
Ogg Vorbis Audio Decoder
Jon Stritar
Matt Papi

November 14, 2005

Ogg Vorbis

● Free and open audio codec, created in response to
MP3 patent issues.

● Important: very few mainstream hardware players
support Vorbis.

● Interesting: lots of things a “pure” hardware player
can do that a microprocessor-based one can't.
– higher decimal precision, parallel processing

– reduced size, power consumption

Best. Codec. Ever.

The Vorbis Stream

● Consists of 4 types of
packets.

● Front-end:
– Parses first 3 packets.

– Configures decoder.

● Back-end:
– Parses audio packets.

– Converts data to PCM.

ID
Packet

Comments
Packet

Setup Packet

Audio Data
Packet

Audio Data
Packet

Start

... End

To front-end

To back-end

The Front-End

start ... 010111000101010100111001010101011 ... end

Huffman/
VQ

Codebooks
Floors Residues Mappings Modes

Setup
Packet

● Configures the decoder.
● Processes the setup and ID packets.
● Extracts Huffman codings, Vector

Quantizations.
● Prepares the floor and residue spectral curves

for decoding by the back end.

The Front-End

Ogg Processor: Reads
file from ROM, extracts

Vorbis.

The Front-End

Packet Filter: routes
packet to destination

FSMs.

The Front-End

ID processor: parses bitrate,
Vorbis version, etc. from ID
packet and saves values to

config module

The Front-End

Setup packet processor:
Diverts bit stream to specific

processors.

The Front-End

Minor FSMs: Read stream bit by
bit, saving information to

corresponding block RAMs for
back end to use.

The Back-End

Base Curve
(“Floor”)
Decoding

Offset
(“Residue”)
Decoding

Window
Selection

Inverse Modified
Discrete Cosine

Transform
Dot

Product

...011001001101...

The process is performed once
for each audio packet.

It's easy: 1's
and 0's go in,

rock & roll comes out.

The Back-End

Audio packet
processor:
the major FSM.

The Back-End

The back-end
itself is a minor
FSM of the front-
end – receives
data addresses.

The Back-End

Residue
decoder:
deinterlaces
stored offsets.

The Back-End

Floor decoder:
constructs
floor from line
segments.

The Back-End

IMDCT:
frequency-domain
to time-domain
transform.

The Back-End

Huffman/VQ
decoder:
reconstructs
“compressed”
data.

Questions?

