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Abstract

This paper discusses the creation of a music visualization system, from planning to
design, implementation, testing, and debugging. Working in a team of three, we each
took control of a part of our project, and all worked to put the parts together to form the
visualization system, which used the Verilog hardware description language. Our target
was to create a system which could take in audio from a headphone jack and output a
visualization of the audio, similar to ones seen in Winamp or Windows Media Player, to
a television through an RCA connector. Building the visualizer as a team was a very
valuable learning experience, illuminating many aspects of hardware design and
planning.

Bradley Edwards
Aston Motes
Stephen Oney
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Introduction

Our final project was to create an Audio Visualization System (AVS) using Verilog. The
idea of the AVS is to allow a user to carry it around and to be able to, given any music
source, such as an iPod, be able to plug one end into the headphone jack and the other
into a television set, in order that the music can be heard and visualized on the television
set. A secondary goal of this project was to create an equalizer system that the user could
interface with, so that the user could change the sound quality of the music to add, for
example, more bass or treble.

The basic method of this was that we would take in the audio data, digitize it, place it in a
set of buckets based upon the distribution of frequencies, create a visualization based on
that, and then feed that data to the television. We would also take those buckets and
modify the sound of certain buckets, and convert the data back into audio, so that we
could control the sound.

Description

The AVS is composed of three major parts to achieve its functionality: The analog audio
processing front end, the digital frequency data processing and visualization production
middle layer and the video output and equalization interface final stage.

The analog audio processing section of the system is responsible for both input and
output of audio data. On the input side, the first portion of the system does the processing
of the analog audio that comes in from the microphone jack, transforming it into
frequency- (rather than time-) domain representation via a Fast Fourier Transform, and
then aggregating the data points of the transformed data into so-called buckets for the
visualizer to use. The output of audio processing block, based on the equalizer
coefficients sent back from the equalization interface (see below), modifies the frequency
domain characterization of the audio signal, then sends these new frequency data points
through an Inverse Fast Fourier Transform to create audio output with frequency outputs
modified from the audio input as chosen by the user.

The visualizer layer takes the buckets computed by the audio processing block and is
responsible for turning these into images to be displayed on the television. A number of
different and visually interesting visualizations are created within this block, basing the
size, location, color, and velocity of on-screen objects on the magnitudes and rates of
change for buckets of the various frequencies. All of these visualizations run in parallel,
allowing them to also be combined in interesting ways. While computations are done on
the buckets, the visualizer block is also writing pixel data in RGB format to a dual-port
RAM which is used for communication and information storage between the
visualization block and the output block.

The video output block reads RGB pixel data back out of the dual-port RAM
continuously in order to display information to the screen. Because the digital-to-analog
converter which creates composite video output requires color data in YCrCb format, this
color conversion is also done out of the RAM and before going into the DAC. In



addition, this block involved on-screen controls for an equalizer. In order to display
bucket bars for the user to manipulate for equalization, another stage comes before the
DAC, overlaying the equalizer when desired on top of the normal YCrCb output when
it’s enabled. This interface is then controlled by a PS/2 keyboard which allows selection
of a bucket, the ability to increase and decrease the magnitude of its expression, and then
the confirmation of the configuration to be applied in the audio output stage.

The Analog Audio Processing Layer (Bradley Edwards)

All of the analog signal processing occurs in the front end of the AVS, and it is done in
three stages. An A/D conversion happens via the AC97 audio chip on the 6.111 labkit,
which is followed by the use of the FFT to create the frequency response of the signal,
and lastly this is followed by a frequency data accumulator which we have labeled a
bucketizer. Ideally, even though we did not get a chance to implement it, a loop is created
to run the sound back out through the AC97 chip. After providing the frequency data, the
discrete signal would pass through an equalizer created by a GUI, after which the signal
would be multiplied by the coefficients corresponding to the appropriate index. Then, the
signal would pass through an IFFT followed by a low-pass filter before it got sent back to
the AC97 audio out line.
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Figure 1 - The Audio Processing Layer

Audio (Lab 3) Module

Used as a framework for the handling of the audio signals, the lab 3 setup provides us
with a black box interface to the AC97 audio chip. This module takes in data from the
microphone jack on the 6.111 lab kit and provides us with an 8-bit sampled output
(although the chip could go as high as 18-bit output). A handshaking-pin called the ready
signal also comes out, letting us know when there is valid data to be had from the audio



chip. The ready signal goes high every 48kHz and this frequency becomes sampling
frequency that is very important for calculations later on. In addition to a sampled output,
this module also provides the avenue to run the sound back out to the headphones jack on
the labkit, and a sample 20-bit 750hz sine wave to test that the chip is operating properly.
Finally, embedded with in this module is the recorder module which serves as the control
for the signals coming in and out of the AC97 black box.

Recorder Module

Initially instantiated through lab 3, this module, which was created to hold on to data in
the original lab, is the main workhorse of the front-end audio processing for our AVS.
Aside from the new functionality that we put into the module, the module still has the
property of deciding which value we feed to the AC97 output through the use of the enter
button on the labkit: not pressed allows the user to hear the test sine wave while ideally,
pressing the enter button would have allowed the user to hear the data after it came from
the equalizer.

The new functionality of the recorder comes from the addition and creation of the Fast
Fourier Transform (FFT). In general, the Fourier transform provides the frequency
analysis of a given signal. The FFT we used is a 1024-pt FFT which takes in 8-bit real
and imaginary data. This means that when the FFT receives 1024 samples of 8-bit data, it
will begin processing immediately. Given that we are receiving real signals from the
AC97, we made the imaginary input to the FFT zero. Because we chose not to use the
scaling option given to us by the IP CoreGenerator, we were provided with 19-bit signed
real and imaginary output.

Another important aspect of the FFT is the associate architecture of processing the given
signal. We decided on the streaming, pipelined architecture (2-stage pipeline), but that
required that we have data at every clock cycle. Although we are running on a 27MHz
system clock, the use of the clock enable allows us to circumvent this potential problem.
We tied the clock enable signal to the ready signal from the audio chip so that the FFT is
directly tied to the AC97 data, and the FFT only takes in values when there is valid data
to be had. The upshot to using the IP Core to create this FFT is that once we knew that
the forward core was operating properly, we only had to change one signal to instantiate
an inverse Fourier transform. Figure 1 shows a concrete representation of the FFT and its
numerous control signals. Showing inputs on the left; outputs on the right. (Note: not
every signal was used or asserted due to our particular architecture, see Appendix A for a
timing diagram of our specific architecture)
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Figure 2 - Schematic Symbol

Also, included in the recorder module is the code for a low pass filter. Note: This is a
derivative of Ike Chuang’s code for filtering a DDS module. The module is built using
the IP CoreGenerator, but the .coe file used for the filter was created directly from his
coefficients. Although this was not implemented within the entire system, as regenerating
the sound for the IFFT proved quite challenging, this is the filter that the real output of
the IFFT would have passed through before reaching the AC97 chip. The IP Core that is
used is a Distributed Arithmetic FIR.

Bucketizer Module

Both the real and imaginary output of the FFT become fed into this module. So as not to
get bogged down with long calculations, we only take the top 8 bits of the real and
imaginary signals coming in. The job of the bucketizer is to evenly divide the 1024
samples coming out of the FFT into 8 buckets and send out the corresponding index. This
is accomplished by sending the square of the magnitude into each bucket then taking the
average. Using signed multipliers (generated using the IP Core) to square the 8-bit real
and imaginary parts, we then add the values of the same index together to get the
magnitude of a particular index. We use a temporary magnitude variable to accumulate
the 128 samples (1024 samples / 8 buckets) of each bucket and then shift the value down
by 7 (>> 7 = divide by 128) and update the bucket magnitude variable and the bucket
index which the visualization layer uses and processes.

Multiplier Module

This equalizer helper module acts as a processing/handshaking device between the GUI
and the IFFT before the sound gets passed back through the AC97. Just like the
bucketizer, this only takes the top 8-bits of the real and imaginary outputs of the FFT and
the respective index. Functionality of the multiplier includes acquiring the appropriate
coefficient by which to multiply a particular signal. The multiplier gets these 8-bit



coefficients from the equalizer module, given a particular index provided by the index
from the FFT. Again, for simplification of the calculations, we’ve used signed multipliers
that multiply 8-bit by 8-bit numbers and return the 17-bit output to the IFFT.

The Visualizer Layer (Stephen Oney)

The visualizer layer contains modules that do the work of taking in the buckets, creating
visualizations based upon the data coming from the buckets, and then outputting this data
to the video output layer, deciding when and where to write the data into the RAM in this
layer, which is discussed in the next section.
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Figure 3 - The Visualizer Layer

Information Distribution Module

The role of the information distribution module is to take in the bucket data, which is sent
bucket by bucket from the audio processing layer, and to output the latest value averaged



with the value before it, to avoid misleading spikes or depressions in bucket averages that
might happen for only one or two cycles.

It does its job by using two sets of registers, each 16 bits wide — one set representing the
values that are output and one temporarily storing the raw value of the latest updated
bucket. Whenever a new value is available during a clock cycle, that value is stored in the
temporary register. Whenever the video output layer reports that a frame is done during a
clock cycle, we take the average of the value that is currently being outputted and the
new value which we had stored, and make that the outputted value. We only do this upon
getting a signal saying that the frame is done writing so that we don’t get values which
change mid-screen write, resulting in flickering visualizations.

Address Module

The address module is a very simple module, mainly present for modularity. It is to
convert the row and column of some location on the screen into an address for the RAM.
The address conversion is discussed below, in the notes for the video output layer, so the
actual formula will not be discussed here.

Visualization Selection Module

The visualization selection module allows users to select between multiple visualizations.
Its inputs are the data of all of the running visualizations, and its output is the
visualization selected by a set of two selection bits.

The “Doer” Module

The purpose of the “doer” module is to determine where in the RAM we should write.
We want to make sure we never write to a location that is being used by the video output
layer. Thus, we look at the current vcount and set the row we write to be the vcount
divided by 2, whenever we know that the video output layer just finished writing to that
row. The doer module must also enable writing at the right time only, so it only has write
enable (we) set high when the column is less than 360 (meaning we are on screen) or we
started a new row. This ensures we don’t write to a memory location that represents
something that is off-screen.

The Bar Visualization

The Bar visualization is the simplest and most direct visualization. It simply has
parameters for the X and Y coordinates of the bottom left part of the rectangle, another
for the width, and one for the color of the rectangle. It takes as a parameter the height of
the bar and simply checks to see if the current pixel whose value we are working with is
within the rectangle. If it is, then it draws whatever color we specified with the parameter
(the default is blue). Otherwise, it will draw a black pixel for the background. To form
the complete visualization, the outputs from each module for the bars are ORed together.

The Diagonal Bar Visualization

The Diagonal Bar Visualization has two parts — one part is the diagonal bars, and the
other is moving balls. The module for diagonal bars takes in as parameters the X and Y



locations for the center of the bar, and the width of the bar and the color of the bar. The
module then forms a thick line segment based on the formula:

hcount+vcount=X +Y
Where X and Y represents the center point of the line. It then limits it to a circle whose
radius is the height of the bar, around the pixel with position (X, Y). The way the
diagonal bars are shown, however, is such that only one side of the line segment is shown
on the screen. Thus, they look more like diagonal bars.

The ball component of the visualization has two parts. The first, simple part is the ball
module, which simply draws a ball centered at some given coordinates. The second part
is the physics module, which approximates what the physics of a ball falling would be
like. It does this with the help of the “divider” module, which fires at 100Hz. The physics
module keeps track of the x and y coordinates and velocities of the ball, updating the y
velocity in accordance with the acceleration, and both the x and y coordinates in
accordance with their velocities. The balls are set to move with the bars until the bar goes
above a certain threshold, at which point the bar “lets go” of the ball, and the physics
takes effect.

The idea of this visualization is to make it seem as if the diagonal bars are shooting off
the balls, which eventually fall. All of the pixels from these modules are ORed together
to form the complete visualization.

The “Radial” Visualization

The idea of the “radial” visualization is to display the magnitude of each of the buckets
with an area heading radially outward from the center of the screen. This is done with a
module for each area. Each module first checks to see if any given pixel is within an
appropriate radius of the center (that appropriate radius is the magnitude of the bucket. It
then checks to make sure that it is in the right range of angles. If both of these criteria are
met, it returns a pixels whose color is specified by a parameter to the module. If not, it
outputs a white pixel. These pixels are ANDed together to form the whole visualization.

The Intersecting Circles Visualization

The point of the intersecting circles visualization is to create a circle for each bucket
which looks like a transparent lens, so that the circles for the buckets can intersect,
making it look like the user is looking through two lenses.

The intersecting circles visualization is made up of a component which first checks to see
if any given pixel is on the border of a circle whose radius is the magnitude of the given
bucket centered at some X and Y given by the parameters to the module. If it is, then it
sets that pixel to the color specified by the Color parameter. Then, it checks to see if that
pixel is within the border. If it is, then it returns the color specified by the Color
parameter ANDed with 16'b0111101111101111, which makes the pixel a lighter form of
the color. The output from this module on every bucket is ANDed together.



The Visualizer Module

The visualizer module brings together all of the visualizations that are discussed above
and outputs them simultaneously, with the logic mentioned above.

The Video Output Layer (Aston Motes)

The video front end is composed of a few modules which do the work of translating from
a RAM representation of the television screen to an output signal suitable for viewing on
any composite-video compatible video device. In addition, an equalizer block with a
couple sub-systems is a part of this user facing sub-section.
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Figure 4 - The Video Output Layer

Dual-Port RAM Module

The RAM used here is a BRAM created on the lab kit with a 16-bit depth (for 16-bit
RGB) and exactly enough locations for representing the approximately 720x446 pixel
screen image at half resolution in both dimensions (360x243). One of the ports for the
RAM is write-only, allowing the visualization system to store the pixel data for the
output stage, and the other port is read-only for reading out from the memory and display
the data to the screen.

RGB to YCrCb Module

The data format being used in our system for color representation in the RAM is 16-bit
RGB split 5:6:5—that is, 5 bits reserved for expressing the degree of red, 6 bits for the
degree of green, and 5 bits for the degree of blue. The human eye is more sensitive to
green than the other colors, thus the (commonly used) increased number of bits
expression for green. RGB was chosen as the output of the visualization system due to its
familiarity and linear behavior.



