6.111 Final Project
Digital Effects Box for Guitar

Matthew Moskwa and Schuyler Senft-Grupp

12/13/2005

1. TIETOAUCTION ..o e e et e e e e e eareeeeeeaas 3

IL. IMOAUIES ...ttt et e et e et e et e e 4
Lo BUTTRIS ..ottt ettt e e e et e e e et e e e et eeeeennreas 4
R) S LSO PSUPRPPRURIPIO 5
B INOLE ATTAY . eeiiiiiiiiiiiie ettt e e e e e e ettt e e e e e e e snabbbbeeeeeeeeeennnbaaeeeas 6
4. SPEEA COUNLTeeiiiiiiieeeiiiieeeeeiieee ettt e e ettt e e e ettt e e e ettt eeeeetbeeeeesnsbeeeeeanseeeeennsneeas 7
LT o GO PO P RPN 7
6. Direct Digital Synthesis (DDS)ccoouiiiiiiiiiiiieie e 8
7. Synthesizer MOAUIE........c..uiiiiiiiiiieeeiiee ettt e e 9
8. Magnitude Memory ModUle...........ccuuiiiiiiiiiiiiiiieeeeiee e 9
9. Graphical User Interface (GUI) Moduleccccouiiiiiiiiiiiiiiiiiieeiiieeeeieee e 9
10. Wet Graph Data Storage Module............ccccuiiiiiiiiiiiiiniiieeeie e 10
IIL. DISCUSSION ...vvtieeeiiiiieeeeiiiteeeeiittee e ettt eeeeitteeeeeaabaeeeessaaeeeeesnsseeeeeannsaeeeennnsaeeeeannseeens 10

Iv. FN 0] 0153 16 £ P SPUPUR U PPPP 12

1. Introduction

Processing analog signals is often complex, innacurate, and lossy. By transferring
these signals into the digital domain prior to processing, we can retain more of the
original features of the signal, as well as perform more advanced processing of the signal.
The design that follows is one that allows for modification of individual tones of a signal
from a musical instrument. This would be next to impossible with analog compoments.
While not intirely impossible, the amount of precision hardware involved (i.e. very, very
finely tuned capacitors to perform very tight band-pass filtering) would make costs quite
prohibitive. However, once the signal is fully digitized, the processing can be done with
simple FIR filters and the more complex, but fully realizable FFT.

The goal of this design is for the user to be able to play an electrified instrument
into the device, have the tones and all associated harmonics detected, and then, having
chosen the particular modifications to be made to the tones, hear the output immediately.
Since the AC97 codec used in the design has a 48KHz clock rate, there is a limited time
in which to complete all the processing. The FFT is a demanding process, so other steps
in the processing pipeline must be designed with this in mind.

In order to detect a wide range of tones, several FFTs with different sampling
rates will have to be used. The reason for this is the logarithmic nature of musical tones.
The distance between notes in the Western musical system increases by powers of 2.
Therefore, the resolution needed to detect low tones is much higher than that needed for
higher tones. All of these FFTs can be run synchronously and in parallel through the use
of frame buffers on their inputs. In order to avoid aliasing of the frequencies output by
the lower-order FFTs, low-pass filters must be used before the buffers.

The output of FFTs will then be fed into a ROM containing specific frequency
information about the specific tones. An FFT module does not actually output the exact
frequency content of a signal, but instead divides the output into a ranges of frequencies
determined by the size of the fft (in sample points) and the sampling rate. We will refer
to these ranges as “bins”. Since we know what bins the possible musical tones will fall
in, we can wait for these bins, and pass their contents onto the ROM. The ROM will
output the exact frequencies of the notes (in floating-point form) and magnitudes
determined by the FFT onto a counter and FX module.

Since possible effects depend on the duration of the note, the counter will keep
track of this information. The FX module will then do the actually modification of the
frequencies, based on the time information from the counter and parameters entered by
the user. Some possible effects that will be described in this design are a pitch bender, a
brief vibrato, and an appeggio effect. From the FX module, the newly modified
frequencies are sent to a synthesizer that creates sine waves of particular magnitudes and
frequencies as PCM data that is sent back to the AC97 codec for D/A conversion and
output.

The design also features a GUI that displays important information about the
currently chosen effect, the input spectrum, and the output spectrum. The user will also
make the choice of effect through the GUI, using buttons on the labkit.

From AC97

ready sync 8

v v v v v

Frame Frame Frame Frame Frame
> (@] (@] (@] (@]

Buffer Buffer Buffer Buffer Buffer
128x8 128x8 128x8 128x8 128x8

A A y A A
» FFTO » FFTI » FFT2 o o o o FFT6 .| FFT7

xk_index(0 —| ——mag0
A A A A A A A A A A
Note Array (one for each FFT)
freq — I tin
mag
5119 . .
2671 -T - This section R
Y V Y is duplicated Magnitude
. >
GUI 5 | Speed for each instance channel out Memory
of Note Arra; B
speed Counter Y 4 5 { channel mag
. [t out 5
freq in—— 3 -
. mag_out .
mag_in v g-ou 17 Synthesizer
26 > >
from buttons R DDS To AC97
5 freq out dds_out
> FX o
intensity| >
dds_we
clock
(to all modules)

Figure 1: Full Block Diagram

I1. Modules

1. Buffers

Because each FFT (there will be 8 in total) requires a different sample rate, we
will need 8 separate frame buffers to feed the appropriate data into the associated FFT. A
buffer-less solution is possible, but requires that the FFTs sample the incoming data
themselves, which is not desirable in continous processing. We would rather have a
complete frame presented to the FFT at the beginning of each processing stage, so we
have the buffers sample the incoming data instead.

The audio data will not be coming directly from the AC97 codec, which outputs
20-bit two’s-complement PCM data. The data the buffers receive comes from the
audio.v module, which was written for 6.111 lab 3. It has not been modified for use in
this design. Therefore, the buffers will be storing 8-bit PCM data. Since the FFTs are
128-point, the buffers will have to be 128 x8 bit in size. Clock dividers running off of the
system clock, which is set at S0MHz, will control them. Because the input and output

will be controlled by separate signals running at different clock rates, we will use a two-
port memory. The input port will be write-only, and the aforementioned clock divider
will set the write-enable signal. The output port will accordingly be read-only, and will
be controlled by the ff# start signal. The addresses for reads and writes are set after each
write, when the write pointer is incremented by one, and the read pointer is set to be one
greater than the write pointer, so the FFT always reads the oldest data first.

| clk b
data_in ———— ——— data_out
Frame
addr a Buffer addr b
we ————] ————— ce

clk a |

Figure 2: Frame Buffer. The frame buffer has two ports so the
address lines can be modified independently at different clock
rates.

2. FFT

To achieve the detection of all the notes possible on an instrument like an electric
guitar, either an FFT of very large sample size is needed, or several FFTs analyzing
different parts of the incoming signal. This design chooses the latter, because the
computation time of the FFT scales as ©(n) = Nlog(N) where N is the sample size.

Also, the resolution of the lower order FFTs will need to be much higher than the upper
FFTs, because of the logarithmic nature of the tonal sytem (see Fig. X). The resolution
of the frequency bins is based on the sample size and the sampling frequency according
to the following equation:

ﬂample

Woin =3/
With the lowest sampling frequency of 280 Hz, this gives a resolution of approximately
2.19 Hz, which is more than enough for our lowest tone, which is at 73 Hz. The FFTs are
not actually sampling the incoming data at this sample rate; instead, the frame buffers
sample the data, and the FFT computes the frequencies at the system clock rate. The
algorithm does not require that the FFT run at the sample rate, so to improve performace
immensely, and to allow for completely continous processing, the FFT simply loads in a
frame from the buffer every time the ff¢ start signal, which is tied to the ready sync
signal from the AC97 codec, goes high. At this time, the FFT takes in each stored sample

Table 1: Selected notes and their frequencies. Note
that tones an octave higher have double the

Note Frequency (Hz)
E2 82.41

F2 87.31

E3 164.81

F3 174.61

E4 329.63

F4 349.23

E5 659.26

F5 698.46

from the buffer, beginning with the least-recently-written address. After loading all N
samples, the FFT enters the computation stage, which takes some time (about half of the
available time for the 128-point FFT used here). After this, the data is unloaded, in bit-
reversed order due to the particulars of the algorithm, as an index and associated
magnitude. The index will be converted to a frequency by next stage, the Note Array
ROM, and the magnitude will be passed along to the final stage, the synthesizer. At the
completion of the computation stage, the FFT sends out a done signal, which is received
by the Note Array so it can begin its own loading.

Because of difficulties with the final design, only the lowest-order FFT was actually
implemented, but it worked as described, albeit with significant aliasing problems that
might have been alleviated with a low-pass filter on the input to the buffer.

