTER_2A 8'h00
`define ADV7185_REGISTER_2B 8'hA0
`define ADV7185_REGISTER_2C 8'hCE
`define ADV7185_REGISTER_2D 8'hF0
`define ADV7185_REGISTER_2E 8'h00
`define ADV7185_REGISTER_2F 8'hF0
`define ADV7185_REGISTER_30 8'h00
`define ADV7185_REGISTER_31 8'h70
`define ADV7185_REGISTER_32 8'h00
`define ADV7185_REGISTER_34 8'h0F
`define ADV7185_REGISTER_35 8'h01
`define ADV7185_REGISTER_36 8'h00
`define ADV7185_REGISTER_37 8'h00
`define ADV7185_REGISTER_38 8'h00
`define ADV7185_REGISTER_39 8'h00
`define ADV7185_REGISTER_3A 8'h00
`define ADV7185_REGISTER_3B 8'h00

`define ADV7185_REGISTER_44 8'h41
`define ADV7185_REGISTER_45 8'hBB

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (12 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

`define ADV7185_REGISTER_F1 8'hEF
`define ADV7185_REGISTER_F2 8'h80

module adv7185init (reset, clock_27mhz, source, tv_in_reset_b,
 tv_in_i2c_clock, tv_in_i2c_data);

 input reset;
 input clock_27mhz;
 output tv_in_reset_b; // Reset signal to ADV7185
 output tv_in_i2c_clock; // I2C clock output to ADV7185
 output tv_in_i2c_data; // I2C data line to ADV7185
 input source; // 0: composite, 1: s-video

 initial begin
 $display("ADV7185 Initialization values:");
 $display(" Register 0: 0x%X", `ADV7185_REGISTER_0);
 $display(" Register 1: 0x%X", `ADV7185_REGISTER_1);
 $display(" Register 2: 0x%X", `ADV7185_REGISTER_2);
 $display(" Register 3: 0x%X", `ADV7185_REGISTER_3);
 $display(" Register 4: 0x%X", `ADV7185_REGISTER_4);
 $display(" Register 5: 0x%X", `ADV7185_REGISTER_5);
 $display(" Register 7: 0x%X", `ADV7185_REGISTER_7);
 $display(" Register 8: 0x%X", `ADV7185_REGISTER_8);
 $display(" Register 9: 0x%X", `ADV7185_REGISTER_9);
 $display(" Register A: 0x%X", `ADV7185_REGISTER_A);
 $display(" Register B: 0x%X", `ADV7185_REGISTER_B);
 $display(" Register C: 0x%X", `ADV7185_REGISTER_C);
 $display(" Register D: 0x%X", `ADV7185_REGISTER_D);
 $display(" Register E: 0x%X", `ADV7185_REGISTER_E);
 $display(" Register F: 0x%X", `ADV7185_REGISTER_F);
 $display(" Register 33: 0x%X", `ADV7185_REGISTER_33);
 end

 //
 // Generate a 1MHz for the I2C driver (resulting I2C clock rate is 250kHz)
 //

 reg [7:0] clk_div_count, reset_count;
 reg clock_slow;
 wire reset_slow;

 initial

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (13 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 begin
 clk_div_count <= 8'h00;
 // synthesis attribute init of clk_div_count is "00";
 clock_slow <= 1'b0;
 // synthesis attribute init of clock_slow is "0";
 end

 always @(posedge clock_27mhz)
 if (clk_div_count == 26)
 begin
 clock_slow <= ~clock_slow;
 clk_div_count <= 0;
 end
 else
 clk_div_count <= clk_div_count+1;

 always @(posedge clock_27mhz)
 if (reset)
 reset_count <= 100;
 else
 reset_count <= (reset_count==0) ? 0 : reset_count-1;

 assign reset_slow = reset_count != 0;

 //
 // I2C driver
 //

 reg load;
 reg [7:0] data;
 wire ack, idle;

 i2c i2c(.reset(reset_slow), .clock4x(clock_slow), .data(data), .load(load),
 .ack(ack), .idle(idle), .scl(tv_in_i2c_clock),
 .sda(tv_in_i2c_data));