The expected data format for the ADV7194 DAC is an alternating stream of Y, Cr, and
Cb data points in a 10-bit unsigned integer format (a more typical expression of YCrCb
color is 8 bits for each color dimension, using an unsigned integer for the Y dimension
and signed integers. Given these changes, the traditional 24-bit RGB (8-bits for each
dimension) to 24-bit YCrCb was modified to move the results into the positive range for
all three dimensions of the YCrCb space and to fill up the full 10-bit precision.

The coefficients for color conversion were chosen to closely match the ITU-R
BT.601/CCIR 601 color standard, however in order to avoid the computation-costly
operations of either division or multiplication by floating point numbers, constant integer
multiplication and bit shifts were employed, providing a very good approximation to the
real numbers. The formulas used are below, understanding X >> A to mean that quantity
X is shifted down A bits, and X << A meaning a shift upwards:

Y =((306* R+ 601*G +117 * B) >> 10) << 2
Cr=((720%* R=720*Y) >>10 +128) << 2
Ch=((579*R—579%Y) >>10+128) << 2

Figure 5 - Digital Conversion Formulas
All of which approximate (with an up shift of two bits)

Y =0.299*R+0.587*G +0.114B
Cr=(R-Y)*0.713+128
Cb=(B-Y)*0.565+128

Figure 6 - Actual Conversion Formulas

Signal Generator/DAC Control

Note: Much of the code in this module was written by Nathan Ickes. I modified and
extended it to fit our purposes, however a substantial amount of the work done to
overcome the technical difficulties in interfacing with the DAC were his work.

The ADV7194 chip is first initialized with a number of values setting its mode of
operation. While the chip has myriad options including selection of the filter for
luminance values (Y of the YCrCb color space) and options for closed-captioning, there
are only a few options that were crucial to be specified for our project to operate
correctly. The first was selection of NTSC as the video standard (for American
televisions—the chip also does PAL for other types of screens), and next square pixel
mode, which requires a clock other than the board standard 27mhz was not used. 720
pixels were chosen for the active video line duration, and 10-bit ports were determined
sufficient for our use. The typical interlaced display mode was chosen (that is,
progressive scan mode disabled). All of these settings are initialized within Ickes’ i2¢
interface module, writing to the ADV7194’s MR mode registers.



The video mode selected is Mode 0 (CCIR-656): Slave Option by the nomenclature of
the data sheet. Quoting from the data sheet,

The ADV7194 is controlled by the SAV (Start Active Video) and EAV (End Active
Video) Time Codes in the Pixel Data. All timing information is transmitted using a 4-
byte synchronization pattern. A synchronization pattern is sent immediately before and
after each line during active picture and retrace.

These SAV and EAV codes which are sent (again, by the framework provided by Ickes)
and the timing diagram showing the relationship between the data sent and the analog
output is below:
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Figure 7 - Timing Mode 0, Slave Mode Timing Diagram

As shown at the far right of the timing diagram, the YCrCb data is sent in so-called 4:2:2
format, where the Y signals are interleaved and the Y signal is sent twice as often as the
other two signals, and the 4 pieces of data make up a single colored pixel on the
television. The YCrCb data is sent from the RGB to YCrCb (through the equalizer
module, explained later) and on into the DAC when the timing is appropriate according
to the above diagram.

In addition to controlling the DAC, this module was also responsible for dispatching
signals about the current location of the analog television trace back to the visualization
system so as to ensure that full frames are pulled from the RAM before that data is
overwritten by the new visualization frame. After each row is completed, a single-clock-
width pulse signal row_done is sent back, as is the current row, and after the entire frame
has been drawn, a pulse frame_done signal is dispatched. Because the television trace is
interlaced, first the even rows and then the odd rows are drawn, so while row_dones are
sent after every horizontal trace, frame_done is sent every two vertical traces of the
screen (waiting until the entire frame is drawn). In addition, the horizontal position of the
trace is available if this information is at all helpful.

There are two approaches for writing to the RAM given these signals which seemed best
for our project. The first is following the horizontal position and the vertical position,



writing a new pixel where a pixel was just read using code which knows based on those
two variables which pixel should be placed. This method was used in order to fill the
screen with solid colors for testing (more on this in the testing section). The second is to
trigger the drawing code on every row_done, to fill in that row with appropriate pixels as
the trace goes to the next row. This method was used in the final visualizations with good
success.

This module also passed the horizontal and vertical position through a conversion to get
the memory address for the given pixel so that the output of the RAM is continually the
correct location to be displayed on screen.

Horizontal and Vertical Position to RAM Address Module
The formula to convert from an address to an address is fairly simply:

memory _address = h _ position +v _ position * 360

Due to its simplicity, while drawn as its own module on diagrams for clarity about the
flow of information, in Verilog this type of conversion is done with less complication by
simply assigning something similar to the above formula to an output wire for a bigger
module like the signal generator, as was chosen in this case.

Equalizer Module

The equalizer module is an upper-level module that handles all of the work of user input
for equalization. The module’s final output is the YCrCb data to be sent to the screen and
the values to use to modify individual buckets of frequencies in the audio processing sub-
system.

The module takes in the YCrCb data that are intended to be sent directly to the screen so
that when the equalizer module is enabled, the bars that the user is to manipulate can be
placed in an overlay on top of the currently running visualization, a more impressive
effect than switching totally to a new display mode when a user wants to equalize their
audio.

Each bar is produced by a YCrCb Blob module which, given parameters about where it
should be placed and its height as well as the requested pixel position either returns a
color value or all zero’s for Y, Cr, and Cb. While this is actually a real color given some
TV’s (some sort of green), having zeros is convenient for combining their output.
Another feature of these bars was a signal which noted whether the bar was selected,
changing its appearance to place a bright border around it to differentiate it from other
bars.

The EQ Bars drawing module instantiates 8 of these blobs to be drawn to screen, given
the appropriate heights, and it returns their combined YCrCb data (all of the data is OR’d
so that since blank = 0, non-blank colors are kept).



Then the Equalizer Module instantiates the EQ Bars, wiring the input heights to a
temporary bank of coefficient values. These temporary values are modified as the user
inputs left and right (for moving between buckets) and up and down (for raising and
lowering the coefficient values), however they are not output from the module until the
enter signal is sent, confirming that the user wants to cause their changes to go into effect.
At this point, the data in the temporary registers is pushed into the output registers, and
the module continues as before.

The equalizer module’s left, right, up, down, and enter signals are, in our project, driven
by PS/2 keyboard input.

PS/2 ASCII Input Module

Note: This module was written by Chris Terman and Isaac Chaung

The PS/2 keyboard module, after being connected to the keyboard port on the lab kit,
pulls key data from the FIFO and processes the keys, converting key codes into their 8-bit
ASCII character representation, allowing us to use most of the keys on the keyboard to
drive our system. Following the tradition of keyboard driven computer games, the WASD
configuration was mapped directly on to up, left, down, and right, exactly as would make
sense given how they appear on a QWERTY keyboard. The enter key, as might be
expected, is used to drive the enter signal. The keyboard’s built in repeat rate worked
well for our purposes, moving nicely between buckets and up and down the bucket sizes
appropriately.

Bucket Generator Module

For an extended period of time, the project was not integrated well enough in order to test
visualizations on screen using the planned processed audio input, so this small module
was made in order to simulate data coming from the sound card with random-looking but
pleasingly periodic input data which exercises the full range of output visualizations
object sizes and looked prettier than real data. While not technically a functional part of
the project, as part of the project is producing desirable visual stimulation, and this fits
the bill.

Testing and Debugging

In practice, audio processing has a lot of specifics which need to be met in order for
things to work properly. While interfacing the audio chip with the FFT was a matter of
connecting the ready signal to the clock enable, connecting the FFT to the IFFT was a
clocking challenge which eventually did not get completed. Uncertainty about the I[FFT
functioning came in the picture, too. A created Fourier transform of a sine wave (one
pulse in 1024 samples) was created to attempt to hear a sine wave from the AC97.
Ultimately, white noise was the result.

Another unexpected problem came while examining the bucketizer. While in theory (i.e.
in testbenches) the bucketizer was exhibiting the proper functionality, observations from
the logic analyzer proved differently. The problem was that the bucket index was
updating when there was not any data going into the bucket; a consequence of the



sampling frequency or the ready signal from the AC97. To that end, a variable was
created to examine whether or not it was appropriate to update the count for a particular
bucket.

The central difficulty in getting the video output working was the fairly confusing
documentation which, in its vagueness about a number of very important and
fundamental topics, delayed the production of a sub-system we thought could be
completed fairly early on in the project. Had we not discovered Nathan Ickes’ code, the
front-end project could have become a very long exercise in interfacing with a chip using
the 12C interface, and we may not have even managed video output. That said, there were
still details left omitted, the foremost of which was producing accurate colors on the
screen.

While the test code advertised that it was to display the MIT logo on screen, nothing this
daring was approached, instead opting for an almost white box (with slight hue changes)
on a green background. From this example, the color format was not at all clear, and the
documentation made a passing mention to typical ranges of the YCrCb data (‘Y typically
has a range of 16 to 235, Cr and Cb typically have a range of 128+/—112; however, it is
possible to input data from 1 to 254 on both Y, Cb, and Cr.”) but considering that the data
ports being used were 10-bits rather than 8, it seemed unclear whether these numbers
would still be appropriate.

Hours were spent alternately trying known YCrCb data values for colors, maximizing
and minimizing the ranges of the colors, and comparing what came out on screen to what
might have been expected. Though simple colors seemed to be able to be forced out (like
blue and red), when other colors (like white) were attempted, the output was not correct.
At some point in this very lengthy process, however, I decided that perhaps the data for
all of the colors was 10-bit and unsigned, attempted it, and was able to, for the first time,
achieve a black screen for RGB input of all zeros.

Having achieved this not-so-small feat, I was able to quickly discover that I had actually
switched the values of Cr and Cb in the RGB conversion step through wiring the R, G
and B inputs to lab kit switches and moving through in 3 bit color.

The rest of the video output modules fell into place fairly nicely, at least compared to that
difficult step.

The equalizer was tested incrementally, first in its most atomic form as a simple
modification on the normal blob, then after modifying the blob for output of bars with a
passed in height, then ensuring that the output of the blob where it was not to appear was,
indeed, zeroed out as desired. Then, the blobs were combined into equalizer bars and
tested again, where a number of small bugs were found. Finally, the equalizer bars were
placed in the top level equalizer module to be overlaid on the typical YCrCb data from
the RAM. This, too, had some bugs in the logic, but they were ironed out without too
much headache. Toggling the selected signal for the blobs highlighted or did not
highlight the blobs as expected on the first try.



The next step was to work on the coefficient side of the equalizer, first making sure that
given an enter input, data passed correctly from the temporary registers to the output
registers by placing the output register data on the lab kit LED’s and sending the input
from the on-board enter button into the module. Next was to create and test other button
handling functionality, feeding in the on-board buttons and again keeping the output
register data from a bucket on the LED’s. The task of making sure that the correct bucket
was being modified was slightly tricky without a visual representation of what was
happening, but by carefully counting button presses, the functionality was confirmed.

After deciding both sides of the module worked, they were combined, giving at long last
a visual representation of the buckets which seemed to work, but when played around
with for a while revealed a decent oversight: One could reduce the size of the bar below
zero, effectively causing the bar height to loop around again to the top. The visual and
data storage aspects of the equalizer seemed to work after fixing the logic for this
problem.

While the keyboard input we ended up using was pretty much completely done (other
than understanding the code) by Terman and Chaung, I attempted for a substantial
amount of time to use the arrow keys on the keyboard rather than letters. After taking
some time to get a sense of what was going on in the given code, I found I wasn’t
successful attempting to add to the ASCII translation table, even having the key codes for
the arrows translating to the same ASCII codes as the WASD keys being used. I was,
however, successful in retrieving key codes from the arrow keys directly, though the
output was somewhat unclean. Adding a bit of code similar to the ascii_ready signal gave
clean registered key code output, but apparently the ascii_ready signal itself (or some
portion of it) was never registered on the key press, and I was never in my many attempts
able to get a signal like it from the module.

Converting the registered key code signal to a pulse meant that repeated presses were
impossible, and forcing the signal to reset periodically gave sporadic response to user
presses. Though I never figured out exactly what differed between the arrow keys and the
letters, it became evident as the project deadline approached that it might be best to
compromise and simply go with what worked.

Conclusion

The TV output ended up working nicely, and the equalization interface, while the data
itself was not used, overlaid exactly as envisioned over the smooth running
visualizations. Many of our concerns about small mis-syncs causing weird looking screen
refreshes were successfully avoided through careful timing and signaling, and the color
reproduction was quite good.

If the project were to be redone or updated, one of the first changes that would be made
in the equalizer would be figuring out how to use arrow keys rather than letters. Also,
dimming the background visualization while the equalizer bars are present would have
been a nice effect, though fairly different to pull off in YCrCb space, I eventually found



out. In fact, in retrospect, placing the equalizer module before the YCrCb conversion of
the RGB data would have allowed a bit more control over things like that, as well as
simplified the process of combining multiple images with an OR.

Also, we were forced early to compromise on our goal of a full-resolution storage of a
buffer due to space constraints on memory on the lab kit. Choosing a different type of
memory may have led us to be able to have a higher resolution picture. In addition, the
video output could have been enhanced significantly by a double-buffering scheme,
writing to one memory while drawing from another, then after finishing the frame, using
a few simple muxes to switch to their roles. More complex effects could have been
achieved, perhaps by applying visual filters to the output or drawing in multiple layers on
the same frame with the extra time gained by using the double-buffering scheme.

As a last improvement to the video output system, adding more types of video output (S-
Video, VGA) would have increased the compatibility of our project, in the event that we
wanted to demo what we had but the target TV lacked composite input.