3. Note Array

The main function of the note array is to correct for the fact that the FFTs output a
magnitude value that covers a range of frequency values. The note array runs once every
48KHz cycle and takes in the FFT output index (ff# index) and checks to see if that index
corresponds with a frequency range containing a note frequency. (The FFTs are sized to
only ever have one note per frequency bin.) If the input index corresponds to a note, the
note array checks to see if the corresponding input magnitude (mag _in) is greater than the
previous cycle’s magnitude plus some error called MAGNITUDE TOLERANCE. 1f the
new magnitude is greater it starts a timer, called ¢#/number], to record how long the note
has been played.

The important outputs from note array are the magnitude of the current index
(mag), the frequency (freq), which is one of 12 constant note frequencies bitshifted by
some input value (bitshift) to correspond with the correct octave, and the number of
48KHz cycles the note has been played (¢ ouf). The note array also passes out a new
index value (index out) which is a number between 0 and 11. This index is used for

controlling which channel of the DDS should be written too. Also when a valid note
frequency gets output, note array brings a write enable (we) signal high for one clock
cycle. This is used to trigger other modules, especially the DDS.

Table 2: Sampling Rates and Frequency Ranges for each FFT/ Buffer
combination.
Sampling Rate (Hz) |Note Range |Frequency Range
280|D2 - C#3 73.42 - 138.59
560|D3 - C#4 146.83 - 277.18
1120|D4 - C#5 293.66 - 554.37
2240|D5 - C#6 587.33 - 1108.73
4480|D6 - C#7 1174.66 - 2217.46
8960(D7 - C#8 2349.32 - 4434.92
17920]D8 - 4698.64 -

4. Speed Counter

The Speed Counter module keeps track of how long each note has been played.
Since the design calls for 8 FFTs and 8 Note Arrays, there must be 8 counters as well.
The counter consists of three separate RAMs that store information about each note. The
first acts as the low-order counter, whose maximum is set by the user through the speed
input. This input has a possibility of 32 settings, but since we are limited in the math that
we can do because of the time taken by the FFT stage. To determine the size of the
counter, the following simple math is performed:

Count_ = (32—speed) >>8§.

This can be done very quickly, which is ideal, because there is still quite a lot of

processing to do, and a very limited time in which to do it (we've used up more than half
the available clock cycles with the first two stages alone).

When the low-order counter reaches its maximum, the higher-order counter stored in
another RAM increments by one, and this number is output as ¢ out to the FX module.
Also stored in RAM is the ¢ _in for each note from the Note Array. The Speed Counter
additionally passes through the frequency and magnitude values from the Note Array
with no change.

5. FX

The FX module currently has three options for processing of the frequencies.
These are Pitch Bender, Vibrato, and Arpeggiator.

Pitch Bender: The pitch bender uses the following formula to determine the output
frequency of the module:

fout = f;‘rz + (ﬁn << 7) ’ tout s

where tou 1s the ¢ out value from the Speed Counter. In this way, the pitch of the note
will increase over time at a speed set by the user. If a new f in is detected, however, the
¢t out value is reset, so the bending will start again.

Vibrato: The vibrato implemented in this design is not quite like the vibrato produced
by real musician, which is a rapid, unmeasured bend between a note and tones slightly
above and below it. What this design does is discretize those bends to create a more
“warbling” sound. The user has control over not only the speed, in the same way as
described above, but also over the distance between the fundamental note and the upper
and lower vibrato pitches. This distance is set with the intensity input.

Arpeggio: The arpeggio effect is similar to the vibrato, except the output frequency
moves to very specific pitches that spell out a major chord. The effect caues the
fundamental note to cycle up through the third above the octave and back done, over 8
cycles. Inths way, the arpeggio effect is a simple FSM. To achieve this, the FX module
looks at the ¢ out value from the speed counter, performs division mod 8 on it, and
assigns the following values to the output, based on the state:

State 0: f,

State 1: fi, +f;>>2 (third)

State 2: f, + fin>>1 (fifth)

State 3: f;,<<I (octave)

State 4: f;,<<1 + f;,>>1 (tenth)

State 5: f;,<<I (octave)

State 6: fi, + fin>>1 (fifth)

State 7: fi, + fin>>2 (third)
The speed of the changes is calculated in the same way as the other two effects.

Since there are § different Note Arrays, there will also have to be 8 FX modules, so
the entire range of frequencies present in each note from the instrument can be modified
in the same way. However, since this implementation only used one FFT, only one FX
module was used, but that was not the goal of the design.

6. Direct Digital Synthesis (DDS)

The DDS module generates sine waves of specified frequency. The DDS is
generated by the IP Core Generator, which is part of the Xilinx toolkit, using several
parameters selected by the user. We chose a 12 channel DDS which means that we can
supply it 12 different frequencies and the DDS will output the corresponding sine values
by time-sharing the output. To get the resolution (.1 Hz) and range (up to 20KHz)
needed for our project, the input frequency must be a 26 bit value. This input value is
related to the output frequency by

fclk 'fin

fout = 23

b

where B is the number of bits in f;,. In our case, f. is the 49.85 MHz clock divided by
12, the number of channels. To obtain good quality sound output we selected the sine
output values to be 17 bits. (The AC97 output is 20 bits.) The synthesis module samples
the DDS module once every 48KHz cycle.

In out initial plan we intended to have multiple DDS modules, each one
corresponding to an octave of inputs. However we never reached the stage where we
needed to generate more than 12 tones, so we only ever created one instance of the DDS
module.

7. Synthesizer Module

The synthesizer module takes the sine outputs from the different DDS modules
and adds them together to get one value to output to the AC97. (Since in our project we
only reached the point of implementing one DDS, the synthesizer module only took one
sine input, sine().) The synthesizer module is triggered by the start signal start synth
which we connected to the synchronous AC97 signal ready sync. On receiving the start
signal, the synthesizer module reads in the next 12 values presented at the output of the
DDS. It also receives magnitude values corresponding to each sine value, and scales the
sine value by the magnitude. (Currently in our code, for testing purposes, this is a binary
scaling — either the note is being played or not.) The output signal, sound out, goes to
AC97.

8. Magnitude Memory Module

Because the note magnitudes are output from the note array module before they
need to be used by the synthesizer module, we wrote a small module to store the
magnitudes. The magnitudes are read in synchronously from the note array and stored in
a twelve-row array of registers called mag. The module also constantly reads in which
channel is being read out from the DDS and asynchronously outputs the corresponding
magnitude value, mag out.

9. Graphical User Interface (GUI) Module

The GUI controls the output on the screen, gives the user an easy interface to
control effects, and outputs the user’s preferences to the associated modules. The screen
consists of 6 ‘slider bars’ to control the three effects (bender, vibrato, and arpeggio) and
delay. Each slider bar and slider is controlled by a sprite module, blob, which generates a
rectangle in a given location with a designated height, width, and color. The other
graphics this module is responsible for generating are all the text on the screen (done with
a character module and font rom), the outside border, and inner lines dividing the screen
into the control section and the spectrum analyzer section.

The user interfaces with our project through the buttons on the labkit. The
left/right buttons select the slider bar the user wants to control and the up/down buttons
increase or decrease the level of the selected slider bar. To change which effect is
currently running the user moves to the corresponding slider bar and presses a select
button.

The GUI has several important outputs. The first is pixel out, a 3 bit color value
that gets sent to the module. The signal fx goes to the FX module and selects which
effect is currently being selected. Depending on the value of fx, the corresponding speed
and intensity value are also output to the FX module. To control the rate and intensity of
delay, a delay speed and delay int are constantly output. Unfortunately we did not have
time to implement the delay feature.

Graph Module

This module takes in index and magnitude data and plots a spectrum bar graph.
The module uses an array of registers to store the data. The output graph is plotted using
a logic statement that checks to see if the current pixel location falls within the data of
magnitudes. This is made particularly easy by the use of the array.

10. Wet Graph Data Storage Module

To plot the data coming out of the effect module we need some way of
determining which index of the bar graph the magnitude should be plotted. This module
looks at the actual frequency value coming in from the FX module and checks to see
which index, from 0 to 11, this corresponds to. The output index out is determined
through a logic statement which determines each bits value. This data is then fed to the
graph module. In hindsight, one limitation of this module is that the FX module can
increase a frequency to above the octave it initially begins in. This means that if a note
gets changed to above a Db it will always just get recorded of having an index of 11, or
the highest possible value.