 //
 // State machine
 //

 reg [7:0] state;
 reg tv_in_reset_b;
 reg old_source;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (14 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 always @(posedge clock_slow)
 if (reset_slow)
 begin
 state <= 0;
 load <= 0;
 tv_in_reset_b <= 0;
 old_source <= 0;
 end
 else
 case (state)
 8'h00:
 begin
 // Assert reset
 load <= 1'b0;
 tv_in_reset_b <= 1'b0;
 if (!ack)
 state <= state+1;
 end
 8'h01:
 state <= state+1;
 8'h02:
 begin
 // Release reset
 tv_in_reset_b <= 1'b1;
 state <= state+1;
 end
 8'h03:
 begin
 // Send ADV7185 address
 data <= 8'h8A;
 load <= 1'b1;
 if (ack)
 state <= state+1;
 end
 8'h04:
 begin
 // Send subaddress of first register
 data <= 8'h00;
 if (ack)
 state <= state+1;
 end
 8'h05:

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (15 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 begin
 // Write to register 0
 data <= `ADV7185_REGISTER_0 | {5'h00, {3{source}}};
 if (ack)
 state <= state+1;
 end
 8'h06:
 begin
 // Write to register 1
 data <= `ADV7185_REGISTER_1;
 if (ack)
 state <= state+1;
 end
 8'h07:
 begin
 // Write to register 2
 data <= `ADV7185_REGISTER_2;
 if (ack)
 state <= state+1;
 end
 8'h08:
 begin
 // Write to register 3
 data <= `ADV7185_REGISTER_3;
 if (ack)
 state <= state+1;
 end
 8'h09:
 begin
 // Write to register 4
 data <= `ADV7185_REGISTER_4;
 if (ack)
 state <= state+1;
 end
 8'h0A:
 begin
 // Write to register 5
 data <= `ADV7185_REGISTER_5;
 if (ack)
 state <= state+1;
 end
 8'h0B:
 begin

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (16 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 // Write to register 6
 data <= 8'h00; // Reserved register, write all zeros
 if (ack)
 state <= state+1;
 end
 8'h0C:
 begin
 // Write to register 7
 data <= `ADV7185_REGISTER_7;
 if (ack)
 state <= state+1;
 end
 8'h0D:
 begin
 // Write to register 8
 data <= `ADV7185_REGISTER_8;
 if (ack)
 state <= state+1;
 end
 8'h0E:
 begin
 // Write to register 9
 data <= `ADV7185_REGISTER_9;
 if (ack)
 state <= state+1;
 end
 8'h0F: begin
 // Write to register A
 data <= `ADV7185_REGISTER_A;
 if (ack)
 state <= state+1;
 end
 8'h10:
 begin
 // Write to register B
 data <= `ADV7185_REGISTER_B;
 if (ack)
 state <= state+1;
 end
 8'h11:
 begin
 // Write to register C
 data <= `ADV7185_REGISTER_C;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (17 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 if (ack)
 state <= state+1;
 end
 8'h12:
 begin
 // Write to register D
 data <= `ADV7185_REGISTER_D;
 if (ack)
 state <= state+1;
 end
 8'h13:
 begin
 // Write to register E
 data <= `ADV7185_REGISTER_E;
 if (ack)
 state <= state+1;
 end
 8'h14:
 begin
 // Write to register F
 data <= `ADV7185_REGISTER_F;
 if (ack)
 state <= state+1;
 end
 8'h15:
 begin
 // Wait for I2C transmitter to finish
 load <= 1'b0;
 if (idle)
 state <= state+1;
 end
 8'h16:
 begin
 // Write address
 data <= 8'h8A;
 load <= 1'b1;
 if (ack)
 state <= state+1;
 end
 8'h17:
 begin
 data <= 8'h33;
 if (ack)

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (18 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 state <= state+1;
 end
 8'h18:
 begin
 data <= `ADV7185_REGISTER_33;
 if (ack)
 state <= state+1;
 end
 8'h19:
 begin
 load <= 1'b0;
 if (idle)
 state <= state+1;
 end