Appendix — Source Code to Selected Modules

Adv7194init.v

//
// Register 0
//

‘define CHROMA_FILTER_SELECT 3'h0
// 0: 1.3MHz low-pass

// 1: 0.65MHz low-pass
// 2: 1.0MHz low-pass
// 3: 2.0MHz low-pass
// 4: [Not valid]
// 5: CIF
// 6: QCIF
// 7: 3.0MHz low-pass
"define LUMA_FILTER_SELECT 3'hO
// 0: Low-pass (NTSC)
// 1: Low-pass (PAL)
// 2: Notch (NTSC)
// 3: Notch (PAL)
// 4: Extended mode
// 5: CIF
// 6: QCIF
// T: [Not valid]
“define VIDEO_STANDARD_SELECT 2'h0
// 0: NTSC

// 1: PAL (B, D, G, H, I)
// 2: [Not wvalid]
// 3: PAL (N)

“define ADV7194_REGISTER_O { CHROMA_FILTER_SELECT,  ~LUMA_FILTER_SELECT,
"VIDEO_STANDARD_SELECT}

//

// Register 1

//

“define FOUR_TIMES_OVERSAMPLING 1'bl

“define DAC_A_ENABLE 1'b0

“define DAC_B_ENABLE 1'b0

‘define DAC_C_ENABLE 1'b0

‘define DAC_D_ENABLE 1'bl
// Composite video DAC

“define DAC_E_ENABLE 1'bl
// S—-video cluma DAC

"define DAC_F_ENABLE 1'bl

// S—-video chroma DAC
“define ADV7194_REGISTER_1 {1'b0O, "FOUR_TIMES_OVERSAMPLING,
"DAC_A_ENABLE, "DAC_B_ENABLE, "DAC_C_ENABLE, "~DAC_D_ENABLE,
"DAC_E_ENABLE, “~DAC_F_ENABLE}

//



// Register 2
//

“define SLEEP_MODE 1'b0
// 0: Normal mode
// 1: Sleep mode

"define PIXEL_DATA_VALID 1'bl
// 1: Enables the YCrCb data port
“define I2C_CONTROL 1'b0

// 0: Video standard set by NTSC/PAL pin (low=NTSC, high=PAL)
// 1: Video standard set by register 0
"define SQUARE_PIXEL_MODE 1'b0
// 0: Normal
// 1: Square pixel mode (requires special clocks)
"define PEDESTAL_CONTROL 1'b0
// 0: Pedestal off
// 1: Pedestal on (NTSC only)
“define DAC_OUTPUT_CONTROL 3'hO0
// 0: Composite output on DAC D, s-video on DACs E and F
// (this is the only configuration supported by the 6.111 labkit
hardware)

"define ADV7194_REGISTER_2 { SLEEP_MODE, 'PIXEL_DATA_VALID,
"I2C_CONTROL, ~SQUARE_PIXEL_MODE, "PEDESTAL_CONTROL,
"DAC_OUTPUT_CONTROL}

//
// Register 3
//

"define CLOSED_CAPTIONING_CONTROL 2'h0
// 0: No CC data
// 1: 0dd field only
// 2: Even field only
// 3: Both fields

‘define TELETEXT_REQUEST_MODE 1'b0
/] 2272
*define TELETEXT_ENABLE 1'b0

// 0: Disabled
// 1: Teletext data on TTX pin

"define VBI_OPEN 1'b0
// 0: DACs blanked during vertival blanking interval
// 1: DACs enabled during vertival blanking interval

"define ADV7194_REGISTER_3 {1'b0, "~CLOSED_CAPTIONING_CONTROL,
"TELETEXT_REQUEST_MODE, ~TELETEXT_ENABLE, 'VBI_OPEN, 2'b00}

//
// Register 4
//

“define INTERLACE_MODE 1'b0
// 0: Interlaced
// 1: Progressive

“define COLOR_BARS 1'b0
// 0: Normal
// 1: Display colorbars



“define
// 0:
// 1:

“define
// 0:
// 1

“define
// 0:
// 1:

“define
// 0:
// 1
/] 2:
// 3:

“define
// 0:
// 1

“define

BURST_CONTROL 1'b0

Enable color burst on composite and chrominance channels
Disable color burst

CHROMINANCE_CONTROL 1'b0

Enable color

Disable color

ACTIVE_VIDEO_LINE_DURATION 1'b0

CCIR Rec. 601 standard: 720 pixels

ITU-R BT.470 standard: 710 pixels (NTSC) / 702 pixels (PAL)
GENLOCK_CONTROL 2'h0

Disable genlock

Enable subcarrier reset pin

Timing reset

Enable RTC pin

THREE_LINE_VSYNC 1'b0

Disabled

Enabled

ADV7194_REGISTER_ 4 { INTERLACE_MODE, 'COLOR_BARS,

"BURST_CONTROL, 'CHROMINANCE_CONTROL, "ACTIVE_VIDEO_LINE_DURATION,
" GENLOCK_CONTROL, "~ THREE_LINE_VSYNC}

//

// Register 5

//

"define CLAMP_POSITION 1'b0
// 0: Front porch
// 1: Back porch

"define CLAMP_DELAY DIRECTION 1'b0
// 0: Positive
// 1: Negative

“define CLAMP_DELAY 2'h0
// 0-3: Clamp delay, in clock cycles

"define RGB_SYNC 1'bl
// 0: Disabled
// 1: Enabled

“define UV_LEVEL 2'h0
// 0: Default levels (934mV NTSC, 700mV PAL)
// 1: 700mv
// 2: 1000mVv
// 3: [Not wvalid]

"define Y_LEVEL 1'bl
// 0: Betacam levels
// 1: SMPTE levels

"define ADV7194_REGISTER_5 { CLAMP_POSITION, ~CLAMP_DELAY_DIRECTION,

"CLAMP_DELAY, "RGB_SYNC, "UV_LEVEL, "Y_LEVEL}

//

// Register 6

//

“define
// 0:
// 1:

“define

PLL_ENABLE 1'b0
Enabled
Disabled
POWER_UP_SLEEP_MODE 1'bl



/] 2?7

“define ADV7194_REGISTER_6 {3'b000, 3'b000, "PLL_ENABLE,
"POWER_UP_SLEEP_MODE}

//
// Register 7
//

‘define PIN_62_MODE 2'b0
// 0: Teletext input
// 1: ~VSO output
// 2: Teletext input
// 3: CLAMP output

"define CSO_HSO_CONTROL 1'b0
// 0: ~HSO output
// 1: ~CSO output

“define SHARPNESS_FILTER 1'b0
// 0: Disable
// 1: Enable

"define BRIGHTNESS_ADJUST 1'b0
// 0: Disable
// 1: Enable

“define HUE_ADJUST 1'b0
// 0: Disable
// 1: Enable

"define LUMA_SATURATION_CONTROL 1'b0
// 0: Disable
// 1: Enable

"define COLOR_CONTROL 1'b0
// 0: Disable
// 1: Enable

"define ADV7194_REGISTER_7 { PIN_62_MODE, "CSO_HSO_CONTROL,
" SHARPNESS_FILTER, ~BRIGHTNESS_ADJUST, °HUE_ADJUST,
"LUMA_SATURATION_CONTROL, "~COLOR_CONTROL}

//
// Register 8
//

module adv7194init (reset, clock_27mhz, colorbars, tv_out_reset_b,
tv_out_1i2c_clock, tv_out_i2c_data);

input reset;

input clock_27mhz;

input colorbars;

output tv_out_reset_b; // Reset signal to ADV7194
output tv_out_i2c_clock; // I2C clock output to ADV7194
output tv_out_i2c_data; // I2C data line to ADV7194

initial begin
Sdisplay ("ADV7194 Initialization values:");
Sdisplay (" Register 0: 0x%X", "ADV7194_REGISTER_O0);
Sdisplay (" Register 1: 0x%X", "ADV7194_REGISTER_1);



250kHz)

Sdisplay (" Register 2: 0x%X", "ADV7194_REGISTER_2);
Sdisplay (" Register 3: 0x%X", "ADV7194_REGISTER_3);
Sdisplay (" Register 4: 0x%X", "ADV7194_REGISTER_4);
Sdisplay (" Register 5: 0x%X", "ADV7194_REGISTER_S5);
Sdisplay (" Register 6: 0x%X", "ADV7194_REGISTER_6);
Sdisplay (" Register 7: 0x%X", "ADV7194_REGISTER_7);

end

//

// Generate a 1MHz for the I2C driver (resulting I2C clock rate

//

reg [7:0] clk_div_count, reset_count;
reg clock_slow;
wire reset_slow;

initial
begin
clk_div_count <= 8'h00;
// synthesis attribute init of clk_div_count is "00";
clock_slow <= 1'b0O;
// synthesis attribute init of clock_slow is "0O";
end

always @ (posedge clock_27mhz)

if (clk_div_count == 26)
begin
clock_slow <= ~clock_slow;
clk_div_count <= 0;
end
else

clk_div_count <= clk_div_count+1;

always @ (posedge clock_27mhz)
if (reset)
reset_count <= 100;

else
reset_count <= (reset_count==0) ? 0 : reset_count-1;
assign reset_slow = reset_count != 0;
//
// 1I2C driver
//
reg load;

reg [7:0] data;
wire ack, idle;

i2c i2c(.reset (reset_slow), .clockd4x(clock_slow), .data(data),

.load(load),

.ack (ack), .idle(idle), .scl(tv_out_i2c_clock),
.sda (tv_out_i2c_data));

//

// State machine

is



//

reg [7:0] state;
reg tv_out_reset_b;
reg old_colorbars;

always @ (posedge clock_slow)
if (reset_slow)

begin
state <= 0;
data <= 0;
load <= 0;
tv_out_reset_b <= 0;
end
else

case (state)
8'h00: begin
// Assert reset
load <= 1'b0;
tv_out_reset_b <= 1'b0;
if (lack) state <= state+l;
end
8'h01l: begin
state <= state+l;
end
8'h02: begin
// Release reset
tv_out_reset_b <= 1'bl;
state <= state+l;
end
8'h03: begin
// Send ADV7194 address
data <= 8'h56;
load <= 1'bl;
if (ack) state <= state+l;
end
8'h04: begin
// Send subaddress of first register
data <= 8'h00;
if (ack) state <= state+l;
end
8'h05: begin
// Write to register 0
data <= "ADV7194_REGISTER_O;
if (ack) state <= state+l;
end
8'h06: begin
// Write to register 1
data <= "ADV7194_REGISTER_1;
if (ack) state <= state+l;
end
8'h07: begin
// Write to register 2
data <= "ADV7194_REGISTER_2;
if (ack) state <= state+l;
end
8'h08: begin



// Write to register 3
data <= "ADV7194_REGISTER_3;
if (ack) state <= state+l;
end
8'h09: begin
// Write to register 4
data <= "ADV7194_REGISTER_4 | {1'b0, colorbars,
if (ack) state <= state+l;
end
8'hOA: begin
// Write to register 5
data <= "ADV7194_ REGISTER_5;
if (ack) state <= state+l;
end
8'h0B: begin
// Write to register 6
data <= "ADV7194_ REGISTER_6;
if (ack) state <= state+l;
end
8'h0C: begin
// Write to register 7
data <= "ADV7194_ REGISTER_7;
if (ack) state <= state+l;
end
8'h0OD: begin
// Wait for I2C transmitter to finish
load <= 1'b0;
if (idle) state <= state+l;

6'b000000};

end
8'hOE: begin
// Idle
if (old_colorbars != colorbars) state <= state+l;

old_colorbars <= colorbars;
end
8'hO0F: begin
// Send ADV7194 address
data <= 8'hb56;
load <= 1'bl;
if (ack) state <= state+l;
end
8'h10: begin
// Send subaddress of register 4
data <= 8'h04;
if (ack) state <= state+l;
end
8'hll: begin
// Write to register 4
data <= "ADV7194_REGISTER 4 | {1'b0, colorbars,
if (ack) state <= state+l;
end
8'hl2: begin
// Wait for I2C transmitter to finish
load <= 1'b0;
if (idle) state <= 8'hOE;
end
endcase

6'b000000};



endmodule



Avtest.v
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/1777777

//

// 6.111 FPGA Labkit —-- Audio/Video Test

//

// For Labkit Revision 004

//

//

// Created: November 3, 2004

// Author: Nathan Ickes

//

L1777 770 77777707777 77777777777777777777777777777777777777777777777777777
/1777777

/* include "audio.v"

“include "vga.v"

“include "video.v"

“include "display.v"

//Don't do these includes —-- Xilinx handles it for you

*/

module labkit (beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch,
ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_)b, vga_out_pixel_clock, wvga_out_hsync,
vga_out_vsync,

tv_out_ycrcb, tv_out_reset_b, tv_out_clock,
tv_out_i2c_clock,

tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,

tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

tv_in_ycrcb, tv_in_data_valid, tv_in_line_clockl,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

ram0O_data, ram0O_address, ramO_adv_1d, ramO_clk,
ramO_cen_Db,
ramO_ce_Db, ramO_oce_b, ramO_we_b, ramO_bwe_b,

raml_data, raml_address, raml_adv_1ld, raml_clk,
raml_cen_Db,

raml_ce_b, raml_oe_b, raml_we_b, raml_bwe_b,

clock_feedback_out, clock_feedback_in,

flash_data, flash_address, flash_ce_b, flash_oe_b,
flash_we_b,

flash_reset_b, flash_sts, flash_byte_b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,



mouse_clock, mouse_data,

clock_27mhz,

disp_blank,

keyboard_clock,

disp_reset_b, disp_data_in,

buttonO,
button_right,

buttonl,

clockl, clock2,
disp_data_out, disp_clock, disp_rs,
button2, button3, button_enter,

button_left, button_down, button_up,
switch,

led,

userl, user2, user3, userd,
daughtercard,

systemace_data,
systemace_we_D,
systemace_mpbrdy,

analyzerl_data,
analyzer2_data,
analyzer3_data,
analyzer4d_data,

output beep,
input ac97_bit_clock,

output [7:0] vga_out_red,
output vga_out_sync_b,
vga_out_hsync,

output [9:0]
output tv_out_reset_b,
tv_out_i2c_data,
tv_out_pal_ntsc,
tv_out_blank_b,
tv_out_subcar_reset;

tv_out_ycrcb;

input [19:0] tv_in_ycrcb;
input
tv_in_aef,
tv_in_hff, tv_in_aff;

output tv_in_i2c_clock,
tv_in_fifo_clock,
tv_in_iso,

inout [35:0]
output [20:0]
output ramO_adv_1ld,
ramO_we_Db;
output

ram0O_data;