II1. Discussion

Unfortunately we were unable to fully complete our project as planned. The
major obstacle we ran into was with the FFTs. As earlier discussed, we needed multiple
FFTs each sampling at increasing frequencies from 260Hz to 48KHz. However we failed
to recognize the need to filter the signals going to the FFTs to make sure that there were
no frequencies above the sampling frequency present in the signal. This caused severe
aliasing problems which for the most part rendered the output of the FFT useless. There
was just too much noise to make the output enjoyable to listen to. We attempted to

implement some quick filters but were unable to design anything that worked well
enough in the time we had.

Our project was trying to do something very difficult: recreate a guitar input with
its full harmonic spectrum at the output. Unfortunately because we only ever got one
FFT/DDS working at a time and because we had to only use the top few bits of the
magnitude to remove the aliasing noise, this was impossible. Instead we ended up
making, for all intents and purposes, a guitar input to midi output. Had this been our
initial goal, to just pick up the few loudest notes being played and ignore harmonics, we
would have had a very different and simpler design.

IV. Appendix

// 6.111 Final Project
// by
// Schuyler Senft-Grupp and Matthew Moskwa

// Completed 12/12/05

// Our project is a digital effects box that can alter individual
// frequencies of an incoming audio source

// top level module

module main_file(
beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch,
ac97_bit_clock,

vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_b, wvga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,

tv_out_vycrcb, tv_out_reset_b, tv_out_clock,
tv_out_i2c_clock,

tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,

tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,

tv_in_ycrcb, tv_in_data_valid, tv_in_line_clockl,

tv_in line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,

ram0_data, ram0O_address, ramO_adv_1d, ramO_clk,
ramO_cen_b,

ramO_ce_b, ramO_oe_b, ram0_we_b, ram0_bwe_b,

raml_data, raml_address, raml_adv_1d, raml_clk,
raml_cen_Db,

raml_ce_b, raml_oe_b, raml_we_b, raml_bwe_b,

clock_feedback_out, clock feedback_in,

flash_data, flash_address, flash_ce_b, flash_oe_b,
flash _we_b,

flash_reset_b, flash_ sts, flash_byte_b,

rs232_txd, rs232_rxd, rs232_rts, rs232_cts,

mouse_clock, mouse_data, keyboard clock, keyboard_data,

clock_27mhz, clockl, clock2,

disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_in,

button0, buttonl, button2, button3, button_enter,
button_right,
button_left, button_down, button_up,

switch,

led,

userl, user2, user3, userd,
daughtercard,

systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irg,
systemace_mpbrdy,

analyzerl_data, analyzerl_ clock,

analyzer2_data, analyzer2_clock,

analyzer3_data, analyzer3_clock,

analyzer4d_data, analyzerd_clock
)

output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;

output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank b, vga_out_pixel_clock,
vga_out_hsync, wvga_out_vsync;

output [9:0] tv_out_ycrcb;
output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b,
tv_out_blank_b,
tv_out_subcar_reset;

input [19:0] tv_in_ycrcb;
input tv_in_data_valid, tv_in_line_clockl, tv_in_line_clock2,
tv_in_aef,
tv_in hff, tv_in_aff;
output tv_in_i2c_clock, tv_in_ fifo_read, tv_in_fifo_clock,
tv_in_iso,
tv_in_reset_b, tv_in_clock;
inout tv_in_i2c_data;

inout [35:0] ramO_data;

output [18:0] ramO_address;

output ramO_adv_1d, ramO_clk, ramO_cen_b, ramO_ce_b, ramO_oe_b,
ram0_we_b;

output [3:0] ramO_bwe_b;

inout [35:0] raml_data;

output [18:0] raml_address;

output raml_adv_1d, raml_clk, raml_cen_b, raml_ce_b, raml_oe_b,
raml_we_b;

output [3:0] raml_bwe_b;

input clock feedback in;
output clock_feedback_out;

inout [15:0] flash data;

output [23:0] flash_address;

output flash_ce_b, flash_oe_b, flash we_b, flash_ reset_b,
flash_byte_b;

input flash_sts;

output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;

inout mouse_clock, mouse_data;
//input mouse_clock, mouse_data;
input keyboard_ clock, keyboard_data;

input clock 27mhz, clockl, clock2;

output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;

input button0, buttonl, button2, button3, button_enter,
button_right,
button_left, button_down, button_up;
input [7:0] switch;
output [7:0] led;

inout [31:0] userl, user2, user3, user4;
inout [43:0] daughtercard;

inout [15:0] systemace_data;

output [6:0] systemace_address;

output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irqg, systemace_mpbrdy;

output [15:0] analyzerl_ data, analyzer2_data, analyzer3_data,
analyzer4d_data;
output analyzerl_clock, analyzer2_clock, analyzer3_clock,
analyzer4d_clock;

[1777
/1777

//

// I/0 Assignments

//

L1170 7777077777777 7777777777777 77777777 777777777777777777777777777
/1177

// Audio Input and Output
assign beep= 1'Db0;
// assign audio_reset_b = 1'Db0;
// assign ac97_synch = 1'b0;
// assign ac97_sdata_out = 1'b0;

// ac97_sdata_in is an input

// VGA Output

//assign vga_out_red = 10'hO0;
//assign vga_out_green = 10'hO0;
//assign vga_out_blue = 10'hO0;
//assign vga_out_sync_b = 1'bl;
//assign vga_out_blank_b = 1'bl;
//assign vga_out_pixel_clock = 1'b0;
//assign vga_out_hsync = 1'b0;
//assign vga_out_vsync = 1'b0;

// Video Output

assign tv_out_ycrcb = 10'hO0;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;

assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b 1'b1;
assign tv_out_vsync_b = 1'bl;
assign tv_out_blank_b = 1'bl;
assign tv_out_subcar_reset = 1'b0;

// Video Input

assign tv_in_i2c_clock = 1'b0;

assign tv_in_fifo_read = 1'b0;

assign tv_in_fifo_clock = 1'b0;

assign tv_in_iso = 1'b0;

assign tv_in_reset_b = 1'b0;

assign tv_in_clock = 1'b0;

assign tv_in_i2c_data = 1'bZ;

// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clockl,
tv_in_line_clock2,

// tv_in_aef, tv_in_hff, and tv_in_aff are inputs

// SRAMs

//assign ramO_data = 36'hzZ;
//assign ramO_address = 19'h0;
assign ram0O_adv_1d = 1'b0;
//assign ramO_clk = 1'b0;
//assign ramO_cen_b = 1'bl;

assign ramO_ce_b = 1'bl;
assign ram0_oe_b = 1'bl;
//assign ram0O_we_b = 1'bl;
assign ramO_bwe_b = 4'hF;

assign raml_data = 36'hz;
assign raml_address = 19'h0;

assign raml_adv_1d = 1'b0;
assign raml_clk = 1'b0;
assign raml_cen_b = 1'bl;

assign raml_ce_b = 1'bl;
assign raml_oe_b = 1'bl;
assign raml_we_b = 1'bl;
assign raml_bwe_b = 4'hF;
assign clock_ feedback_out = 1'b0;

// clock feedback_in is an input

// Flash ROM

assign flash_data = 16'hz;
assign flash_address = 24'h0;
assign flash ce_b = 1'bl;
assign flash _oe_b = 1'bl;
assign flash we_b = 1'bl;
assign flash_reset_b = 1'b0;
assign flash_byte_ b = 1'bl;

// flash_sts is an input

// RS-232 Interface
assign rs232_txd
assign rs232_rts
// rs232_rxd and

= 1'bl;
1'bl;
rs232_cts are inputs

// PS/2 Ports

// mouse_clock, mouse_data, keyboard_clock, and keyboard data are

inputs
// LED Displays

/*
assign disp_blank = 1'bl;
assign disp_clock = 1'b0;
assign disp_rs = 1'b0;
assign disp_ce_b = 1'bl;
assign disp_reset_b = 1'b0;
assign disp_data_out = 1'b0;

*/

// disp_data_in is an input

// Buttons, Switches, and Individual LEDs
//lab3 assign led = 8'hFF;
// button0, buttonl, button2, button3, button_enter, button_right,

// button_left, button_down, button_up, and switches are inputs

// User I/0s

assign userl = 32'hz;
assign user2 = 32'hz;
assign user3 = 32'hz;
assign user4 = 32'hz;

// Logic Analyzer

assign analyzerl_data = 16'h0;
assign analyzerl_clock = clock_50MHz;
assign analyzer2_data = 16'h0;
assign analyzer2_clock = clock_50MHz;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = clock_50MHz;
assign analyzer4_data = 16'h0;

assign analyzer4_clock = clock_50MHz;

// Daughtercard Connectors
assign daughtercard = 44'hz;

// SystemACE Microprocessor Port

assign systemace_data = 16'hZzZ;

assign systemace_address = 7'h0;

assign systemace_ce_b = 1'bl;

assign systemace_we_b = 1'bl;

assign systemace_oe_b = 1'bl;