 8'h1A: begin
 data <= 8'h8A;
 load <= 1'b1;
 if (ack)
 state <= state+1;
 end
 8'h1B:
 begin
 data <= 8'h33;
 if (ack)
 state <= state+1;
 end
 8'h1C:
 begin
 load <= 1'b0;
 if (idle)
 state <= state+1;
 end
 8'h1D:
 begin
 load <= 1'b1;
 data <= 8'h8B;
 if (ack)
 state <= state+1;
 end
 8'h1E:
 begin
 data <= 8'hFF;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (19 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 if (ack)
 state <= state+1;
 end
 8'h1F:
 begin
 load <= 1'b0;
 if (idle)
 state <= state+1;
 end
 8'h20:
 begin
 // Idle
 if (old_source != source) state <= state+1;
 old_source <= source;
 end
 8'h21: begin
 // Send ADV7185 address
 data <= 8'h8A;
 load <= 1'b1;
 if (ack) state <= state+1;
 end
 8'h22: begin
 // Send subaddress of register 0
 data <= 8'h00;
 if (ack) state <= state+1;
 end
 8'h23: begin
 // Write to register 0
 data <= `ADV7185_REGISTER_0 | {5'h00, {3{source}}};
 if (ack) state <= state+1;
 end
 8'h24: begin
 // Wait for I2C transmitter to finish
 load <= 1'b0;
 if (idle) state <= 8'h20;
 end
 endcase

endmodule

// i2c module for use with the ADV7185

module i2c (reset, clock4x, data, load, idle, ack, scl, sda);

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (20 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 input reset;
 input clock4x;
 input [7:0] data;
 input load;
 output ack;
 output idle;
 output scl;
 output sda;

 reg [7:0] ldata;
 reg ack, idle;
 reg scl;
 reg sdai;

 reg [7:0] state;

 assign sda = sdai ? 1'bZ : 1'b0;

 always @(posedge clock4x)
 if (reset)
 begin
 state <= 0;
 ack <= 0;
 end
 else
 case (state)
 8'h00: // idle
 begin
 scl <= 1'b1;
 sdai <= 1'b1;
 ack <= 1'b0;
 idle <= 1'b1;
 if (load)
 begin
 ldata <= data;
 ack <= 1'b1;
 state <= state+1;
 end
 end
 8'h01: // Start
 begin
 ack <= 1'b0;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (21 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 idle <= 1'b0;
 sdai <= 1'b0;
 state <= state+1;
 end
 8'h02:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h03: // Send bit 7
 begin
 ack <= 1'b0;
 sdai <= ldata[7];
 state <= state+1;
 end
 8'h04:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h05:
 begin
 state <= state+1;
 end
 8'h06:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h07:
 begin
 sdai <= ldata[6];
 state <= state+1;
 end
 8'h08:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h09:
 begin
 state <= state+1;
 end

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (22 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 8'h0A:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h0B:
 begin
 sdai <= ldata[5];
 state <= state+1;
 end
 8'h0C:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h0D:
 begin
 state <= state+1;
 end
 8'h0E:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h0F:
 begin
 sdai <= ldata[4];
 state <= state+1;
 end
 8'h10:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h11:
 begin
 state <= state+1;
 end
 8'h12:
 begin
 scl <= 1'b0;
 state <= state+1;
 end

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (23 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 8'h13:
 begin
 sdai <= ldata[3];
 state <= state+1;
 end
 8'h14:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h15:
 begin
 state <= state+1;
 end
 8'h16:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h17:
 begin
 sdai <= ldata[2];
 state <= state+1;
 end
 8'h18:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h19:
 begin
 state <= state+1;
 end
 8'h1A:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h1B:
 begin
 sdai <= ldata[1];
 state <= state+1;
 end

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (24 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 8'h1C:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h1D:
 begin
 state <= state+1;
 end
 8'h1E:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h1F:
 begin
 sdai <= ldata[0];
 state <= state+1;
 end
 8'h20:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h21:
 begin
 state <= state+1;
 end
 8'h22:
 begin
 scl <= 1'b0;
 state <= state+1;
 end
 8'h23: // Acknowledge bit
 begin
 state <= state+1;
 end
 8'h24:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h25:

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (25 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...ject/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

 begin
 state <= state+1;
 end
 8'h26:
 begin
 scl <= 1'b0;
 if (load)
 begin
 ldata <= data;
 ack <= 1'b1;
 state <= 3;
 end
 else
 state <= state+1;
 end
 8'h27:
 begin
 sdai <= 1'b0;
 state <= state+1;
 end
 8'h28:
 begin
 scl <= 1'b1;
 state <= state+1;
 end
 8'h29:
 begin
 sdai <= 1'b1;
 state <= 0;
 end
 endcase

endmodule

file:///C|/Documents%20and%20Settings/cwilkens/My%20...Files/Verilog%20Source%20as%20Text/video_decoder.txt (26 of 26)12/13/2005 6:58:59 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/video_zbt.txt