[3:0] ramO_bwe_b;

audio_reset_Db,
ac97_sdata_in;

vga_out_green,
vga_out_blank_b,
vga_out_vsync;

tv_

tv_out_hsync_b,

tv_in_data_valid, tv_in_line_clockl,

tv_in_i2c_data,

tv_in_reset_b,

systemace_address, systemace_ce_D,
systemace_oe_Db, systemace_irqg,

analyzerl_clock,
analyzer2_clock,
analyzer3_clock,
analyzer4d_clock);

ac97_sdata_out;

ac97_synch,

vga_out_blue;
vga_out_pixel_clock,

out_clock, tv_out_i2c_clock,

tv_out_vsync_b,

tv_in_line_clock?2,

tv_in_fifo_read,

tv_in_clock;

ram0O_address;
ramO_clk,

ramO_cen_b, ramO_ce_b, ramO_oe_b,

keyboard_data,

disp_ce_b,



inout [35:0] raml_data;

output [20:0] raml_address;

output raml_adv_1d, raml_clk, raml_cen_b, raml_ce_b, raml_oe_b,
raml_we_Db;

output [3:0] raml_bwe_b;

input clock_feedback_in;
output clock_feedback_out;

inout [15:0] flash_data;

output [24:0] flash_address;

output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b,
flash_byte_b;

input flash_sts;

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

input mouse_clock, mouse_data, keyboard_clock, keyboard_data;
input clock_27mhz, clockl, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
output disp_data_out;
input disp_data_in;

input Dbutton0, buttonl, button2, button3, button_enter,
button_right,
button_left, button_down, button_up;
input [7:0] switch;
output [7:0] led;

inout [31:0] userl, user2, user3, userd;
inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irqg, systemace_mpbrdy;

output [15:0] analyzerl_ _data, analyzer2_data, analyzer3_data,
analyzer4d_data;
output analyzerl_clock, analyzer2_clock, analyzer3_clock,
analyzer4d_clock;
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//

// Reset Generation

//

// A shift register primitive is used to generate an active-high
reset

// signal that remains high for 16 clock cycles after configuration
finishes



// and the FPGA's internal clocks begin toggling.
//
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wire reset;

SRL16 reset_sr (.D(1'b0), .CLK(clock_27mhz), .Q(reset),
AO(1'b1), .A1(1'bl), .A2(1'bl), .A3(1'bl));

defparam reset_sr.INIT = 16'hFFFF;

//////KEYBOARD INPUT//////////////////

wire [7:0] ascii;

wire [7:0] keycode;

reg [7:0] key;

reg [7:0] lastkey;

wire key_pressed;

wire ascii_ready;

ps2_ascii_input kbd(clock_27mhz, reset, keyboard_clock, keyboard_data,
ascii, keycode, ascii_ready);
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L1777 7770777777777777777/wixes////
wire [7:0] from_ac97_data, to_ac97_data;
wire ready;
wire busy,done;
wire [15:0] xk_re, xk_im;
wire signed [16:0] re_squared;
wire signed [16:0] im_squared;
wire [16:0] magnitude;
wire [16:0] tmp_mag;
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//

// Video I/O

//
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wire [1:0] videomode;
parameter mode = 2'dl; //0 = bars, 1 = normal output

wire [9:0] h_position, v_position;

wire [9:0] y, cr, cb;

wire [15:0] pixel_data;

wire row_done, frame_done;

wire sreset;

assign sreset = (h_position == 1) && (v_position == 0);



/////////////STEPHEN'S VISUALIZATION CODE//////////////
wire we;

wire [16:0] write_addr;

wire [15:0] rgb_data;

reg switch_we;

reg [16:0] switch_write_addr;

reg [15:0] switch_rgb_data;

wire [9:0] s_y, s_cr, s_cb;

wire [16 0] g_bkt_mag;

wire [2:0] g_bkt_index;

wire [16 0] fft_bkt_mag;

wire [2 ] fft_bkt_index;

wire [l 0] bkt_mag;

wire [2: ] bkt_index;

wire [6:0] xk_index;

assign bkt_index = switch[4] ? g_bkt_index fft_bkt_index;
assign bkt_mag = switch[4] ? g_bkt_mag fft_bkt_mag;

allvis vis(clock_27mhz,
v_position, frame_done, we,

bkt_mag[l6:1]
write_addr,

//generate the bucket signals
gen_buckets bgen(reset, clock_27mhz,
g_bkt_mag) ;

[I1777777777777777777777777777

//Initialize the TV output and get it
video video_test (reset, clock_27mhz,
tv_out_clock, tv_out_i2
tv_out_pal_ntsc,
tv_out_blank_b,

//generate video signals and generate

videodraw vid(reset, clock_27mhz, vy,
row_done, frame_done, tv_out_ycrcb);

wire

[16:0] read_addr;

//instantiate a memory for pixel data

tv_out_
tv_out_

bkt_index, 1, row_done,
switch[1:0]);

14

rgb_data,

switch[5], g_bkt_index,

running

tv_out_reset_b,
c_clock, tv_out_i2c_data,
hsync_b, tv_out_vsync_b,
subcar_reset, mode);

data for screen

cr, cb, h_position, v_position,

//all of these inputs are muxed for demo/testing purposes, switching
between RAM RGB data and switch RGB data (3 bit)

wire [15:0] rgb_data_in = switch[6] ? rgb_data switch_rgb_data;

wire we_in = switch[6] ? we switch_we;

wire [16:0] write_addr_in = switch[6] ? write_addr

switch_write_addr;
video_mem

mem (write_addr_in,read_addr,clock_27mhz,clock_27mhz,rgb_data_in,pixel_d

ata,we_in);
//fake_mem mem(switch,pixel_data);



//and drive the address to memory from the videodraw module for
ycrcb data

pos2addr convert (h_position, v_position, read_addr);

rgb_datal2ycrcb_data r2y(pixel_data, s_y, s_cr, s_cb);
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//

// Bradley's Stuff

//
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// AC97 driver

audio a(clock_27mhz, reset, from _ac97_data, to_ac97_data, ready,
audio_reset_Db, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_clock);

wire playback;
debounce benter (reset, clock_27mhz, button_enter, playback);

// record module

recorder r(clock_27mhz, reset, playback, ready, from_ac97_data,
to_ac97_data, fft_bkt_mag, fft_bkt_index, xk_index,
busy, xk_re, xk_im, done) ;

//////////DEBUGGING///////////////

/*assign led[7] = ~done;
assign led[6] = ~busy;*/
/*

wire b_enter,b_up,b_down,b_left,b_right;
wire b_entert,b_upt,b_downt,b_leftt,b_rightt;
assign playback = b_enter;

synchronize benter (clock_27mhz, button_enter, b_entert);
synchronize bleft (clock_27mhz, button_left, b_leftt);
synchronize bright (clock_27mhz, button_right, b_rightt);
synchronize bup(clock_27mhz, button_up, b_upt);
synchronize bdown (clock_27mhz, button_down, b_downt);

pulser x1(clock_27mhz, ~b_entert, b_enter);
pulser x2(clock_27mhz, ~b_leftt, b_left);

pulser x3(clock_27mhz, ~b_rightt, b_right);
pulser x4 (clock_27mhz, ~b_upt, b_up);

pulser x5 (clock_27mhz, ~b_downt, b_down);

*/
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assign b_enter = (ascii == 8'h0D) && ascii_ready;
assign b_left = (ascii == 8'h4l) && ascii_ready;
assign b_right = (ascii == 8'h44) && ascii_ready;
assign b_down = (ascii == 8'h53) && ascii_ready;

assign b_up = (ascii == 8'h57) && ascii_ready;



//////EQUALIZER////////////////////7/7/777//////

wire [7:0] coeff;

wire [2:0] pick;

equalizer eqg(reset, clock_27mhz, switch[7], b_left, b_right, b_up,
b_down, b_enter, s_y, s_cr, s_cb,h_position, v_position,0,vy,cr,cb,
coeff, pick);

[I17777777777777777777777777777777777777777777

assign led = ~coeff; //look at the coefficient for the first bucket
(for demo)

//
// Solid Color RAM Writer

//

reg [9:0] = 0;

c
reg col = 0;
reg dir =1

wire [15:0] switch_colors;

//using the first three switches, create 5:6:5 data

assign switch_colors =
{switch[2],switch[2],switch[2],switch[2],switch[2],
switch[1l],switch[1l],switch[1l],switch[1l],switch[1l],switch[1l],
switch[0],switch[0],switch[0],switch[0],switch[0]};

always @ (posedge clock_27mhz)

begin
if (reset == 1)
begin

switch_write_addr <= 0; //reset the register variables on a
system reset
switch_we <= 0;
end

else
switch_write_addr <= read_addr - 1; //always lag one behind

the current read address for writing

if (reset == 1)
switch_rgb_data <= 0; //reset the rgb data on a system

reset
else
begin
if (switch_write_addr == 87479)
c <=c¢c + 1;
if(c == 0)
begin

col <= col + 1;

switch_rgb_data <= switch_colors;

// (rgb_data == 16'hFFFF) ? 0 : rgb_data + 1;
//cycle through all 16 bits



// data <= (data == 16'b1111111111011111) 2 O
data + 16'b0000100001000001; //grayscale

end
switch_we <= 1;

end
end

PULLUP pu_in (.0 (tv_in_i2c_data));
PULLUP pu_out (.0O(tv_out_i2c_data));

assign userl = {6'b00000O,
tv_in_line_clockl, // 25

tv_in_i2c_clock, // 24
tv_in_i2c_data, // 23
tv_in_ycrcb[19:10], // 22-13
clock_27mhz, // 12
tv_out_i2c_clock, // 11
tv_out_i2c_data, // 10
tv_out_ycrcb}; // 9-0

//Bnalyzer assignments for debugging fun
assign analyzerl_clock = clock_27mhz;
assign analyzerl_data = {bkt_index};
/*{tv_out_1i2c_clock,

tv_out_i2c_data,

4'h0, tv_out_ycrcb};*/

assign analyzer2_clock = clock_27mhz;
assign analyzer2_data = {tmp_mag[l6:1]};

assign analyzer3_clock = clock_27mhz;
assign analyzer3_data = {bkt_mag[7:0]};//{xk_re[15:8],xk_1im[15:8]};

display_l6hex hexdispl (reset, clock_27mhz, {ascii},
disp_blank, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_out);
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//

// Default I/0 Assignments

//
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/11777



// SRAMs
assign ramO_data = 36'hZ;

assign ramO_address = 21'h0;
assign ram0O_adv_1d = 1'b0;
assign ramO_clk = 1'b0;
assign ramO_cen_b = 1'bl;
assign ramO_ce_b = 1'bl;
assign ramO_oe_b = 1'bl;
assign ramO_we_b = 1'bl;
assign ramO_bwe_b = 4'hF;
assign raml_data = 36'hZ;
assign raml_address = 21'h0;
assign raml_adv_1d = 1'b0;
assign raml_clk = 1'b0;
assign raml_cen_b = 1'bl;
assign raml_ce_b = 1'bl;
assign raml_oe_b = 1'bl;
assign raml_we_b = 1'bl;
assign raml_bwe_b = 4'hF;

assign clock_feedback_out = 1'b0;

// Flash ROM

assign flash_data = 16'hZ;
assign flash_address = 15'h0;
assign flash_ce_b = 1'bl;
assign flash_oe_b = 1'bl;
assign flash_we_b = 1'bl;
assign flash_reset_b = 1'b0O;
assign flash_byte_ b = 1'bl;

// RS—-232 Interface
assign rs232_txd = 1'bl;
assign rs232_rts = 1'bl;

// Buttons, Switches, and Individual LEDs
//assign led = 8'hFF;

// User 1/0s

assign user2 = 32'h7Z;
assign user3 = 32'hZ;
assign user4 = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'h7Z;

// SystemACE Microprocessor Port

assign systemace_data = 16'hZ;
assign systemace_address = 7'h0;
assign systemace_ce_b = 1'bl;
assign systemace_we_b = 1'bl;
assign systemace_oe_b = 1'bl;

// Logic Analyzer

//assign analyzer3_data = 16'h0;
//assign analyzer3_clock = 1'bl;
assign analyzer4_data = 16'h0;
assign analyzer4_clock = 1'bl;



// Video Input

assign tv_in_i2c_clock = 1'b0;
assign tv_in_fifo_read = 1'b0;
assign tv_in_fifo_clock = 1'b0;
assign tv_in_iso = 1'b0;

assign tv_in_reset_b = 1'b0;
assign tv_in_clock = 1'b0;
assign tv_in_i2c_data = 1'bZ;

// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clockl,
tv_in_line_clock?2,
// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

endmodule
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//

// Switch Debounce Module

//
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module debounce (reset, clock, noisy, clean);

input reset, clock, noisy;
output clean;

reg [18:0] count;
reg new, clean;

always @ (posedge clock)
if (reset)
begin
count <= 0;
new <= noisy;
clean <= noisy;
end
else if (noisy != new)
begin
new <= noisy;
count <= 0;

end

else if (count == 270000)
clean <= new;

else

count <= count+1l;
endmodule
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//

// Hold to Pulse convertor (borrowed from the 6.111 Quiz Solutions
because it was more elegant than mine)

//
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module pulser (clock, signal, pulse);

input clock, signal;
output pulse;

reg old,pulse;

always @ (posedge clock)
begin
old <= signal;
pulse <= signal & ~old;
end
endmodule



Equalizer.v
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//

// Equalizer
//
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module equalizer (reset, clock, enable, left, right, up, down, enter,
y_in, cr_in, cb_in, h_position, v_position, coeff_ind, vy, cr, cb,
coeff, bucket);

input reset;

input clock;

input enable; //signals that coefficients should be adjusted

input left,right, up, down; //button inputs
input enter;

input [9:0] v_position, h_position; //position being drawn on screen

input [9:0] y_in,cr_in,cb_in; //input ycrcb
output [9:0] y, cr, cb; //output ycrcb

input [2:0] coeff_ind;

output [7:0] coeff; //memory for coefficients

reg [7:0] coeffs [7:0];

reg [7:0] temp_coeffs [7:0]; //hold coefficients for display, but
don't save them

output [2:0] bucket;
reg [2:0] bucket = 0; //keep track of the selected bucket

parameter STEP = 32; //number of steps to increment/decrement bucket
values by. should divide 256

assign coeff = coeffs[coeff_ind];

wire [9:0] by, bcr, bcb;