// systemace_irg and systemace_mpbrdy are inputs

1177777777777 777777777777777777777777777
// master clock for this system is the clock_27mhz

// use FPGA's digital clock manager to produce a 50 Mhz clock from
27 Mhz

// actual frequency: 49.85 MHz

wire clock_50mhz_unbuf,clock 50MHz;

DCM vclkl (.CLKIN(clock 27mhz), .CLKFX(clock 50mhz_unbuf)) ;

// synthesis attribute CLKFX_DIVIDE of wvclkl is 13

// synthesis attribute CLKFX_MULTIPLY of wvclkl is 24

// synthesis attribute CLK_FEEDBACK of wvclkl is NONE

// synthesis attribute CLKIN_PERIOD of wvclkl is 37

BUFG vclk2(.0(clock 50MHz), .I(clock 50mhz_unbuf));

wire power_on_reset;

SRL16 reset_sr (.D(1'b0), .CLK(clock_50MHz), .Q(power_on_reset),
A0(1'b1), .Al1(1'bl), .A2(1'bl), .A3(1'bl));

defparam reset_sr.INIT = 16'hFFFF;

wire user_reset;
debounce dbreset (1'b0,clock_50MHz, ~button_enter,user_reset) ;

wire reset = power_on_reset | user_reset;

L1177 77077777777777777777777777777777777
// Final Project - Guitar Effects

//wire declarations

wire audio_ready; //un_synced ready signal when ac97 receives/send
data

wire [19:0] from_ac97_data, to_ac97_data; //data to and from AC97

//note frequencies - higher octaves are multiples of 2
parameter D = 12'd1186;

parameter Eb = 12'd1257;

parameter E = 12'd1331;

parameter F = 12'd1410;

parameter Gb = 12'd1494;

parameter G = 12'd1583;

parameter Ab = 12'd1677;

parameter A = 12'd1777;

ready_count

parameter Bb = 12'd1883;
parameter B = 12'd1995;
parameter C = 12'd2113;
parameter Db = 12'd2239;

//fft wires that go to all fft modules

wire [7:0] xn_im = 0;

wire fwd_inv = 1;

wire fwd_inv_we;

wire [7:0] scale_sch = 8'hAA;
wire scale_sch_we;

wire signed [19:0] from_synthl; //wire that connects

synthesizer to the

//AC97 output

wire ready_sync; //synchronous audio_ready

wire up, down, left, right, dbutton3;
wire [1:0] fx;
wire [4:0] intensity, speed, delay_ speed, delay_int;

//sets read from buffer
reg [6:0] ready_ count;
reg ready_cycle;

wire new_aframe;

always @ (posedge clock_50MHz) begin

ready_cycle <= (ready_count < 127);

ready_count <= (new_aframe) ? 0 ((ready_count
ready_count + 1);

end
//sync audio_ready

reg [2:0] audio_ready_sync;
always @ (posedge clock_50MHz) audio_ready sync <=

{audio_ready sync[1:0],audio_ready};
assign ready_sync = audio_ready_sync[2]

//generate a test tone for debugging
wire [19:0] tone;
tone750hz xxx(clock 50MHz,

ready_sync, tone);

reg [1:0] initclk;

//set the scaling for the FFTs

the

127) ?

& audio_ready_sync([1l];

reg [7:0] old_scale_sch;
always @ (posedge clock 50MHz) old_scale_sch <= scale_sch;
assign scale_sch_we = initclk[0] | ~(scale_sch==0ld_scale_sch);
always @ (posedge clock 50MHz)
initclk <= reset ? 0 (((initclk<3)) ? initclk + 1 initclk) ;

assign fwd_inv_we = (initclk==2'dl);

reg old_ready;
always @ (posedge clock_50MHz) old_ready <= ready_sync;
assign new_aframe = ready_sync & ~old_ready;

//module to interface with the AC97
//used signals are the to/from ac 97 data, and the audio_ready
audio myaudio (clock_27mhz, power_on_reset, from_ac97_data,
to_ac97_data,
audio_ready, audio_reset_b, ac97_sdata_out, ac97_sdata_in,
ac97_synch, ac97_bit_clock);
defparam myaudio.VOLUME = 4'dS§;

//set 0
wire [3:0] dds_channel_out0O; //relays which channel data is coming
from on / /DDS

wire signed [16:0] sine0O; //data output from DDS

wire dds_we0; //enable a write of frequency data into selected DDS
channel

wire dds_rdy0; //signal that DDS output data is valid

//see call to FFT module for explanations of these wires
wire [7:0] xk re0,xk imO;
wire [6:0] xn_index0, xk_ indexO;

wire fft_rfdo;
wire fft_busy0;
wire fft_dvo;
wire fft_edonel;
wire fft_done0;

wire [3:0] toleranceO = 0; //used to adjust when a new magnitude
occurred
//we never got around to using it

// buffer clocks

// clock 0: 280 hz

reg [17:0] dcountO;

wire clk _dsp0 = (dcount0==178035) ;

always @ (posedge clock 50MHz) dcountO0 <= (clk_dsp0O) ? 0 : dcountO+1;

/1777777777777 7/// Buftfers ////////////77/7/177/
// portA is input (clk_dsp), portB is output(clk triggered from
ready_sync)

reg [6:0] addral;
wire weO = clk_dsp0;
always @ (posedge clock_50MHz) begin
if (clk_dsp0)
addra0 <= (addra0 == 127) ? 0: addral0 + 1;

end
reg [6:0] addrb0;

always @ (posedge clock_50MHz) begin
if (ready_cycle)
addrb0 <= (addrb0 == 127) ? 0 : addrb0 + 1;
else addrb0 <= addral0 + 1;
end

reg [7:0] xn_rel0;

wire [7:0] pdatO;

always @ (posedge clock_50MHz)
xn_rel <= pdat0;

wire [7:0] to_buffer0 = from_ac97_datal[l9:12];

e
//module calls
e
buffer2 b0 (addral, addrb0, clock 50MHz, clock_ 50MHz, to_bufferO,
pdat0, wel); //make sure bits are right length
fft_128pt_8bit fft0O(xn_reO, // real data, input
xn_im, // imaginary data, input
new_aframe, // start data loading & conversion, in
fwd_inv, // forward or inverse, input
fwd_inv_we, // write enable for fwd_inv, input
scale_sch, // scaling schedule, input
scale_sch_we, // write enable for scale_sch, input
clock_50MHzZ, // system synchronous clock
xk_re0, // output real data
xk_im0, // output imaginary data

xn_index0, // index of input data (output)
xk_index0, // index of output data (output)

fft_rfdo, // ready for data, out
fft_busy0, // high while core is computing fft
fft_dvo, // data valid, output
fft_edone0, // early done strobe, output
fft_done0) ; // fft complete strobe, output;

wire [8:0] sum_mag0;
reg [7:0] pos_xrel;
reg [7:0] pos_im0;

//convert the imaginary and real values from the FFT to positive
numbers

//and add them

//we use this approximation of the magnitude for debugging and
because we

//drop the lower order bits

always @(xk_re0)

begin

if (xk_re0[7])
pos_re0 = ~(xk_rel0-1);

else
pos_rel = xk_re0;
end

always@ (xk_im0)

begin
if (xk_imO[771)
pos_im0 = ~(xk_im0-1);
else
pos_im0 = xk_im0;
end

assign sum_mag0 = pos_re0 + pos_im0;
//wire assignments between modules

wire [4:0]na_mag_out0O, na_mag outl, na_mag_out2;

wire [19:0]lna_t_out0, na_t_outl, na_t_out2;

wire [25:0] na_freq out0, na_freqg outl, na_freq out2;
wire [3:0] na_index outO, na_index_outl, na_index_out2;
wire na_done0O, na_donel, na_done2;

wire na_we0O, na_wel, na_we2;

wire [25:0] fx freqg outO;

wire [4:0] fx_mag_outO;

wire [3:0] fx_index outO;

wire [4:0] mem_mag outO;

wire synth_index_outO;

wire [25:0] fx_freq0;
wire [4:0] fx_mag0;
wire [3:0] fx_index0;

wire [7:0] ts_outO;

note_array nal (clock_50MHz, reset, xk_index0, sum mag0[8:4], 4'bl,
tolerance0O, fft_dvo0,
D, Eb, E, F, Gb, G, Ab, A, Bb, B, C, Db, na_mag_outO,
na_t_out0, na_freqg outO, na_index_out0, na_donel, na_we0,
dbutton3, switch) ;

speed_counter speed_c0(clock 50MHz, na_t_outO, na_index_outO,
na_mag_outO0, na_freqg outO,
speed, ts_out0, fx_index0, fx mag0, fx_freqgl);

fx fx0(clock 50MHz, fx freq0, fx_mag0, fx_index0, ts_outO,
fx_freqg outO,
fx_mag out0, fx_index_out0, na_wel, dds_we0, fx, speed,
intensity) ;

mag_memory magnitudesO (clock_50MHz, fx_mag out0, fx_ index outO,
mem_mag_outo, dds_channel_out0) ;

dds_pointl ddsO(fx_freqg out0, dds_wel, {1'b0, fx index outO},
clock_50MHz, 1'bl, reset, dds_channel_out(0, dds_rdyO0,
sine0) ;

wire [4:0] wet_data_outO;
wire [6:0] wet_index_outO;

wet_graph_data wetO(clock 50MHz, fx_freqg outO, 4'b0, fx_mag outO,
D, Eb, E, F, Gb, G, Ab, A, Bb, B, C, Db, wet_data_outO0,
wet_index_outO0) ;

synthesizer synth(clock_50MHz, mem mag outO, sinel, ready_sync,
from_synthl, reset, from_zbt, delay_int);