///
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)

module xvga(vclock,hcount,vcount,hsync,vsync,blank);
 input vclock;
 output [10:0] hcount;
 output [9:0] vcount;
 output vsync;
 output hsync;
 output blank;

 reg hsync,vsync,hblank,vblank,blank;
 reg [10:0] hcount; // pixel number on current line
 reg [9:0] vcount; // line number

 // horizontal: 1344 pixels total
 // display 1024 pixels per line
 wire hsyncon,hsyncoff,hreset,hblankon;
 assign hblankon = (hcount == 1023);
 assign hsyncon = (hcount == 1047);
 assign hsyncoff = (hcount == 1183);
 assign hreset = (hcount == 1343);

 // vertical: 806 lines total
 // display 768 lines
 wire vsyncon,vsyncoff,vreset,vblankon;
 assign vblankon = hreset & (vcount == 767);
 assign vsyncon = hreset & (vcount == 776);
 assign vsyncoff = hreset & (vcount == 782);
 assign vreset = hreset & (vcount == 805);

 // sync and blanking
 wire next_hblank,next_vblank;
 assign next_hblank = hreset ? 0 : hblankon ? 1 : hblank;
 assign next_vblank = vreset ? 0 : vblankon ? 1 : vblank;
 always @(posedge vclock) begin
 hcount <= hreset ? 0 : hcount + 1;
 hblank <= next_hblank;
 hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

 vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
 vblank <= next_vblank;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/video_zbt.txt (1 of 3)12/13/2005 6:59:00 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/video_zbt.txt

 vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

 blank <= next_vblank | (next_hblank & ~hreset);
 end
endmodule

///
// generate display pixels from reading the ZBT ram
// note that the ZBT ram has 2 cycles of read (and write) latency
//
// We take care of that by latching the data at an appropriate time.
//
// Note that the ZBT stores 36 bits per word; we use only 32 bits here,
// decoded into four bytes of pixel data.

module vram_display(reset,clk,hcount,vcount,vr_pixel,
 vram_addr,vram_read_data);

 input reset, clk;
 input [10:0] hcount;
 input [9:0] vcount;
 output [17:0] vr_pixel;
 output [18:0] vram_addr;
 input [35:0] vram_read_data;

 parameter HMID = 9'd367; // The horizontal center of the image in MEMORY
 parameter HSTART = HMID-9'd256; // The horizontal counter decrements!!!
 parameter VMID = 9'd287; // The vertical center of the image in MEMORY
 parameter VSTART = VMID-9'd192;

 wire [18:0] vram_addr = {1'b0,vcount[9:1]+VSTART, ~hcount[10:2]-9'd180};

 wire [1:0] hc4 = hcount[1:0];
 reg [17:0] vr_pixel;
 reg [35:0] vr_data_latched;
 reg [35:0] last_vr_data;

 always @(posedge clk)
 last_vr_data <= (hc4==2'd3) ? vr_data_latched : last_vr_data;

 always @(posedge clk)
 vr_data_latched <= (hc4==2'd1) ? vram_read_data : vr_data_latched;

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/video_zbt.txt (2 of 3)12/13/2005 6:59:00 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...0Project/Verilog%20Files/Verilog%20Source%20as%20Text/video_zbt.txt

 always @(*) // each 36-bit word from RAM is decoded to 4 bytes
 case (hc4)
 2'd3: vr_pixel = last_vr_data[17:0];//last_vr_data[8:0];
 2'd2: vr_pixel = last_vr_data[17:0];//last_vr_data[8+9:0+9];
 2'd1: vr_pixel = last_vr_data[35:18];//last_vr_data[8+18:0+18];
 2'd0: vr_pixel = last_vr_data[35:18];//last_vr_data[8+27:0+27];
 endcase

endmodule // vram_display

///
// parameterized delay line

module delayN(clk,in,out);
 input clk;
 input in;
 output out;

 parameter NDELAY = 3;

 reg [NDELAY-1:0] shiftreg;
 wire out = shiftreg[NDELAY-1];

 always @(posedge clk)
 shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

file:///C|/Documents%20and%20Settings/cwilkens/My%20...g%20Files/Verilog%20Source%20as%20Text/video_zbt.txt (3 of 3)12/13/2005 6:59:00 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...20Project/Verilog%20Files/Verilog%20Source%20as%20Text/zbt_6111.txt