//draw the bars to visualize this module's behavior
eq_bars graphics (bucket,
temp_coeffs[0], temp_coeffs[l], temp_coeffs[2],

temp_coeffs[3],

temp_coeffs[4], temp_coeffs[5], temp_coeffs|[6],
temp_coeffs[7],

v_position, h_position,

by, bcr, bcb);

//1if the bar y is non-zero, use the bar data

//otherwise use what was already there at half brightness
//if not enabled, pass through

assign y = (by == 0) | ~enable ? y_in : by;

assign cr = (by == 0) | ~enable ? cr_in : bcr;



assign cb = (by == 0) | ~enable ? cb_in : bcb;

always @ (posedge clock)

begin
if (reset) //Start all of the bars at their peak value
begin
coeffs[0] <= 8'hFF;
coeffs[l] <= 8'hFF;
coeffs[2] <= 8'hFF;
coeffs[3] <= 8'hFF;
coeffs[4] <= 8'hFF;
coeffs[5] <= 8'hFF;
coeffs[6] <= 8'hFF;
coeffs[7] <= 8'hFF;
temp_coeffs[0] <= 8'hFF;
temp_coeffs[l] <= 8'hFF;
temp_coeffs[2] <= 8'hFF;
temp_coeffs[3] <= 8'hFF;
temp_coeffs[4] <= 8'hFF;
temp_coeffs[5] <= 8'hFF;
temp_coeffs[6] <= 8'hFF;
temp_coeffs[7] <= 8'hFF;
end
else
begin
if (enable)
begin
///HANDLE BUTTON PRESSES///
if (enter == 1) //store the temporary values to the
output
begin
coeffs[0] <= temp_coeffs[0];
coeffs[l] <= temp_coeffs[1l];
coeffs[2] <= temp_coeffs[2];
coeffs[3] <= temp_coeffs[3];
coeffs[4] <= temp_coeffs[4];
coeffs[5] <= temp_coeffs[5];
coeffs[6] <= temp_coeffs[6];
coeffs[7] <= temp_coeffs[7];
end
else if(left == 1)
begin

bucket <= bucket + 7; //move one to the left,
loops automatically
end
else if(right == 1)
begin
bucket <= bucket + 1; //move one to the right,
loops automatically
end
else if(up == 1)
begin
if (temp_coeffs[bucket] + STEP < 8'hFF)
temp_coeffs[bucket] <=
temp_coeffs[bucket] + STEP;



else
temp_coeffs[bucket] <= 8'hFF;
end
else if (down == 1)
begin
if (temp_coeffs[bucket] > STEP)
temp_coeffs[bucket] <=

temp_coeffs[bucket] - STEP;
else
temp_coeffs[bucket] <= 1;
end
end

end
end
endmodule
module ycrcb_blob (vcount, hcount, outline, height_in, y , cr, cb);

//Returns the correct pixel for a square with bottom left @x,y
parameter WIDTH = 40;
parameter X = 0;
parameter Y = 320;
///Color of bars is grey, so Y=some lightness, no cr, cb
parameter Y_COLOR = 10'dl1l6;
parameter CR_COLOR = 10'd432;
parameter CB_COLOR 10'd1023;
parameter Y _BRIGHT = 10'b1000000000;

input [9:0] hcount;

input [9:0] wvcount, height_in;
output [9:0] vy,cr,cb;

input outline;

reg [9:0] y,cr,cb;

wire [9:0] height;
assign height = height_in >> 1;

always @ (height or hcount or vcount)

begin
if (hcount>=X && hcount < X+WIDTH &&
vcount <= Y && vcount + height > Y)
begin
//test for border, the last two pixels on every side
of the box
if (outline && (X == hcount || X == hcount - 1 ||
X 4+ WIDTH == hcount + 1 || X + WIDTH
== hcount + 2 ||
vcount == | | vcount + 1 == | ]
vcount + height == Y + 1 || wvcount
+ height == Y + 2))
y <= Y_BRIGHT; //highlight this
else

y <= Y_COLOR; //or use the normal color



cr <= CR_COLOR;
cb <= CB_COLOR;

end
else
begin
//this is a real color, but y = 0 signals not to use
it, and it ors correctly
y <= 0;
cr <= 0;
cb <= 0;
end
end
endmodule

module eqg_bars (selected, b0Oin, blin, b2in, b3in, b4in, bb5in, b6in,
b7in, wvcount, hcount, y, cr, cb);

input [2:0] selected;
input [7:0] bOin ;
input [7:0] blin ;
input [7:0] b2in ;
input [7:0] b3in ;
input [7:0] bdin ;
input [7:0] b5in ;
input [7:0] b6in ;
input [7:0] b7in ;
input [9:0] vcount;
input [9:0] hcount;
output [9:0] vy, cr, cb;

wire [9:0] yO,y1l,v2,y3,y4,¥5,¥6,y7;
wire [9:0] c¢r0O,crl,cr2,cr3,crd4d,cr5,cr6,cr7;
wire [9:0] cb0,cbl,cb2,cb3,cb4,cb5,cb6,cb?;

//instantiate all of these modules

ycrcb_blob a(vcount, hcount, (selected == 0), bOin, yO0 , crO,
cb0) ;

defparam a.X=200;

ycrcb_blob b (vcount, hcount, (selected == 1), blin, yl1 , crl,
cbl);

defparam b.X=250;

ycrcb_blob c(vcount, hcount, (selected == 2), b2in, y2 , cr2,
cb?2);

defparam c.X=300;

ycrcb_blob d(vcount, hcount, (selected == 3), b3in, y3 , cr3,
cb3);

defparam d.X=350;

ycrcb_blob e (vcount, hcount, (selected == 4), bd4in, v4 , cr4,
cbd) ;

defparam e.X=400;

ycrcb_blob f (vcount, hcount, (selected == 5), bbin, y5 , cr5,
cbb);

defparam f.X=450;
ycrcb_blob g(vcount, hcount, (selected == 6), b6in, y6 , cr6,
cbo);



defparam g.X=500;

ycrcb_blob h(vcount,

cb7);

hcount,

defparam h.X=550;

//Or all of

assign y

assign cr

assign cb =
endmodule

the output together

=y0 | vyl | y2 | y3
cr0 | crl | cr2 |
cb0 | cbl | cb2 |

cr3
cb3

v4
cr4
cb4

(selected ==

7), b7in, y7 , cr7,
y5 | ye | y7;
cr5 | cr6 | cr7;
cb5 | cb6 | cb7;



Gen_buckets.v

module gen_buckets (reset, clock, switch, bkt_ind, bkt_maqg);
input clock, reset, switch;

output [2:0] bkt_ind;
reg [2:0] bkt_ind;

output [16:0] bkt_mag;
reg [16:0] bkt_mag;

reg [3:0] offset;
reg [7:0] store [15:0];

wire [2:0]location;
assign location = offset + bkt_ind + 1; //keep moving through the
possible values

always @ (posedge clock)
begin
if (reset)
begin
bkt_ind <= 0; //reset the outputs
bkt_mag <= 0;
offset <= 0; //reset the offset variable

//set default values to move through the buckets

store[0] <= 3;
store[1] <= 255;
store[2] <= 100;
store[3] <= 50;
store[4] <= 65;
store[5] <= 200;
store[6] <= 20;
store[7] <= 15;
store[8] <= 0;
store[9] <= 220;
store[10] <= 156;
store[1l1l] <= 88;
store[12] <= 253;
store[13] <= 69;
store[14] <= 140;
store[15] <= 160;

end

else

begin

bkt_mag <= store[location]; //store the magnitude
based on index and offset

bkt_ind <= bkt_ind + 1; //work on next
bucket

if (bkt_ind == 7) //drew last bucket

begin

if (switch == 1)
offset <= offset + 1; //change the offset



end
end
end
endmodule



Ps2_kbd.v

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

File: ps2_kbd.v
Date: 24-0ct-05
Author: C. Terman / I. Chuang

PS2 keyboard input for 6.111 labkit

INPUTS:
clock_27mhz - master clock
reset - active high
clock - ps2 interface clock
data - ps2 interface data
OUTPUTS:
ascii - 8 bit ascii code for current character
ascii_ready — one clock cycle pulse indicating new char received
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module ps2_ascii_input (clock_27mhz, reset, clock, data, ascii, keycode,
ascii_ready);

// module to generate ascii code for keyboard input
// this is module works synchronously with the system clock

input clock_27mhz;

input reset; // Active high asynchronous reset
input clock; // PS/2 clock
input data; // PS/2 data
output [7:0] asciij; // ascii code (1 character)

output [7:0] keycode; //keycode

output ascii_ready; // ascii ready (one clock_27mhz cycle active
high)

reg [7:0] ascii_val; // internal combinatorial ascii decoded
value

reg [7:0] lastkey; // last keycode

reg [7:0] curkey; // current keycode

reg [7:0] keycode; // current keycode

reg [7:0] ascii; // ascii output (latched & synchronous)

reg ascii_ready; // synchronous one-cycle ready flag

wire fifo_rd; // keyboard read request

wire [7:0] fifo_data; // keyboard data

wire fifo_empty; // flag: no keyboard data

wire fifo_overflow; // keyboard data overflow

ps2 myps2 (reset, clock_27mhz, clock, data, fifo_rd, fifo_data,
fifo_empty,fifo_overflow);



assign fifo_rd = ~fifo_empty; // continous read
reg key_ready;

always @ (posedge clock_27mhz)
begin

// get key if ready

curkey <= ~fifo_empty ? fifo_data : curkey;
lastkey <= ~fifo_empty ? curkey : lastkey;
key_ready <= ~fifo_empty;

// raise ascii_ready for last key which was read

ascii_ready <= key_ready & ~(curkey[7]]|lastkey[7]);

ascii <= (key_ready & ~(curkey[7]]|lastkey[7])) ? ascii_val
asciij;
keycode <= (key_ready & ~(curkey[7]|lastkey[7])) ? curkey
keycode;
end
always @ (curkey) begin //convert PS/2 keyboard make code ==> ascii
code
case (curkey)
8'hlC: ascii_val = 8'h41; //A
8'h32: ascii_val = 8'h42; //B
8'h21: ascii_val = 8'h43; //C
8'h23: ascii_val = 8'h44; //D
8'h24: ascii_val = 8'h45; //E
8'h2B: ascii_val = 8'h46; //F
8'h34: ascii_val = 8'h47; //G
8'h33: ascii_val = 8'h48; //H
8'h43: ascii_val = 8'h49; //T
8'h3B: ascii_val = 8'h4Aa; //J
8'h42: ascii_val = 8'h4B; //K
8'h4B: ascii_val = 8'h4cC; //L
8'h3A: ascii_val = 8'h4D; / /M
8'h31: ascii_val = 8'hi4E; //N
8'h44: ascii_val = 8'h4F; //0
8'h4D: ascii_val = 8'h50; //P
8'h1l5: ascii_val = 8'h51; //Q
8'h2D: ascii_val = 8'h52; //R
8'hlB: ascii_val = 8'h53; //S
8'h2C: ascii_val = 8'hb54; //T
8'h3C: ascii_val = 8'h55; //U
8'h2A: ascii_val = 8'h56; / /v
8'hlD: ascii_val = 8'h57; //W
8'h22: ascii_val = 8'h58; //X
8'h35: ascii_val = 8'h59; //Y
8'hlA: ascii_val = 8'hbA; //Z
8'h45: ascii_val = 8'h30; //0
8'hl6: ascii_val = 8'h31; //1
8'hlE: ascii_val = 8'h32; //2
8'h26: ascii_val = 8'h33; //3

8'h25: ascii_val = 8'h34; //4



8'h2E: ascii_val = 8'h35; //5

8'h36: ascii_val = 8'h36; //6
8'h3D: ascii_val = 8'h37; /77
8'h3E: ascii_val = 8'h38; //8
8'h46: ascii_val = 8'h39; //9
8'hOE: ascii_val = 8'h60; //
8'h4E: ascii_val = 8'h2D; /] =
8'h55: ascii_val = 8'h3D; /] =
8'h5C: ascii_val = 8'h5C; /7 \
8'h29: ascii_val = 8'h20; // (space)
8'h54: ascii_val = 8'h5B; /71
8'h5B: ascii_val = 8'h5D; /7]
8'h4C: ascii_val = 8'h3B; /7
8'h52: ascii_val = 8'h27; Y
8'h4l: ascii_val = 8'h2C; //
8'h49: ascii_val = 8'h2E; /] .
8'h4A: ascii_val = 8'h2F; /]
8'h5A: ascii_wval = 8'h0D; // enter (CR)
8'h66: ascii_wval = 8'h08; // backspace
// 8'hFO: ascii_val = 8'hFO; // BREAK CODE
default: ascii_val = 8'h23; /] #
endcase
end

endmodule // ps2toascii
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// new synchronous ps2 keyboard driver, with built-in fifo, from Chris
Terman

module ps2(reset, clock_27mhz, ps2c, ps2d, fifo_rd, fifo_data,
fifo_empty,fifo_overflow);

input clock_27mhz, reset;

input ps2c; // ps2 clock

input ps2d; // ps2 data

input fifo_rd; // fifo read request (active high)

output [7:0] fifo_data; // fifo data output

output fifo_empty; // fifo empty (active high)

output fifo_overflow; // fifo overflow — too much kbd input
reg [3:0] count; // count incoming data bits

reg [9:0] shift; // accumulate incoming data bits

reg [7:0] fifo[7:0]; // 8 element data fifo
reg fifo_overflow;
reg [2:0] wptr,rptr; // fifo write and read pointers

wire [2:0] wptr_inc = wptr + 1;

assign fifo_empty = (wptr == rptr);



assign fifo_data = fifolrptr];