//for debugging allow for test tone out
wire dbutton0;
assign to_ac97_data = (dbutton0) ? tone : from_synthl;

wire [10:0] hcount;
wire [9:0] wvcount;
wire hsync,vsync,blank;

// feed XVGA signals to modules
wire [2:0] pixell, pixel2, pixel3, bpixel;
wire phsync,pvsync,pblank;

//display code

// generate basic XVGA video signals
xvga xvgal (clock_50MHz, hcount, wvcount, hsync, vsync, blank);

graph graph_dry(clock 50MHz, reset, na_mag_outO,
na_index_outO0,
hcount, vcount, hsync, vsync,blank, pixell);

defparam wet .LEFT = 10'd408;

graph wet (clock_ 50MHz, reset,
wet_data_outO,
wet_index_outO,
hcount, vcount, hsync, vsync,blank, pixel2);

debounce dup(l'b0,clock_50MHz, ~button_up,up) ;

debounce ddown (1'b0,clock 50MHz, ~button_down, down) ;

debounce dleft(1'b0,clock_50MHz, ~button_left, left);

debounce dright(1'b0,clock_50MHz, ~button_right,right) ;

debounce dbutton3_debounce(1'b0,clock_50MHz, ~button3,dbutton3) ;
debounce dbutton0_debounce (1'b0,clock_50MHz, ~button0,dbutton0) ;

gui main_gui (clock_50MHz,reset, up, down, left, right, dbutton3,

hcount, vcount, hsync, vsync, blank, phsync, pvsync, pblank, pixel3,
fx, intensity, speed, delay_speed, delay_int);

reg [2:0] rgb;
reg b,hs,vs;

always @(posedge clock_50MHz) begin

hs <= phsync;

VS <= pvsync;

b <= pblank;

rgb <= (pixell | pixel2 | pixel3 | bpixel);
end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clock_50MHz.

assign vga_out_red = {8{rgb[2]}};

assign vga_out_green = {8{rgb[l]}};

assign vga_out_blue = {8{rgb[0]}};

assign vga_out_sync_b = 1'bl; // not used
assign vga_out_blank_b = ~b;
assign vga_out_pixel_clock = ~clock_50MHz;

assign vga_out_hsync = hs;
assign vga_out_vsync = vs;

endmodule

//Note Array Module

//For every FFT module there is a corresponding Note Array Module.
//The Note Array Module pitch corrects the frequency values coming
//from the FFT and outputs the standard frequency for a given note.
//It also records how long a note has been played and outputs that
information.

//Currently, for debugging because we could not get the guitar input
working
//correctly the magnitudes are set to switches

module note_array(clk, reset, fft_index, mag_in, bitshift,
MAG_TOLERANCE, fft_dv,

D, Eb, E, F, Gb, G, Ab, A, Bb, B, C, Db, mag_out,

t_out, freqg out, index out, na_done, we, dbutton3, switch);

input dbutton3;

input clk, reset;

input [6:0] fft_index; //incoming index of output from FFT

input [4:0] mag_in; //incoming magnitude from FFT for given index

input [3:0] bitshift; //amount to shift note frequencies to get
correct octave

input [3:0] MAG_TOLERANCE; //tolerance in magnitude values before a
time reset

input fft_dv; // data valid from fft

input [7:0] switch;

input [11:0] D, Eb, E, F, Gb, G, Ab, A, Bb, B, C, Db; //note
frequencies

output [4:0] mag_out; //output note magnitude

output [19:0] t_out; //output length of time that note has been
played

output [25:0] freqg out; //output nbte frequency

output [3:0] index_out; //index for DDS channel

output na_done;//goes high when cycle of new notes is done

output we; //goes high when data valid

reg na_done;
reg mag_out;
reg t_out;

reg freq out;
reg freq index;
reg index_out;

reg [19:0] tO;

reg [19:0] t1;

reg [19:0] t2;

reg [19:0] t3;

reg [19:0] t4;

reg [19:0] t5;

reg [19:0] t6;

reg [19:0] t7;

reg [19:0] t8;

reg [19:0] t9;

reg [19:0] t10;

reg [19:0] tl11;

reg [4:0] old_mag0;
reg [4:0] old_magl;
reg [4:0] old_mag2;
reg [4:0] old_mag3;
reg [4:0] old_mag4d;
reg [4:0] old_mag5;
reg [4:0] old_magb6;
reg [4:0] old_mag7;
reg [4:0] old_mag8;
reg [4:0] old_mag9;
reg [4:0] old_maglO;
reg [4:0] old_magll;
reg [4:0] mag0;

reg [4:0] magl;

reg [4:0] mag2;

reg [4:0] mag3;

reg [4:0] mag4d;

reg [4:0] mag5;

reg [4:0] magb6;

reg [4:0] mag7;

reg [4:0] mag8;

reg [4:0] mag9;

reg [4:0] maglO;
reg [4:0] magll;

reg old_ready;
reg old_channel_in;
reg we;

always @ (posedge clk)
begin

if (reset)

begin

end
else
begin

(mag_in+mag0) ;

tl
t2
£3
t4
t5
t6
t7
t8
t9

cNeoNoNoNoNoNolNo)

<= 0;

tl0 <= 0
tll <= 0

t0

<= 0;

old_mag0
old_magl
old_mag?2
old_mag3
old_mag4
old_mag5b
old_maghb
old_mag7
old_mag8
old_mag?9

old_maglO0 <= 0;
old_magll <= 0;

mag0 <=
magl <=
mag2 <=
mag3 <=
magld <=
mag5 <=
magé6 <=
mag7 <=
mag8 <=
mag9 <=

maglO
magll

we

if

case

A A
I n

<=

o

[cNoNoNoNoNoNoNolNolNo)
O O ~e ~e o~e oo~

(fft_dwv)
begin

[cNeoNoNoNoNoNoNoNolNo)

(fft_index)

34: mag0<= mag_in;
33: begin

we<=1;

index_out <= 0;

freq out <= D<<bitshift;

old_mag0 <=
mag_out <=

if

(switch[6]

{5{switch[6]}};
{5{switch([6]1}};//

> old_mag0[0])

begin

t0 <= 0;
t_out <= 0;
end
else
begin
t0 <= t0 + 1;
t_out <= t0 + 1;
end
end
36: magl<= mag_in;
35: begin
we<=1;
index_out <= 1;
freq out <= Eb<<bitshift;
old_magl <= (mag_in+magl) ;
mag_out <= 0;//(mag_in+magl) ;
if ((mag_in + magl) > (old_magl
MAG_TOLERANCE))
begin
tl <= 0;
t_out <= 0;
end
else
begin
tl <= tl1 + 1;
t_out <= tl1 + 1;
end
end

38: mag2<= 0;//mag_in;

37: begin
we<=1;
index_out <= 2;
freq out <= E<<bitshift;
old_mag2 <= {5{switch[5]}};
mag_out <=

{5{switch[5]1}};// (mag_in+mag2) ;

if (switch[5]> o0ld _mag2[0])

begin
t2 <= 0;
t_out <= 0;
end
else
begin

t2 <= t2 + 1;
t_out <= t2 + 1;
end
end

39: mag3<= mag_in;

40: begin
we<=1;
index_out <= 3;

freq out <= F<<bitshift;

0ld_mag3 <= (mag_in+mag3l) ;

mag_out <= 0;//(mag_in+mag3l) ;
if ((mag_in + mag3) > (old_mag3 +
MAG_TOLERANCE))
begin
t3 <= 0;
t_out <= 0;
end
else
begin

t3 <= t3 + 1;
t_out <= t3 + 1;

end
end
42 begin
fregq out <= Gb<<bitshift;
we <= 1;
old_mag4 <= mag_in;
index_out <= 4;
mag_out <= 0;// 5'dl6;//mag4;
if (dbutton3) //(mag_in > (old_mag4
MAG_TOLERANCE))
begin
td <= 0;
t_out <= 0;
end
else
begin
td <= t4d + 1;
t_out <= t4+1;
end
end