//
// File: zbt_6111.v
// Date: 27-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the
// pipeline delays of the ZBT from the user. The ZBT memories have
// two cycle latencies on read and write, and also need extra-long data hold
// times around the clock positive edge to work reliably.
//

///
// Ike's simple ZBT RAM driver for the MIT 6.111 labkit
//
// Data for writes can be presented and clocked in immediately; the actual
// writing to RAM will happen two cycles later.
//
// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.
//
// A clock enable signal is provided; it enables the RAM clock when high.

module zbt_6111(clk, cen, we, addr, write_data, read_data,
 ram_clk, ram_we_b, ram_address, ram_data, ram_cen_b);

 input clk; // system clock
 input cen; // clock enable for gating ZBT cycles
 input we; // write enable (active HIGH)
 input [18:0] addr; // memory address
 input [35:0] write_data; // data to write
 output [35:0] read_data; // data read from memory
 output ram_clk; // physical line to ram clock
 output ram_we_b; // physical line to ram we_b
 output [18:0] ram_address; // physical line to ram address
 inout [35:0] ram_data; // physical line to ram data
 output ram_cen_b; // physical line to ram clock enable

 // clock enable (should be synchronous and one cycle high at a time)
 wire ram_cen_b = ~cen;

 // create delayed ram_we signal: note the delay is by two cycles!
 // ie we present the data to be written two cycles after we is raised

file:///C|/Documents%20and%20Settings/cwilkens/My%20...og%20Files/Verilog%20Source%20as%20Text/zbt_6111.txt (1 of 2)12/13/2005 6:59:14 PM

file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/Colle...20Project/Verilog%20Files/Verilog%20Source%20as%20Text/zbt_6111.txt

 // this means the bus is tri-stated two cycles after we is raised.

 reg [1:0] we_delay;

 always @(posedge clk)
 we_delay <= cen ? {we_delay[0],we} : we_delay;

 // create two-stage pipeline for write data

 reg [35:0] write_data_old1;
 reg [35:0] write_data_old2;
 always @(posedge clk)
 if (cen)
 {write_data_old2, write_data_old1} <= {write_data_old1, write_data};

 // wire to ZBT RAM signals

 assign ram_we_b = ~we;
 assign ram_clk = ~clk; // RAM is not happy with our data hold
 // times if its clk edges equal FPGA's
 // so we clock it on the falling edges
 // and thus let data stabilize longer
 assign ram_address = addr;

 assign ram_data = we_delay[1] ? write_data_old2 : {36{1'bZ}};
 assign read_data = ram_data;

endmodule // zbt_6111

file:///C|/Documents%20and%20Settings/cwilkens/My%20...og%20Files/Verilog%20Source%20as%20Text/zbt_6111.txt (2 of 2)12/13/2005 6:59:14 PM

	Virtual Juggling Report FINAL v1.pdf
	Table of Contents
	List of Figures
	Overview
	Module Structure
	Camera Input Module
	Controller
	Level to Pulse

	Video Processor
	Hand Detector
	Hand Logic

	Ball Manager
	Block Random Access Memory (BRAM)
	Physics
	Display

	Output Module
	Aggregate Ball Sprite Memory

	Testing
	Conclusion
	Appendix: Verilog Source

	Complete Source.pdf
	labkit.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/labkit.txt

	virtual_juggling.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/virtual_juggling.txt

	vj_video_processor.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_video_processor.txt

	yuv_to_rgb.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/yuv_to_rgb.txt

	vj_controller.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_controller.txt

	vj_level_to_pulse.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_level_to_pulse.txt

	vj_bm_ball_manager.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_ball_manager.txt

	vj_bm_physics.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_physics.txt

	vj_bm_display.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_bm_display.txt

	vj_output.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/vj_output.txt

	divide.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/divide.txt

	bram70x32.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/bram70x32.txt

	debounce.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/debounce.txt

	display_16hex.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/display_16hex.txt

	ntsc2zbt.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/ntsc2zbt.txt

	video_decoder.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/video_decoder.txt

	video_zbt.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/video_zbt.txt

	zbt_6111.pdf
	Local Disk
	file:///C|/Documents%20and%20Settings/cwilkens/My%20Documents/College/6.111/Final%20Project/Verilog%20Files/Verilog%20Source%20as%20Text/zbt_6111.txt