// synchronize PS2 clock to local clock and look for falling edge
reg [2:0] ps2c_sync;

always @ (posedge clock_27mhz) ps2c_sync <= {ps2c_sync[l:0],ps2c};
wire sample = ps2c_sync[2] & ~ps2c_sync[l];

always @ (posedge clock_27mhz) begin
if (reset) begin
count <= 0;

wptr <= 0;

rptr <= 0;

fifo_overflow <= 0;
end

else if (sample) begin
// order of arrival: 0,8 bits of data (LSB first),odd
parity, 1
if (count==10) begin
// just received what should be the stop bit
if (shift[0]==0 && ps2d==1 && ("shift[9:1])==1) begin
fifolwptr] <= shift([8:11];
wptr <= wptr_inc;
fifo_overflow <= fifo_overflow | (wptr_inc == rptr);
end
count <= 0;
end else begin
shift <= {ps2d,shift[9:1]};
count <= count + 1;
end
end
// bump read pointer if we're done with current value.
// Read also resets the overflow indicator
if (fifo_rd && !fifo_empty) begin
rptr <= rptr + 1;
fifo_overflow <= 0;
end
end

endmodule
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//

// 6.111 FPGA Labkit —-- Video (TV) Test Code

//

// For Labkit Revision 004

//

//

// Created: November 3, 2004

// Author: Nathan Ickes

//
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/*
“include "i2c.v"

“include "adv7194init.v"

“include "adv7185init.v"

//Don't include these —- Xilinx does it for us

*/

module video (reset, clock_27mhz, tv_out_reset_b, tv_out_clock,
tv_out_i2c_clock, tv_out_i2c_data, tv_out_pal_ntsc,
tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
tv_out_subcar_reset, mode);

input reset;
input clock_27mhz;

//output [9:0] tv_out_ycrcb;
output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_Db,
tv_out_blank_b,
tv_out_subcar_reset;
input [1:0] mode;

// Mode Decoding

//

// 0 = colorbars, 1 = MIT logo, 2 = composite passthrough,
// 3 = s—-video passthrough

wire colorbars, logo, svideo;
assign colorbars = (mode == 0);
assign logo = (mode == 1);

//
// BADV7194 (Output)
//

assign tv_out_clock = clock_27mhz;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_vsync_b = 0;



assign tv_out_hsync_b = 0;
assign tv_out_subcar_reset = 0;
assign tv_out_blank_b = 0;

adv7194init init7194 (reset, clock_27mhz, colorbars,
tv_out_reset_b, tv_out_i2c_clock, tv_out_i2c_data);
endmodule

module videodraw (reset, clock_27mhz, vy, cr, cb, h_position,
v_position, row_done, frame_done, ycrcb);

input reset, clock_27mhz;
input [9:0] y, cr, cb;

output [9:0] ycrcb;
output [9:0] h_position, v_position;
output row_done, frame_done;

reg [10:0] sample_count;

reg [9:0] line_count;

reqg £, v, h;

reg [7:0] xy;

reg [9:0] ycrcb;

reg [9:0] h_position, v_position;

//base these output signals on the position of the trace
//since these quantities change at every clock tick, the signal is

pulse
assign row_done = (sample_count == 1440);
assign frame_done = (line_count == 524);

always @ (negedge clock_27mhz)
if (reset)
begin
sample_count <= 0;
line_count <= 0;
end
else
begin
if (sample_count < 1440)
// Output active video
// 720 pixels per line, two samples (Y and C) per sposition
// Sample order is CbO, YO, Crl, Y1, Cb2, Y2,
case (sample_count[1:0])
2'b00: ycrcb <= cb;
2'b01l: ycrcb <= vy;
2'b10: ycrcb <= cr;
2'bll: ycrcbhb <= y;
endcase
else if (sample_count == 1440)
// Start header for the EAV timecode
ycrcb <= 10'h3FC;

else if (sample_count == 1441)
ycrcb <= 10'h000;
else if (sample_count == 1442)

ycrcb <= 10'h000;
else if (sample_count == 1443)



// EAV timecode
begin
ycrcbh <= {xy, 2'b00};
Sdisplay ("EAV at line %d, sample %d is 0b%B",
line_count, sample_count, xvy);
end
else if (sample_count < 1712)
ycrcb <= sample_count[0] ? 10'h200 : 10'h040;
else if (sample_count == 1712)
// Begin header for SAV timecode
ycrcb <= 10'h3fC;

else if (sample_count == 1713)
ycrcbh <= 10'h000;

else if (sample_count == 1714)
ycrcb <= 10'h000;

else if (sample_count == 1715)
// SAV timecode
begin

ycrcbh <= {xy, 2'b00};
Sdisplay ("SAV at line %d, sample %d is 0Ob%B",
line_count, sample_count, xy)

14
end

if (sample_count == 1715)
begin
sample_count <= 0;
if (line_count == 524)
line_count <= 0;
else
line_count <= line_count+1l;
end
else
sample_count <= sample_count+1l;
end

// Compute the F, V, H, X, and Y bits for the timecodes
always @ (sample_count or line_count)

begin
f <= (line_count < 9) || (line_count > 271);
v <= (line_count < 19) || ((line_count > 262) && (line_count <
282));

h <= (sample_count > 1439) & (sample_count < 1715);
xy <= {1'bl, £, v, h, v*h, f£*h, f*v, £"v*h};
end

always @ (sample_count or line_count)
if (line_count < 19)
begin
h_position <= 0;
v_position <= 0;

end
else if (line_count < 262)
begin
h_position <= (sample_count[10:1] < 719) ?

sample_count [10:1]+sample_count[0] : O;
v_position <= {line_count-19, 1'bl};
end



else if (line_count < 282)
begin
h_position <= 0;
v_position <= 0;
end
else
begin
h_position <= (sample_count[10:1] < 719) ?
sample_count [10:1]+sample_count [0]
v_position <= {line_count-281, 1'b0};
end
endmodule
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//Testing Pixel Generators
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0;

module pixelgenl (reset, clock, hcount, vcount, y, cr, cb);

input reset, clock;
input [9:0] hcount, vcount;

output [9:0] vy, cr, cb;
reg [7:0] ¥, g, b;

//translate from rgb to ycrcb
rgb2ycrcb trans(r,qg,b,vy,cr,cb);

always @ (negedge clock)

begin

if (hcount < 250)

begin
r <= 255;
g <= 0;
b <= 0;

end

else if (hcount < 500)

begin
r <= 0;
g <= 255;
b <= 0;

end

else

begin
r <= 0;
g <= 0;
b <= 255;

end

end
endmodule

module pixelgenalt (reset, clock, hcount, vcount, vy, cr,

input reset, clock;
input [9:0] hcount, vcount;

cb);



output [9:0] vy, cr, cb;
reg [7:0] r, g, b;

wire[1l6:0] read_addr;
wire[15:0] pixel_data;

//translate from rgb to ycrcb
rgb2ycrcb trans(r,qg,b,vy,cr,cb);

always @ (negedge clock) //decode the pixel data from the RAM

into
begin
r <= 0; //top 5
g <= 0; //next 6
b <= {8{hcount[2]}}; //bottom 5
end
endmodule

module pixelgen (reset, clock, hcount, vcount, y, cr, cb);

input reset, clock;
input [9:0] hcount, vcount;

output [9:0] vy, cr, cb;
reg [7:0] r, g, b;

wire[16:0] read_addr;
wire[15:0] pixel_data;

//translate from rgb to ycrcb
rgb2ycrcb trans(r,qg,b,vy,cr,cb);

//translate from vcount and hcount to an address to the ram
assign read_addr = vcount[9:1]*360+hcount[9:1];

//get a BRAM going here...
video_mem mem (0, read_addr,0,clock,0,pixel_data,0); //no write ram

always @ (negedge clock) //decode the pixel data from the RAM
into RGB

begin

/*
r <= pixel_data[15:11] << 3; //top 5
g <= pixel_data[l0:5] << 2; //next 6
b <= pixel_datal[4:0] << 3; //bottom 5
*/
r <= 0;
g <= 0;
b <= 0;

end

endmodule
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// Position to Address Conversion

[17777777777777777777777



module pos2addr (hcount,vcount, addr);

input [9:0] hcount,vcount;
output[16:0] addr;

assign addr = vcount[9:1]*360+hcount[9:1];
endmodule
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// Parsing of 16-bit color data
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module rgb_dataZycrcb_data(pixel_data, y, cr ,cb);
input [15:0] pixel_data;
output [9:0] vy, cr, cb;

reg [7:0] r, g, b;

//translate from rgb to ycrcb
rgb2ycrcb trans(r,qg,b,y,cr,cb);

always @ (pixel_data) //decode the pixel data from the RAM into

RGB
begin
r <= pixel_data[l5:11] << 3;//top 5
g <= pixel_data[l0:5] << 2; //next 6
b <= pixel_data[4:0] << 3; //bottom 5
end
endmodule
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//Conversion from 24-bit RGB to 10-bit YCrCb
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module rgb2ycrcb(r,qg,b,y,cr,cb);

input [7:0] r, g, b;

output [9:0] vy, cr, cb;

reg [9:0] vy;

reg [9:0] cr, cb;

reg [17:0] multr,multg,multb,bydiff,rydiff,multbyd, multryd;

always @ (r, g, b)

begin
multr = 306*r >> 10; //306/1024 = .299
multg = 601*g >> 10; //601/1024 = .587
multb = 117*b >> 10; //117/1024 = .114
y = multr + multg + multb; //Y = .299R + .587G + .114B
multryd = 128 + ((720*r - 720*y) >> 10); //720/1024 = .713
multbyd = 128 + ((579*b - 579*y) >> 10); //579/1024 = .565
cb = multbyd; //U = Cb = (B-Y)*.565 + 128, the offset is to

keep these values >= 0
cr = multryd; //V = Cr = (R-Y)*.713 + 128



y =y << 2; //shift up these 8 bit values to 10 bits
cb cb << 2;
cr = cr << 2;

end
endmodule
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module infodist (clock, bkt_avg,

b02data, b03data,

b07dat

b04data,
a, b08data,

bkt_index,

b05data,
frame_done) ;

data_valid, bOldata,

b06data,

//Keeps track of the buckt values and smothens them out

b0ldata; //The output of the module

input clock;

input [15:0] bkt_avg;
input [2:0] bkt_index;
input data_valid;

input frame_done;
output [15:0]

output [15:0] b02data;
output [15:0] b0O3data;
output [15:0] bO4data;
output [15:0] bO5data;
output [15:0] bO6data;
output [15:0] bO7data;
output [15:0] b0O8data;
reg [15:0] bOldata = 0;
reg [15:0] b0O2data = 0;
reg [15:0] b03data = 0;
reg [15:0] bO4data = 0;
reg [15:0] bO5data = 0;
reg [15:0] bO6data = 0;
reg [15:0] bO7data = 0;
reg [15:0] b08data = 0;
reg [15:0] tOldata = 0;
reg [15:0] t02data = 0;
reg [15:0] t03data = 0;
reg [15:0] tO4data = 0;
reg [15:0] tO5data = 0;
reg [15:0] tO6data = 0;
reg [15:0] tO07data = 0;
reg [15:0] t08data = 0;
always @ (posedge clock)

if (frame_done)

//The registers storing the output

//The registers storing the most
//most recent value, which we will
//average with the current value

//When we know we can change the value

//of the output without the screen flickering

begin
bO0ldata <= (t0Oldata
b02data <= (t02data
b03data <= (t03data
b04data <= (t04data
b05data <= (t05data
bO06data <= (t0O6data
b07data <= (t07data
b08data <= (t08data
end
always @ (posedge clock)
begin
case (bkt_index)
0

+

+ o+ o+ o+ o+ o+ o+

bOldata)
b02data)
b03data)
b04data)
b05data)
bO6data)
b07data)
b08data)

t0ldata <= bkt_avg;

>> 1; //Take the average
>>
>>
>>
>>
>>
>>
>>

4
14

14

~.

~.

el e e e
~

~.

//Store the current value



[y

t02data <= bkt_avg; //of the bucket

2 t03data <= bkt_avg; //Note that it doesnt matter
3 t04data <= bkt_avg; //visually if we do this
multiple
4 t05data <= bkt_avg; //times before a frame_done
5 t06data <= bkt_avg;
6 t07data <= bkt_avg;
7 t08data <= bkt_avg;
endcase
end
endmodule

module bOregionrad (hcount, vcount, pixel,radius);
//Outputs a circle secment for the "radial" visualization
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount >= X && vcount <= Y && hcount + vcount >= X+Y)
//Check to see if it is in the right segment
// (hcount—
X) "2+ (vcountY) *2~=(RADIUS+-1)"2 (in the range?)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111; //White background
end
endmodule
//ALL OTHERS ARE SIMILAR, WITH THE ONLY DIFFERENCE BEING THE SEGMENT IT
CHECKS

module blregionrad (hcount, vcount, pixel,radius);
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] vcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or vcount)
begin
if ( (hcount * hcount) + (vcount * wvcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&



hcount >= X && vcount <= Y && hcount + vcount <= X+Y)
// (hcount—-X) "2+ (vcountY) "2<=(RADIUS) *2 and in
the right segment
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule
module b2regionrad (hcount, vcount, pixel,radius);
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * wvcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount <= X && vcount <= Y && hcount + Y <= vcount+X)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule
module b3regionrad (hcount, vcount, pixel,radius);
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount <= X && vcount <= Y && hcount + Y >= vcount+X)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule
module bd4regionrad (hcount, vcount, pixel,radius);
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;



output [15:0] pixel;
reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ( (hcount * hcount) + (vcount * wvcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount <= X && vcount >= Y && hcount + vcount <= X+Y)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule
module bSregionrad (hcount, vcount, pixel,radius);
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount <= X && vcount >= Y && hcount + vcount >= X+Y)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule
module béregionrad (hcount, vcount, pixel,radius);
parameter X = 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount >= X && vcount >= Y && hcount + Y <= vcount+X)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule
module b7regionrad (hcount, vcount, pixel,radius);



parameter X 180;
parameter Y = 121;
parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y) <=
((radius) * (radius))+2* (hcount*X+vcount*Y) &&
hcount >= X && vcount >= Y && hcount + Y >= vcount+X)
pixel <= COLOR;
else
pixel <= 16'b1111111111111111;
end
endmodule

module circleoutline (hcount, vcount, pixel, radius);
//Outputs a circle with a specified radius centered at X,Y which are
parameters

parameter X 180;

parameter Y = 121;

parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] wvcount, radius;
output [15:0] pixel;

reg [15:0] pixel;

always @ (radius or hcount or wvcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y) <=
((radius+1l) * (radius+1l))+2* (hcount*X+vcount*Y) &é&
(hcount * hcount) + (vcount * vcount) + (X*X) + (Y*Y)
>= ((radius-1) * (radius-1))+2* (hcount*X+vcount*Y) )
// (hcount—-X) ~2+ (vcountY) “2~= (RADIUS+-1) *2 (in
the range?)
pixel <= COLOR; //If we are on the border of the
circle, output the real color
else if ((hcount * hcount) + (vcount * vcount) + (X*X) +
(Y*Y) < ((radius-1) * (radius-1))+2* (hcount*X+vcount*Y))
pixel <= COLOR | 16'b0111101111101111; //If we are in
the circle, output a ligher version of the color
else
pixel <= 16'b1111111111111111; //If we are outside of
the circle, use the white background
end
endmodule

module blob (vcount, hcount, pixel, height);