44: magb<= mag_in;

45: begin
we<=1;
index_out <= 5;
freq out <= G<<bitshift;
old_mag5 <= {5{switch([4]1}};
mag_out <=

{5{switch[4]}};// (mag_in+mag5) ;

if (switch[4] > o0ld _mag5[0])

begin
t5 <= 0;
t_out <= 0;
end
else
begin

th <= t5 + 1;
t_out <= t5 + 1;
end
end

48: magb6<= mag_in;
47: begin
we<=1;

index_out <= 6;

fregq out <= Ab<<bitshift;
0ld_magb6 <= (mag_in+magb) ;
mag_out <= 0;//(mag_in+magb) ;

if ((mag_in + mag6) > (old_magb6 +
MAG_TOLERANCE))
begin
t6 <= 0;
t_out <= 0;
end
else
begin

t6 <= t6 + 1;
t_out <= t6 + 1;
end
end

50: mag7<= mag_in;

51: begin
we<=1;
index_out <= 7;
freq out <= A<<bitshift;
old_mag7 <= (mag_in+mag7) ;
mag_out <= 0;//(mag_in+mag7) ;
if ((mag_in + mag7) > (old_mag7 +
MAG_TOLERANCE))
begin
t7 <= 0;
t_out <= 0;
end
else
begin
t7 <= t7 + 1;
t_out <= t7 + 1;
end
end

54: mag8<= mag_in;

53: begin
we<=1;
index_out <= §;
fregq out <= Bb<<bitshift;
0ld_mag8 <= (mag_in+mag8) ;
mag_out <= 0;//(mag_in+mag8) ;

if ((mag_in + mag8) > (old_mag8 +
MAG_TOLERANCE))
begin
t8 <= 0;
t_out <= 0;
end
else
begin

t8 <= t8 + 1;
t_out <= t8 + 1;
end
end

56: mag9<= mag_in;

57: begin
we<=1;
index_out <= 9;
freq out <= B<<bitshift;
0ld_mag9 <= (mag_in+mag9) ;
mag_out <= 0;// (mag_in+mag9) ;
if ((mag_in + mag9) > (old_mag9 +
MAG_TOLERANCE))
begin
t9 <= 0;
t_out <= 0;
end
else
begin
t9 <= t9 + 1;
t_out <= t9 + 1;
end
end

60: maglO<= mag_in;

59: begin
we<=1;
index_out <= 10;
freq out <= C<<bitshift;
0ld_magl0 <= {5{switch([3]1}};
mag_out <= {5{switch[3]1}};//
(mag_in+maglO) ;
if (switch[3] > o0ld_maglO[0])
begin
tl0 <= 0;
t_out <= 0;
end
else
begin
tl0 <= tl10 + 1;
t_out <= t1l0 + 1;
end
end
63: begin
freq out <= Db<<bitshift;
we <= 1;

0old_magll <= mag_in;
index_out <= 11;
mag_out <= 0;//mag_in;
if (mag_in > (o0ld_magll +
MAG_TOLERANCE))
begin
tll <= 0;
t_out <= 0;
end
else
begin
tll <= tl11 + 1;
t_out <= tll+1;
end

na_done <= 1; // check to put this in the
right case - YES- correct
end

default: we <= 0;
endcase
end
end
end

endmodule

//Synthesizer (adder) Module
//The Synthesizer module takes values in from DDS modules, scales
//them by given magnitudes, and outputs a signal to the ac97.
module synthesizer (clk, mag0, sineO, start_synth, sound_out, reset);
input clk, start_synth, reset;
input [16:0] sine0;
input [4:0] mag0;
output [19:0] sound_out;
reg signed [19:0] sound;
reg old_done;

reg [3:0] count;

wire wire_rdy = (~o0ld_done && start_synth);

always @ (posedge clk)

begin
if (reset)
begin
sound <= 0;
count<=11;
old_done <= 0;
end
else
begin
old_done <= start_synth;
if (wire_rdy)
begin
count <= 0;
sound <= (sine0[16:2] & {15{mag0[4] | mag0[3] |
mag0[2]}});
end
else
begin
if (count < 15)
begin

count <= count + 1;
sound <= sound + (sine0[1l6:2] &
{15{mag0[4] | mag0[3] | mag0[2]}});

end

end
end
end
assign sound_out = sound;//(count == 15) ? sound: sound_out;
endmodule

//Magnitude Memory Module
//This module stores 12 magnitudes and constantly outputs the magnitude
//that corresponds to the current DDS output

module mag_memory (clk, mag_in, index_in, mag_out, index_out);

input clk;

input [4:0] mag_in;
input [3:0] index in;
input [3:0] index_out;
output [4:0] mag_out;

reg [4:0] mag [11:0];

always @ (posedge clk)
mag [index_in] = mag_in;

assign mag_out = mag [index_out];

endmodule

//Graph Module
//This module takes in magnitudes and their corresponding index and
generates a //bar graph on the monitor

module graph (vclock, reset, data0, data_index0,
hcount, vcount, hsync, vsync, blank, pixel);

parameter LEFT = 8;
parameter BOTTOM = 550;
parameter COLOR = 3'blll;
parameter DATA_LENGTH = 12;

input vclock; // 50MHz clock
input reset; // 1 to initialize module
input [4:0] data0; // data to graph

input [3:0] data_index0; //index of data
input [10:0] hcount; // horizontal index of current pixel (0..799)
input [9:0] vcount; // vertical index of current pixel (0..599)

input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA vertical sync signal (active low)
input blank; // XVGA blanking (1 means output black pixel)

output [2:0] pixel; // graph's pixel

reg [4:0] data_buffer [DATA_LENGTH-1:0];
reg [2:0] pixel;
reg [7:0] count;

always @ (posedge vclock)
begin
if (reset)
count <= 95;
else
begin
pixel <= ((hcount>= LEFT) && (data_buffer|[(hcount-
LEFT)>>3]<<2 > (BOTTOM - vcount)) &&
(vcount < BOTTOM) && ((hcount - LEFT) <
DATA_LENGTH<<3)) ? 3'bl11: 3'b000;

data_buffer [data_index0] <= datal;
end
end

endmodule

//Graphical User Interface Module

//This module displays the effects options on the screen and allows the
user to

//move between effects and adjust the effects characteristics with the
labkit //buttons

module gui (vclock,reset, up, down, left, right, enter,
hcount, vcount, hsync, vsync, blank,
phsync, pvsync,pblank,pixel_out, fx, intensity, speed,
delay_speed, delay_int);

input vclock; // 65MHz clock

input reset; // 1 to initialize module

input up, down, left, right, enter; //labkit button controls
input [10:0] hcount; // horizontal index of current pixel (0..799)
input [9:0] vcount; // vertical index of current pixel (0..599)

input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA vertical sync signal (active low)
input blank; // XVGA blanking (1 means output black pixel)

output phsync; // graph's horizontal sync
output pvsync; // graph's vertical sync
output pblank; // graph's blanking

output [2:0] pixel_out; // graph's pixel

//output to fx module
output [1:0] fx;

output [4:0] speed;
output [4:0] intensity;

//output to delay module
output [4:0] delay_speed, delay_ int;

reg [4:0] speed;
reg [2:0] pixel_edge, pixel_hor, pixel_ver;

//fx are:
//
//
//

wire [2:0
pixel6
pixell

reg [2:0]
reg [2:0]
reg [1:0]

reg [2:0]
adjusted

reg [4:0]
each effect

reg old_1

parameter
parameter
parameter
parameter
parameter

wire [2:0

reg [9:0]
blob effe
3'b100) ;

assign in
assign de
assign de

always @ (
begin
if (re
begin

pitch bending needs speed slider bar

vibratto needs speed and intensity

arpegiator needs speed
delay needs timer and intensity

] pixel0,pixell, pixel2, pixel3, pixeld, pixels,
, pixel7, pixel8, pixel9, pixelll, pixelll,
2, pixell3;

color_bars [6:0];

color [6:0];

fx;//keeps track of which effect is 'on'
//000 - bender

//001 - vibratto

//010 - arpegiator

control; //keeps track of which effect contol is being

effect_intensity [6:0]; //5 bit intensity value, one for

control

eft, old_right, old_up, old _down, old_enter;

SLIDER_HEIGHT = 10'd5;

SLIDER_WIDTH = 11'd1l6;

BAR_WIDTH = 11'dl2;

