Digital Effects Box for Guitar Design Overview

Matthew Moskwa and Schuyler Senft-Grupp 6.111 Final Project

Design Goals

- Real-time processing of audio signal
- Create effects in the frequency domain
- Visual interface for effect manipulation
- Visualization of effect on spectrum

Block Diagram

FFT

FFT Module

- FFT module is defined by two parameters: sample rate and number of samples
- Output is magnitude of frequency band, where:
 bandwidth = Sample Rate/(2 * Number of Samples)
- Use 8 instances of Xilinx 128-pt FFT
- Each instance takes in 128 samples from AC97 module at a different sampling rate, from 384 Hz 48 kHz
- Each FFT corresponds to one octave of tones

FFT Module con't

- Musical pitch is logarithmic in frequency
- Resolution of frequency bands needs to be much higher at lower frequencies, on the order of 3 Hz
- At higher frequencies, resolution only needs to be on the order of 500Hz

Buffer

Buffers

- Data is fed into buffers from AC97 module
- Buffers control sampling rate of data
- Send control signal to FFT

Note Array

Note Array

- 96 value array, corresponding to all notes over 8 octaves
- Will receive magnitude information for each possible note, in order from highest to lowest, from each FFT
- Serves as a "pitch-corrector"
- Records how long a certain pitch has been active
- Outputs magnitudes and timing information for a specified order of frequencies

FX

FX

- Performs arithmetic on magnitude and frequency
- Outputs to Function Generator
- Exact frequency values for notes read from BRAM
- Controlled by user through GUI
 - effect
 - intensity
 - speed

Effect Options

- Vibrato
- Pitch Bend
- Arpeggiator
- Harmonizer
- Delay

Function Generator

Function Generator

- Calculates Asin(ωn), where A is the magnitude received from the FX module
- Receives values for sin(ωn) from LUT

Output from function generator is sampled at 48kHz, so to create different frequencies, a 48000/N Hz sine function is sampled at N/f points, where N is the number of samples and f is the desired frequency.

Adder and Delay

Adder and Delay

- Sums together outputs from Function Generator and any delayed signals
- Delay length determined by user in GUI
- Maximum delay is 4 seconds
- Outputs to AC97 module @ 48 kHz

GUI

GUI

- Visualize effect options
- Input from labkit buttons
- Outputs parameters to FX module
- Displays wet and dry spectra

Tying it all together