//Returns the correct pixel value for a square with bottom left at
parameters X,Y

parameter WIDTH = 30;

parameter X = 0;

parameter Y = 242;

parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;
input [9:0] vcount, height;
output [15:0] pixel;

reg [15:0] pixel;

always @ (height or hcount or vcount)
begin
if ( (hcount>=X && hcount < (X+WIDTH)) &&
(vcount<=Y && (vcount + (height >> 0) > Y)))

pixel <= COLOR; //If we are in the rectangle, output
the right color

else
pixel <= 16'b0; //Otherwise, output the black

background

end
endmodule
module diagonalline (hcount, vcount, pixel, height);
//Outputs a thick diagonal line whose center, width, and color are
specified by
//parameters, and whose height is specified by height (the total area
will be around
//2*height *WIDTH)

parameter X = 0;

parameter WIDTH = 5;

parameter Y = 242;

parameter COLOR = 16'b0000000000011111;

input [9:0] hcount;

input [9:0] height, wvcount;

output [15:0] pixel;

reg [15:0] pixel;

always @ (hcount or wvcount)
begin
if (hcount+vcount<=(Y+X)+WIDTH && hcount+vcount+WIDTH>= (Y+X)
&&

(hcount *hcount) + (vcount *vcount) + (X*X) + (Y*Y) <= (height*height) +2* (h
count *X+vcount*Y))
// (hcount—-X) *2+ (vcountY) *2~=(RADIUS) *2 and close
enough to line (hcount+vcount)=X+Y?
Pixel=COLOR;
else
pixel=16"'b0000000000000000;
end
endmodule
module ball (x, y, hcount, vcount, pixel);
//Outputs a ball centered at location x,y, with radius and color
specified by the parameter



parameter RADIUS = 5;
parameter COLOR = 16'b1111111111111111;

input [9:0] x, hcount;
input [9:0] vy;

input [9:0] wvcount;
output [15:0] pixel;

reg [15:0] pixel;

always @ (x or y or hcount or vcount)
begin
if ((hcount * hcount) + (vcount * vcount) + (x*x) + (y*y) <=
(RADIUS * RADIUS) +2* (hcount*x+vcount*y) )
pixel=COLOR; // (hcount-X) "2+ (vcountY)"2<=RADIUS"2

else
pixel=0;
end
endmodule
/*
359x242 Screen resolution
*/

module visualizer (bOin, blin, b2in, b3in, bdin, b5in, b6in, b7in,
vOout, vlout, v2out, v3out, row, col);
//Puts together the visualizations

input [15:0] b0in ; //The bucket data in for each bucket

input [15:0] blin ;
input [15:0] b2in ;
input [15:0] b3in ;
input [15:0] bdin ;
input [15:0] bb5in ;
input [15:0] b6in ;
input [15:0] b7in ;
input [9:0] row ;
input [9:0] col ;

output [15:0] vOout; //The visualization data out for each
visualization

output [15:0] vlout;

output [15:0] v2out;

output [15:0] wv3out;

wire [15:0] wvOout;
wire [15:0] wvlout;
wire [15:0] v2out;
wire [15:0] wv3out;

wire [15:0] wvOoutbucket0O,vOoutbucketl,vOoutbucket2, vloutbucket3,
vOoutbucket4, vloutbucket5, vloutbucket6, vloutbucket7;
wire [15:0] vloutbucketO,vloutbucketl,vlioutbucket2, vioutbucket3,
vloutbucket4d, vlioutbucket5, vlioutbucket6, vlioutbucket7;
wire [15:0] wvlballO,vlballl,vlball2,vlball3,vlball4d,vlball5,
vlball6,vlball7;



wire [15:0]
v2cut0,v2cutl,v2cut2,v2cut3,v2cutd, v2cut5,v2cutb,v2cut7;
wire [15:0]
v3outbucket0, v3outbucketl, v3outbucket2, v3outbucket3, v3outbucket4, v3outb
ucketb,
v3outbucket6, v3outbucket7;

//The BAR VISUALIZATION

blob bucketO (row, col, vOoutbucket0O, b0in[7:01]);
defparam bucket0.X=40; //Sets the position for each bar
defparam bucket0.COLOR = 16'b1111111111111111;
blob bucketl (row, col, vOoutbucketl, blin[7:0]);
defparam bucketl.X=80;

defparam bucketl.COLOR = 16'b1111111111100000;
blob bucket2 (row, col, vOoutbucket2, b2in[7:0]);
defparam bucket2.X=120;

defparam bucket2.COLOR = 16'b1111100000000000;
blob bucket3 (row, col, vOoutbucket3, b3in[7:0]);
defparam bucket3.X=160;

defparam bucket3.COLOR = 16'b1111100000011111;
blob bucketd (row, col, vOoutbucketd, b4din[7:0]);
defparam bucket4d.X=200;

defparam bucket4.COLOR = 16'b0000011111100000;
blob bucket5 (row, col, vOoutbucket5, b5in[7:01]);
defparam bucket5.X=240;

defparam bucket5.COLOR = 16'b0000011111100000;
blob bucket6 (row, col, vOoutbucket6, b6in[7:0]);
defparam bucket6.X=280;

defparam bucket6.COLOR = 16'b0000011111100000;
blob bucket7 (row, col, vOoutbucket7, b7in[7:0]);
defparam bucket7.X=320;

defparam bucket7.COLOR = 16'b0000011111111111;

assign vOout = vOoutbucketO | vOoutbucketl | vOoutbucket2 |
vOoutbucket3 | vOoutbucketd |
vOoutbucket5 | vOoutbucket6 | vOoutbucket7; //OR out the
results

//The Diagonal Line Visualization

diagonalline dlineO (col, row, vloutbucket0O, b0in[7:0]); //The
lines themselves

defparam dline0.X=0;

diagonalline dlinel (col, row, vloutbucketl, blin[7:0]);

defparam dlinel.X=15;

diagonalline dline2(col, row, vloutbucket2, b2in[7:0]);

defparam dline2.X=30;

diagonalline dline3(col, row, vloutbucket3, b3in[7:0]);

defparam dline3.X=45;

diagonalline dline4 (col, row, vloutbucket4, b4in[7:01);

defparam dline4d.X=60;

diagonalline dline5(col, row, vloutbucket5, b5in[7:0]);

defparam dline5.X=75;

diagonalline dline6(col, row, vloutbucket6, b6in[7:0]);

defparam dline6.X=90;

diagonalline dline7(col, row, vloutbucket7, b7in[7:0]);

defparam dline7.X=105;



wire [9:0]

xballOloc,yballOloc,xballlloc,yballlloc,xball2loc,yball2loc,

xball3loc,yball3loc,xballdloc,yballd4loc,xball5loc,yballbloc,
xball6loc,yball6bloc,xball7loc,yball7loc;

//The initial locations for the balls in the diagonal lines

visualization
assign xballOloc
assign yballOloc
ball bO(xballOloc,
assign xballlloc =
assign yballlloc
ball bl (xballlloc,
assign xball2loc =
assign yball2loc
ball b2 (xball2loc,
assign xball3loc =
assign yball3loc
ball b3 (xball3loc,
assign xballédloc
assign yballdloc =
ball b4 (xballdloc,
assign xball5loc
assign yballbloc
ball b5 (xball5loc,
assign xballé6loc =
assign yballé6loc
ball b6 (xball6loc,
assign xball7loc =
assign yball7loc
ball b7 (xball7loc,

//Now OR together everything to get the Diagonal Lines

visualizatoin

assign vlout = vloutbucketO

04+4b0in[7:0]1>>14b0in[7:0]1>>2;

242 — b0in[7:0]>>1 — b0in[7:0]1>>2;
yballOloc, col, row, vlballO);
15+b1in[7:0]>>1+blin[7:0]>>2;

242 — blin[7:0]>>1 - blin[7:0]1>>2;
yballlloc, col, row, vlballl);
30+4b2in[7:01>>14b2in[7:0]1>>2;

242 — b2in[7:0]>>1 - b2in[7:0]1>>2;
yball2loc, col, row, vlball2);
45+b3in[7:01>>1+b3in[7:01>>2;

242 — b3in[7:0]>>1 - b3in[7:0]1>>2;
yball3loc, col, row, vlball3);
60+b4in[7:0]>>1+b4in[7:0]>>2;

242 — b4in[7:0]>>1 - b4in[7:0]1>>2;
yballd4loc, col, row, vlballid);
75+b5in[7:01>>1+b5in[7:0]1>>2;

242 — b5in[7:0]>>1 - b5in[7:0]1>>2;
yball5loc, col, row, vlballb);
90+b6in[7:0]>>1+b6in[7:0]>>2;

242 — b6in[7:0]>>1 - b6in[7:0]1>>2;
yballé6loc, col, row, vlball6);
1054b5in[7:0]1>>14b5in[7:0]1>>2;

242 — b7in[7:0]>>1 - b7in[7:0]1>>2;
yball7loc, col, row, vlball7);

vloutbucket3 | vloutbucketd |
| vloutbucket6 | vloutbucket7 | vlballO |

vloutbucketb

vlballl | vlball2 | vlball3 | vlball4 | vlball5 | vlball6 |

//End Diagonal Line Visualization

//"Radial" Visualization

bOregionrad vregO(col, row, v2cutO, bOin|[
blregionrad vregl (col, row, v2cutl, blin|
b2regionrad vreg2(col, row, v2cut2, b2in|
b3regionrad vreg3(col, row, v2cut3, b3in|
bd4regionrad vreg4 (col, row, v2cut4, bédin|
bS5regionrad vregb(col, row, v2cutb5, bbin|
b6regionrad vreg6(col, row, v2cut6, b6in|
b7regionrad vreg7(col, row, v2cut7, b7in|[
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//AND togethter all of the components
assign vz2out = v2cut0 & v2cutl & v2cut2 & v2cut3 & v2cutéd &

v2cutb & v2cut6 & v2cut’;

//End Ratio Visualization

| vloutbucketl | vloutbucket2 |

vliball7;



//Intersecting circle visualization
//Arranged such that the colors align and the buckets form a
diamond
circleoutline colineO (col, row, v3outbucketO, b0in[7:0]);
defparam coline0.X = 180;
defparam coline0.Y = 60;
defparam coline0.COLOR = 16'b1111100000000000;
circleoutline colinel (col, row, v3outbucketl, blin[7:01]);
defparam colinel.X = 160;
defparam colinel.Y = 120;
defparam colinel.COLOR = 16'b0000000000011111;
circleoutline coline2 (col, row, v3outbucket2, b2in[7:0]);
defparam coline2.X = 200;
defparam coline2.Y = 120;
defparam coline2.COLOR = 16'b0000000000011111;
circleoutline coline3(col, row, v3outbucket3, b3in[7:0]);
defparam coline3.X = 120;
defparam coline3.Y = 140;
defparam coline3.COLOR = 16'b0000011111100000;
circleoutline colined (col, row, v3outbucketd, bdin[7:0]);
defparam colined.X = 240;
defparam colined.Y = 140;
defparam coline4.COLOR = 16'b0000011111100000;
circleoutline coline5(col, row, v3outbucket5, b5in[7:01]);
defparam colineb5.X = 160;
defparam colineb5.Y = 160;
defparam coline5.COLOR = 16'b0000000000011111;
circleoutline coline6 (col, row, v3outbucket6, b6in[7:0]);
defparam coline6.X = 200;
defparam coline6.Y = 160;
defparam coline6.COLOR = 16'b0000000000011111;
circleoutline coline7 (col, row, v3outbucket7, b7in[7:01]);
defparam coline7.X = 180;
defparam coline7.Y = 200;
defparam coline7.COLOR = 16'b1111100000000000;
assign v3out = v3outbucket0 & v3outbucketl & v3outbucket2 &
v3outbucket3 & v3outbucketd4d & v3outbucket5 &
v3outbucket6 & v3outbucket?;
//AND together the results
//End Intersecting Circles Visualization
endmodule

module doer (clock, row_done, vcount, we, row, col);
//This module outputs an appropirate location for us to write to the
RAM
//so that we don't interfere with the video out system
input clock;
input row_done;
input [9:0] wvcount;
output we;
output [9:0] row;
output [9:0] col;

reg [9:0] col=0; //Start off at the first column and increment

reg we;
reg [9:0] row;



always @ (posedge clock)

begin
if (row_done)
begin
row <= vcount >> 1; //half resolution vertically
col <=0; //Start over now
we<=1;
end
else if (col < 360)
begin
col <= 1l+col; //Go along the column
we <=1;
end
else
begin
we<=0; //We are out of the visible range, so disable
WE
end
end
endmodule

module divider (clk, onehundred_hz_enable);