BAR_HEIGHT = 10'dl128 + SLIDER_HEIGHT;
BAR_TOP = 10'd100;

] pixel_on, onl, on2, on3;
X7

ct_on(x,10'd279,11'd32,10'd3, hcount, vcount,pixel_on,
tensity = effect_intensity [2];
lay_speed = effect_intensity [4];

lay_int = effect_intensity [5];

posedge vclock)

set)

color [0] <= 3'b001;
color [1] <= 3'b001;
color [2] <= 3'b001;
color [3] <= 3'b001;
color [4] <= 3'b001;
color [5] <= 3'b001;

color [6] <= 3'b001;

color_bars[0]<= 3'b010;
color_bars[l]<= 3'b010;
color_bars[2]<= 3'b010;

end
else

begin

[control]

[control]

+

color_bars|[3
color_bars[4
color_bars|[5
color_bars|[6
fx <= 0;

effect_inten
effect_inten
effect_inten
effect_inten
effect_inten
effect_inten
effect_inten
control <=1;

old_left<=le
old_right <=
old_up <= up
old_down <=

old_enter <=
if (~old_lef
contro
else if (~ol
contro

if (~old_ent

begin
case (
0: fx
1: fx
2: fx
3: fx
defaul
endcas

end

if (~old_up
effect
1;

if (~old_dow
effect
1;

case (fx)

2'b00: begin

end
2'b01: begin

end
2'bl10: begin

= 3'b010;
= 3'b010;
= 3'b010;
= 3'b010;

A AN AN A

— e e

sity[0] <= 5'b0;
sity[1l] <= 5'b0;
sity[2] <= 5'b0;
sity[3] <= 5'b0;
sity[4] <= 5'b0;
sity[5] <= 5'b0;
sity[6] <= 5'b0;

ft;
right;

down;

enter;

t && left)

1l <= (control == 0) ? 5 : control - 1;

d_right && right)

1l <= (control == 5) ? 0 : control + 1;

er && enter)

control)

<= 0;

<= 1;

<= 1;

<= 2;

t: fx<=fx;

e

&& up)

_intensity [control]

n && down)
_intensity [control]

speed <= effect_intensity[0];

x <= 10'd44;

speed <= effect_intensity[1];
x <= 10'd150;

speed <= effect_intensity[3];

<= effect_intensity

<= effect_intensity

x <= 10'd258;

end
endcase
color[0] <= (control == 0) ? 3'b100: 3'b001;

color[1l] <= (control == 1) ? 3'b100: 3'b001;
color([2] <= (control == 2) ? 3'b100: 3'b001;
color[3] <= (control == 3) ? 3'b100: 3'b001;
color[4] <= (control == 4) ? 3'b100: 3'b001;
color[5] <= (control == 5) ? 3'b100: 3'b001;

pixel _edge <= (hcount==0 | hcount==798 | vcount==0 |
vecount==599) ? 7 : 0;

pixel_hor <= (vcount>400 & vcount <407) ? 3 : 0;

pixel_ver <= (vcount > 400 & hcount > 397 & hcount<403) °?
3: 0;

end
end

//use sprite to generate slider bars

blob bar_bend_speed(10'd57,BAR_TOP,BAR_WIDTH, BAR_HEIGHT,
hcount,vcount,pixel0, color_bars[0]);

blob bar_vibratto_speed(10'd120,BAR_TOP,BAR_WIDTH,
BAR_HEIGHT, hcount, vcount,pixell,color_bars[1]);

blob bar_vibratto_intensity(10'dl75,BAR_TOP,BAR_WIDTH,
BAR_HEIGHT, hcount, vcount,pixel2, color_bars[2]);

blob bar_arpegiator_speed(10'd270,BAR_TOP,BAR_WIDTH,
BAR_HEIGHT, hcount, vcount,pixel3, color_bars[3]);

blob bar_delay length(10'd342,BAR_TOP,BAR_WIDTH,
BAR_HEIGHT, hcount, vcount,pixel5, color_bars[5]);

blob bar_delay intensity(10'd390,BAR_TOP,BAR_WIDTH,
BAR_HEIGHT, hcount,vcount,pixel6, color_bars[6]);

blob bend_speed(11'd57+ (BAR_WIDTH>>1) - (SLIDER_WIDTH>>1),
BAR_HEIGHT+BAR_TOP-SLIDER_HEIGHT-
(effect_intensity[0]<<2),SLIDER_WIDTH, SLIDER_HEIGHT,
hcount,vcount,pixel7, color[0]);

blob vibratto_speed(11'd120+ (BAR_WIDTH>>1) -
(SLIDER_WIDTH>>1),BAR_HEIGHT+BAR_TOP-SLIDER_HEIGHT-
(effect_intensity[1]<<2),SLIDER_WIDTH, SLIDER_HEIGHT, hcount, vcount, pixel
8,color[1]);

blob vibratto_intensity(11'dl175+ (BAR_WIDTH>>1) -
(SLIDER_WIDTH>>1),BAR_HEIGHT+BAR_TOP-SLIDER_HEIGHT-
(effect_intensity[2]<<2),SLIDER_WIDTH, SLIDER_HEIGHT, hcount, vcount, pixel
9, color([2]);

blob arpegiator_speed(11'd270+ (BAR_WIDTH>>1) -
(SLIDER_WIDTH>>1),BAR_HEIGHT+BAR_TOP-SLIDER_HEIGHT-
(effect_intensity[3]1<<2),SLIDER_WIDTH, SLIDER_HEIGHT, hcount, vcount, pixel
10, color([31);

blob delay length(11'd342+ (BAR_WIDTH>>1) -
(SLIDER_WIDTH>>1),BAR_HEIGHT+BAR_TOP-SLIDER_ HEIGHT-
(effect_intensity[4]<<2),SLIDER_WIDTH, SLIDER_HEIGHT, hcount, vcount, pixel
12, color([4]);

blob delay_intensity(11'd390+ (BAR_WIDTH>>1) -
(SLIDER_WIDTH>>1),BAR_HEIGHT+BAR_TOP-SLIDER_HEIGHT-
(effect_intensity[5]<<2),SLIDER_WIDTH, SLIDER_HEIGHT, hcount, vcount, pixel
13, color([5]1);

//code to display the text

wire [50*8-1:0] cstringl = "SPEED SPEED INTENSITY SPEED TIME
INTENSITY";

wire [47*8-1:0] cstring2 = "BENDER VIBRATO ARPEGIATOR
DELAY";

wire [8*8-1:0] cstring3 = "SPECTRUM";

wire [8*3-1:0] cstring4 = "WET";

wire [8*3-1:0] cstring5 = "DRY";

wire [8*3-1:0] cstring6 = "LOW";

wire [8*4-1:0] cstring7 = "HIGH";

wire [2:0] pixelcl, pixelc2, pixelc3, pixelcd, pixelch, pixelcé6,
pixelc7,
pixelc8, pixelc9, pixelclO;

char_string_display

charl (vclock, hcount,vcount,pixelcl,cstringl,11'd40,10'd250);
defparam charl.NCHAR = 50; // number of 8-bit characters in cstring
defparam charl.NCHAR_BITS = 6; // number of bits in NCHAR

char_string display

char2 (vclock, hcount, vcount,pixelc2,cstring2,11'd35,10'd265) ;
defparam char2.NCHAR = 47; // number of 8-bit characters in cstring
defparam char2.NCHAR_BITS = 6; // number of bits in NCHAR

char_string_display
char3 (vclock, hcount, vcount,pixelc3,cstring3,11'd40,10'd410) ;

char_string_display
char4 (vclock, hcount, vcount,pixelc4d, cstring3,11'd440,10'd410);

char_string display

charb5 (vclock, hcount, vcount,pixelc5,cstring5,11'd10,10'd410) ;
defparam char5.NCHAR = 3; // number of 8-bit characters in cstring
defparam char5.NCHAR_BITS = 2; // number of bits in NCHAR

char_string_display
char6 (vclock, hcount, vcount,pixelc6é,cstringd,11'd410,10'd410);
defparam char6.NCHAR = 3; // number of 8-bit characters in cstring

defparam char6.NCHAR_BITS = 2; // number of bits in NCHAR

char_string display

char7 (vclock, hcount, vcount,pixelc7,cstring6,11'd3,10'd570) ;
defparam char7.NCHAR = 3; // number of 8-bit characters in cstring
defparam char7.NCHAR_BITS = 2; // number of bits in NCHAR

char_string_display

char8 (vclock, hcount, vcount,pixelc8,cstring6,11'd405,10'd570) ;
defparam char8.NCHAR = 3; // number of 8-bit characters in cstring
defparam char8.NCHAR_BITS = 2; // number of bits in NCHAR

char_string_display

char9 (vclock, hcount, vcount,pixelc9,cstring7,11'd350,10'd570) ;
defparam char9.NCHAR = 4; // number of 8-bit characters in cstring
defparam char9.NCHAR_BITS = 2; // number of bits in NCHAR

char_string display

charl0 (vclock, hcount, vcount,pixelcl0,cstring7,11'd750,10'd570) ;
defparam charl0.NCHAR = 4; // number of 8-bit characters in cstring
defparam charl0.NCHAR_BITS = 2; // number of bits in NCHAR