//Outputs a signal at 100Hz, for the ball physics module
output onehundred_hz_enable;
input clk;

reg [24:0] count=26'd0; //Keeps track of the current count
reg onehundred_hz_enable=0;

always @ (posedge clk)
begin

if (onehundred_hz_enable)

begin
onehundred_hz_enable<=0;
count<=count+1;

end

else if (count<26'd27000) //Count up to 27,000 (100Hz given the
clock speed)

begin

count<=count+1;

end

else
begin
onehundred_hz_enable<=1; //Output high for one clock cycle
100 times a second
count<=1;
end
end
endmodule



module physicsball (clock, hcount, vcount, pixel);
//Implements the motion of a ball, with acceleration and whatnot
//Uses the divider module for timing

input clock;

input [10:0] hcount;

input [9:0] wvcount;

output [2:0] pixel;

reg [10:0] xpos=100;

reg signed [10:0] vypos=300;

reg [10:0] xvel = 10;

reg signed [10:0] yvel = 0;

reg [7:0] count=0;

divider div(clock, onehundred_hz_enable);

ball ballO (xpos, ypos, hcount, vcount, pixel);
always @ (posedge onehundred_hz_enable)

begin
if (ypos>900) //If the position of the ball is too great
begin
ypos<=100; //Reset the position and set an upward
velocity
yvel <=-5;
end
if (count>=100)
begin
count<=0;
yvel<=yvel+l; //Accelerate the ball
end
else
count<=count+1;
if (count%16==0) //16 because this is how the timing works
out
begin //visually, it looks good with 16 (could
have been 8)
xpos <= xpos + xvel; //Change the position of the
balls
ypos <= ypos + yvel; //according to the velocities
end
end
endmodule

module visselect (vOin, vlin, v2in, v3in, selbits, visout);
// Select the visualization
input [15:0] vO0in;

input [15:0] vlin;
input [15:0] v2in;
input [15:0] v3in;

input [1:0]selbits;
output [15:0] wvisout;

reg [15:0] wvisout;
wire[15:0] vloutbucketO;
always @ (selbits)
begin
case (selbits) //Look at the selectoin bits



0 visout <= v0in;
1 visout <= vlin;
2 visout <= v2in;
3 visout <= v3in;
endcase
end
endmodule

module address(row, col, addr);
input [9:0] row;
input [9:0] col;

output [16:0] addr;

assign addr = row[9:0]1*360+c0l[9:0]; //The simple address formula
we chose
endmodule

module allvis(clk, bkt_avg, bkt_index, data_valid, row_done, vcount,
frame_done, we, addr, rgb_data, selbits);
//Connect all the modules as shown

input clk;

input [15:0] bkt_avg;

input [2:0] Dbkt_index;

input data_valid;

input [9:0] wvcount;

input row_done, frame_done;

input [1:0] selbits;

output [16:0] addr;
output [15:0] rgb_data;
output we;

wire [15:0] bOldata;
wire [15:0] b02data;
wire [15:0] b03data;
wire [15:0] b0O4data;
wire [15:0] bO5data;
wire [15:0] bO6data;
wire [15:0] b0O7data;
wire [15:0] b08data;

infodist id(clk,bkt_avg, bkt_index, data_valid, bOldata, b0O2data,
b03data, b0O4data, b05data, bO6data,
b07data, b08data, frame_done);

wire [9:0] row;
wire [9:0] col;

wire [15:0] visO;
wire [15:0] wvisl;
wire [15:0] wvis2;
wire [15:0] wvis3;

visualizer vis (bOldata, b0O2data, b03data, b0O4data, b05data,
b06data,



b07data, b08data, wvis0, wvisl, wvis2, wvis3, row, col);
visselect vselect (visO, wvisl, vis2, vis3, selbits, rgb_data);

doer visdoer (clk, row_done, vcount, we, row, col);
address visaddr (row, col, addr);
endmodule



Audio (Lab 3.v) — included in Avtest.v

Recorder. v

module recorder (clock_27mhz, reset, playback, ready, from_ac97_data,
to_ac97_data, bkt_mag, bkt_index, xk_index, busy, xk_index, xk_im,
done) ;

input clock_27mhz; // 27mhz system clock
input reset; // 1 to reset to initial state
input playback; // 1 for playback, 0 for record
input ready; // 1 when AC97 data is available
input [7:0] from_ac97_data; // 8-bit PCM data from mic
output [7:0] to_ac97_data; // 8-bit PCM data to headphone
output [15:0] bkt_mag; // 16-bit bucket magnitude
output [2:0] bkt_index; // 3-bit index for 8 bucket (0-7)
output [9:0] xk_index; // 10-bit index for FFT output (0-
1023)
output busy, done; // control signals from FFT
output [18:0] xk_re, xk_im; // 19-bit outputs from FFT

/1770777777777 777777777//testing
/*//output [7:0] to_f£fft;

output [7:0] from ifft;

output dv_inv; //dv,
//output ifft_enable;

output [15:0] bkt_mag;

output [2:0] bkt_index;

output [9:0] xk_index;
//output [7:0] d_out;
//output [9:0] counter;

output [7:0] DOUT; */

// detect clock cycle when READY goes 0 —-> 1

// £ (READY) = 48khz

wire new_frame;

reg old_ready;

always @ (posedge clock_27mhz) old_ready <= reset ? 0 : ready;
assign new_frame = ready & ~old_ready;

// test: playback 750hz tone, or loopback using incoming data
wire [19:0] tone;

///testing for IFFT and FIR ///////////////////

/* wire signed [18:0] xk_re_inv; //used to direct real output of IFFT

to the AC97 chip

wire signed [18:0] xk_im_inv; //used to direct imag output of IFFT
to the AC97 chip

wire [19:0] DOUT;

wire RDY;

wire switch [7:01; */

tone750hz xxx (clock_27mhz, ready, tone);
reg [7:0] to_ac97_data;
always @ (posedge clock_27mhz) begin
if (new_frame) begin
// Jjust received new data from the AC97



to_ac97_data <= (playback)? tone[19:12] : from_ac97_data;
the input out since IFFT isn't working
end
end

/1777777777777 //7///testing IFFT

/* //wire [7:0] to_fft;
assign to_fft = tone[l19:12];
assign from ifft = xk_re_inv[18:11];
//reg ifft_enable;

//*****continuous assign***** &%

// run

//assign ifft_enable = dv? ready : 0; //used to delay the ce of the

IFFT, but clock with the ready and the FFT
/1177777

//*****always block*******
/*always @ (posedge clock_27mhz) begin
if (dv)
ifft_enable <= ready;
end
*/

//connections for the FFT

wire [9:0] xk_index; //enumerating which of the 1024 samples are

outputing
wire signed [18:0] xk_re;
wire signed [18:0] xk_im;
wire busy, done;

//connections for the bucketizer
wire [15:0] bkt_mag;
wire [2:0] bkt_index;

[/TIERT///11777777777777777777777777777777777777

/* ports for FFT (forward)

input [7 : 0] xn_re; //real input

input [7 : 0] xn_im; //no imaginary input => set to 0;

input start; //start, always working => set to 1;

input [4 : 0] nfft; // set to 10 for 1024 point fft

input nfft_we; // not resetting so set to 0;

input fwd_inv; // forward FFT = 1, inverse = 0;

input fwd_inv_we; // no need to change from particular instantiation,
set to 0;

input ce; // clock enable: ready signal, only count the

clock once data is ready from ac97
input clk; // system clock = 27mhz
output [18 : 0] xk_re;

output [18 : 0] xk_im;

output [9 : 0] xn_index;

output [9 : 0] xk_index;

output rfd;

output busy;

output dv;

output edone;

output done;

*/



fft forward/(
tone[19:12], //input from the mic jack
0, //no imaginary input
1,
10,

ready,
clock_27mhz,
xk_re,
xk_im,
xn_index,
xk_index,

rfd,

busy,

dv,

edone,

done) ; // synthesis black_box
L1777 7777777777777
//////BUCKETIZER///
[117777777777777777

test_bucket
test (clock_27mhz, xk_re,xk_im, xk_index,bkt_mag,bkt_index,dv,bkt_valid);

/* created f transform for IFFT test
module s_wave (clock_27mhz, ready,d_out);
input clock_27mhz;
input ready;
output [7:0] d_out;
output [9:0] counter;

reg [9:0] counter = 0;
reg signed [7:0] d_out;

always @ (posedge clock_27mhz)begin
if (ready)begin

if (counter > 1023)

counter <= 0;

else

counter <= counter + 1;

end

end

always @ (posedge clock_27mhz)begin

if (counter == 15)
d_out <= 8'h7F;
else if (counter == 1008)
d_out <= 8'h81;
else
d_out <= 8'h00;
end
endmodule

*/



//wire [7:0] d_out;
//s_wave s (clock_27mhz, ready, d_out); //test for the IFFT

/*
fft inverse (

DOUT, //xk_re [18:11], //mul_re - from the equal_mul before
going into IFFT

0, //xk_im [18:11], //mul_im - from the equal_mul before
going into IFFT

1,

10,

RDY,
clock_27mhz,

xk_re_inv, //real output of IFFT
xk_im_inv, //imaginary output of IFFT
Xn_index_inv, //index of input
xk_index_inv, //index of output
rfd_inv,

busy_inv,

dv_inv,

edone_inv,

done_inv) ; // synthesis black_box

/*ports for the LPF
input NDj;

output RDY;

input CLK;

output RFD;

input [7 : 0] DIN;
output [19 : 0] DOUT; */

/*1pf filter (
dv, //(dv_inv && RDY)?
RDY,
clock_27mhz,
RED,
xk_re[18:11],
DOUT) ; // synthesis black_box

*/

endmodule



Bucketizer. v

module

test_bucket (clk, xk_re, xk_im, index, bkt_mag,bkt_index,dv,bkt_valid);
input clk;
input signed [18:0] xk_re;
input signed [18:0] xk_im;
input dv;
input [9:0] index; // 10-bits if 1024-pt FFT
output [16:0] bkt_mag; // 17-bit bucket magnitude
output [2:0] bkt_index; // 3-bit index for 8 bucket (0-7)
output bkt_valid; // 1s output of bucketizer legit?
output [16:0] temp_mag; // temp variable for mag.

//output [3:0] count; //created for test purposes
//output [16:0] temp_mag; //created for test purposes

wire signed [7:0] xk_re_8; //wire which holds the most signif.
8 bits of transformed signal

wire signed [7:0] xk_im_8;

wire bkt_valid;

reg [16:0] bkt_mag = 0; //initialize to 0 to make sure that
everything works well

reg [16:0] temp_mag 0;

reg [2:0] bkt_index = 3'b000;

reg [9:0] last_index; //check to see if FFT index really changed;
consequnce of
//sampling frequency = 48kHz = ready signal

assign xk_re_8 xk_re[18:11]; //truncating the last 8 bits to give
us reasonable size
assign xk_im_8 = xk_im[18:11]; //for calculations

assign bkt_wvalid = dv;

wire signed [16:0] re_squared;

wire signed [16:0] im_squared;

wire [16:0] magnitude;

signed_mult ml (clk, xk_re[l1l8:11],xk_re[1l8:11],re_squared);
signed_mult m2 (clk, xk_im[18:11],xk_im[18:11],im_squared);
assign magnitude = re_squared + im_squared;

always @ (posedge clk) begin
if (dv) begin
last_index <= index;

if (index[6:0] < 127)
begin //less than 128 samples in the current bucket
if (last_index != index) //only add if the index has
changed
temp_mag <= temp_mag + magnitude; //add the squares

of the current value to the bucket

end

else begin //have 128 values in the bucket



bkt_mag <= ((temp_mag + magnitude) >> 7); //take the avg of
the bucket_mag by dividing by 128 (>>7)
temp_mag <= 0; //reset the temp_mag

if (bkt_index < 7) //bucket indices are between 0 and
7 (for 8 buckets)
bkt_index <= bkt_index + 1; //increment

else bkt_index <= 0; //1if we've reached all buckets for
this set of 1024 samples (8 buckets and 16 samples)
end
end
end

endmodule



Multiplier.v

module multiplier(clk, dv, xk_re,xk_im,xk_index, coeff,mul_re,mul_im,

mul_index, ifft_enable);

input clk;

input dv;

input [18:0] xk_re; //input from FFT

input [18:0] xk_im; //input from FFT

input [9:0] xk_index; //index from FFT

input [7:0] coeff; //coeffs from equalizer based on GUI
output [17:0] mul_re; //multiplied real FT signal

output [17:0] mul_im; //multiplied imag FT signal

output [2:0] mul_index; //send index to equalizer for coeffs

output ifft_enable;

//setup wires from FFT for multiplication
wire signed [18:0] xk_re;

wire signed [18:0] xk_im;

wire signed [7:0] xk_re_8;

wire signed [7:0] xk_im_8;

wire [2:0] mul_index;

wire rdy_re, rdy_im;

assign xk_re_8 = (dv)? xk_re [18:11]: 0; //is there valid
FFT

assign xk_im_8 = (dv)? xk_im [18:11]: O;

assign mul_index = xk_index[9:7]; //get appropriate
coeffs

signed_mult re(clk, xk_re_8, coeff, mul_re, rdy_re); //IP
multipliers
signed_mult im(clk, xk_im 8, coeff, mul_im, rdy_im);

reg ifft_enable;

always @ (posedge clk) begin

ifft_enable <= (rdy_re && rdy_im); //enable the IFFT only
multipliers are finished

end

endmodule

data from

data for

Core

when both



Timing Diagram for 1024-pt FFT

200 T T O B B P _|__u;r_I__I__I__I__Lﬁ,_I__I_I_I_I_I__|f;?_I_f'_|__I_
41 Fr) 4
L) {2l " [id [ d
e " 7L I I - 4 -
i L T e e T e
e inv J L T T T T
wdimwe L0 b b, i Yy I R ' A
H H Irlr fl'r FF H H H L : H !
seale_seh J77 7T AT T T T T T T T T T T
scale_sch we | : | i : T o ! | | ik | i i ot : i !
L /5 A
st . i A 4 e
RO T G 6 S G G 4 S Y S "
S I A S 6 S G G S S S G S S S G
n_inlex 00 N G GO S (50 O 65 G G G G 61 S G S G & Y S G G G
- 4 A28 S RS A S 4 L
busy #f JrJr "r'jr #
LT 4 ] —% %
adons ™" i 4 =—N qycls u_"'f_\ i Y : f_7\
Lid [l L : : Ca ] :
i 4 == gy SEERUA SR o
xh 1o — ¥ X X T S, S G T ()
ak_im I ?r, | I{{?: ka 'ES -- i :. j 4 I i i p j::
i % 4 S T T T (D
oo 4 4 S YS S T |