//pixel value to be displayed
assign pixel out = (pixel0 | pixell | pixel2 | pixel3 | pixeld |

pixel5

| pixelé | pixel7 | pixel8 | pixel9 | pixell0

| pixelll | pixell2 | pixell3

| pixel _on | pixel edge | pixel hor | pixel ver

| pixelcl | pixelc2 | pixelc3 | pixelc4d| pixelc5 | pixelc6|
pixelc7| pixelc8| pixelc9| pixelclO);

//text

assign phsync = hsync;
assign pvsync = vsync;
assign pblank = blank;

endmodule

//Blob module
//Builds a rectangle with specified parameters

module blob(x,y,w,h,hcount,vcount,pixel, color);

input [9:0] x; //x is left

input [10:0] hcount;

input [9:0] y,vcount; //y is top
input [10:0] w; //width

input [9:0] h; //height

input [2:0] color;

output [2:0] pixel;
reg [2:0] pixel;

always @ (x or y or hcount or wvcount)
begin
if ((hcount >= x && hcount < (x+w)) &&
(vcount >= y && vcount < (y+h)))
pixel = color;
else pixel = 0;
end

endmodule

//Wet Graph Data Module

//This module takes the wet data and places the magnitudes in the
correct index //bin to be displayed on the wet spectrum graph

module wet_graph_data(clk, freqg in, bitshift, mag_in, D, Eb, E, F, Gb,
G, Ab, A, Bb, B, C, Db, mag_out, index_out);

input clk;

input [25:0] freqg in;
input [3:0] bitshift;
input [4:0] mag_in;

input [11:0] D, Eb, E, F, Gb, G, Ab, A, Bb, B, C, Db; //note
frequencies

output [4:0] mag_out;
output [3:0] index_out;

reg [25:0] freq mid;
reg [5:0] bitshift_mid;
reg [4:0] mag_mid;

reg [6:0] index_out;
reg [4:0] mag_out;

always @ (posedge clk)
begin

index_out <= {(freqg in<<bitshift > (Bb-1)), //bit

((freq_in<<bitshift > Gb-1) && (freqg in<Bb)), //bit 2
(((freqg_in<<bitshift > (E-1)) && (freq in<<bitshift < Gb))
|| ((freq in<<bitshift > (Ab-1))&& (freg in<<bitshift < Bb)) ||
(freq_in<<bitshift > C)), //bit 1
(((freg_in<<bitshift > (Eb-1))&& (freq in<<bitshift < E))
| ((freq in<<bitshift > (F-1))&& (freg in<<bitshift < Gb)) ||
(freqg in<<bitshift > (G-1))&& (freqg in<<bitshift < Ab)) ||
(freqg in<<bitshift > (A-1)) && (freq in<<bitshift < Bb)) ||
(freq in<<bitshift > (B-1)) && (freq in<<bitshift < C)) ||
freq in<<bitshift > (Db-1)))};
mag_out <= mag_in;
end
endmodule

//FX module

//This module takes the effect selection data from the GUI and modifies
the

//incoming frequencies accordingly and outputs the effected frequency

module fx (clk, freg in, mag_in, index_in, t_in, freqg out,
mag_out, index_out, we_in, we_out, fx,

fx_speed, fx int);

input clk;

input [25:0] freqg in;

input [4:0] mag_in;

input [3:0] index in;

input [7:0] t_in; // time since start of note

input [1:0] fx; // fx type from user

input [4:0] fx_speed; // rate of change of output
frequencies

input [4:0] fx int; // distance between frequency
increments

input we_in;

output [25:0] freqg out;
output [4:0] mag_out;
output [3:0] index_out;
output we_out;

///// /7777777777 FX Select////////////////////////
wire [3:0] bindex_out;
wire [3:0] vindex_out;
wire [3:0] aindex_out;
wire [3:0] hindex_out;
wire [25:0] bfreqg out;
wire [25:0] vfreqg out;
wire [25:0] afreqg out;
wire [25:0] hfreqg out;
wire bwe_out;
wire vwe_out;
wire awe_out;
initial we_out = 0;
reg we_out;
reg [25:0] freq out;
reg [3:0] index_out;
reg [4:0] mag_out;

always @ (posedge clk) begin
mag_out <= mag_in;
case (fx)
2'b00: begin //pitch bender
freg out <= bfreq out;
index_out <= bindex_ out;
we_out <= bwe_out;
end
2'b01: begin //vibrato
freg out <= vfreq out;
index_out <= vindex_out;
we_out <= vwe_out;
end
2'bl10: begin //arpeggiator
freg out <= afreq out;
index_out <= aindex_ out;
we_out <= awe_out;
end
2'bll: begin //harmonizer
freg out <= hfreq out;
index_out <= hindex_out;
end
endcase

end

/1111777777777 // FX Modules ///////////////

bender bend(clk, freq in, bfreq out, index_in, bindex out, t_in,
bwe_out) ;

vibrato vib(clk, freqg in, vfreq out, index_in, vindex_out, fx_int,
t_in, vwe_out);

arpeggiator arp(clk, freq in, afreqg out, index in, aindex_out, t_in,
awe_out) ;
endmodule

/1177777777777 //7 Pitch Bender //////////////////
//The pitch bender gradually returns increase fregquencies with time

module bender (clk, fin, fout, iin, iout, tcount, weout);
input clk;
input [25:0] fin;
input [3:0] iin;
input [7:0] tcount;
output [25:0] fout;
output [3:0] iout;
output weout;

wire [18:0] mstep = fin >> 7; // want to increase fout by ~ 0.8% per
step

assign fout = fin + tcount*mstep; // fout will increase
linearly with time

reg [25:0] oldfin;
always @ (posedge clk)
oldfin <= fin;
assign weout = (fin != oldfin); // write to dds module on new input
(no delay on output)

assign iout = iin;
endmodule

/1177777777777 7/7 Nibrato ///////77777777777717
//The vibrato fluctuates the output frequency around the input
frequency
module vibrato(clk, f_in, f_out, i_in, i_out, int, t_count, we_out);
input clk;
input [25:0] f_in;
input [3:0] i_in;
input [4:0] int;
input [7:0] t_count;

output [25:0] f_out;
output [3:0] i_out;
//output [1:0] tmod;
//output [5:0] tinc;

//output [25:0] mstep;
//output [7:0] intstep;
output we_out;

wire [7:0] math_thing = (11 - (int>>2));
wire [7:0] math_thing2 = (18 - (int>>1));

reg [25:0] oldfin;
always @ (posedge clk)
oldfin <= f_in;
assign we_out = (f_in != oldfin); // write to dds module on new
input (no delay on output)

wire [1:0] tmod = t_count % 4;
wire [1:0] intmod = int % 4;
wire [25:0] mstep;
assign mstep = (intmod == 0 | intmod == 1) ? f_in >> math thing
(intmod == 2 | intmod == 3) ? (f_in >> math_thing)
(f_in >>math_thing2) :

f in;

assign f_out = (tmod == 0) ? f_in:
(tmod == 1) ? f_in + mstep:
(tmod == 2) ? f_in:

f in - mstep;
assign i_out = i_in;
endmodule

/117717777777 //// Arpeggiator ////////////1//1//1/]/

//This module cycles through different frequencies (the 3rd, 5th
octave, etc)

//of the input frequency

module arpeggiator(clk, fin, fout, iin, iout, tcount, weout) ;
input clk;
input [25:0] fin;
input [3:0] iin;
input [7:0] tcount;

output [25:0] fout;
output [3:0] iout;
output weout;

wire [25:0] third = fin + (fin>>2);

wire [25:0] fifth = fin + (fin>>1);

wire [25:0] octave = (fin<<l);

wire [25:0] tenth = (fin<<l) + (fin>>1);

wire [3:0] tmod = tcount % 8;

assign fout = (tmod == 0) ? fin:
(tmod == 1) ? third:
(tmod == 2) ? fifth:

(tmod == 3) ? octave:

+

(tmod == 4) ? tenth:

(tmod == 5) ? octave:
(tmod == 6) ? fifth:
third;
reg [25:0] oldfin;
always @ (posedge clk)
oldfin <= fin;
assign weout = (fin != oldfin); // write to dds module on new input
(no delay on output)
assign iout = iin;

endmodule

