
Shield Xiao & James Verrill 6.111 Project Proposal
November 6, 2005 Revision Number: 4

Asteroids – Project Proposal

Description
The aim of the project is to create on the labkit a version of the popular

computer game ‘Asteroids’. Asteroids is a game set in 2 dimensions featuring

a spaceship in a field of moving asteroids. The asteroids move randomly and

spin. The player controls the spaceship, moving it around the playing field and

shooting at the asteroids to destroy them. When hit by the spaceship’s

weapon the asteroids break down into smaller asteroids and eventually are

removed from the field. The game is completed when all asteroids have been

destroyed. The game is lost if the spaceship collides with an asteroid. The

game will allow for a maximum of 30 large asteroids on screen at the

beginning of the game, which will each split into 2 smaller asteroids upon

collision with a bullet. The ship will be able to fire multiple bullets at the

asteroids. The game will be implemented in a 1024 by 768 pixel screen in 256

colours and be controlled by 1 player using a joystick.

System Overview
The system will be divided into several smaller modules each of which

contributes some specific aspect of functionality. The main system modules

will be: gameplay, audio and video, their interconnectivity is shown in Figure 1

(some of the video control lines are omitted for clarity).

Gameplay Video Adapter

& Screen

Audio AC97
and Speakers

reset
1

resetreset
1

forward
1

forwardforward
1

back
1

backback
1

left
1

leftleft
1

right
1

rightright
1

button
1

buttonbutton
1

pixel
88

sound
88

ready
11

debouncer

vsync
11

vcount
1010

hcount
1111

Figure 1 - System Overview Diagram

Shield Xiao & James Verrill 6.111 Project Proposal
November 6, 2005 Revision Number: 4

The inputs to the system are from the joystick (Forward, Back, Left, Right,

Button). These inputs will be debounced and synchronised before going into

the gameplay module. The only video control line of interest to us in designing

the gameplay module is the vsync line and this will be used to cause an

update of screen positions once per frame.

Gameplay Module

The gameplay module does all the hard work, it contains several smaller

modules. Each of these module contains the position and speed of an object

(e.g the ship, an asteroid, etc). For each frame, each of these modules

calculates the new position of the object and when called upon by video

hardware, outputs what pixel exists for each screen pixel. The gameplay

module itself will provide collision detection and appropriate creation and

destruction of the objects. We consider below the function of each of these

modules.

Asteroid Module

The asteroid module (shown in

Figure 2) is initialised using the xin,

yin, x_spdin, y_spdin, spin_spdin
and size inputs. At the start of the

game, and when smaller asteroids

are created later in the game, each

asteroid module is called in turn

and initialised with random values

(or, if being created from the

destruction of a larger asteroid,

values consistent with Newtonian

mechanics). When the create input

is taken high for a clock cycle the asteroid is initialised. The random values

will be generated within the gameplay module from a random number table.

The asteroid module outputs appropriate pixels for use in the video based

upon its current position and the values of hcount and vcount. When an

asteroid is destroyed, destroy will be taken high by gameplay and the module

will stop outputting pixel values. By detecting changes in vsync the asteroid

Asteroid Module

destroy
1

x
11 y
10 pixel
8 size
1

yin
10

xin
11

x_spdin
4

y_spdin
4

spin_spdin
3size
1create
1

hcount
11vcount
10vsync
1

Asteroid Module

destroy
1

destroydestroy
1

x
11

x
11 y
10

y
10 pixel
8

pixel
8 size
1

size
1

yin
10

yinyin
10

xin
11

xinxin
11

x_spdin
4

x_spdinx_spdin
4

y_spdin
4

y_spdiny_spdin
4

spin_spdin
3

spin_spdinspin_spdin
3size
1

sizesize
1create
1

createcreate
1

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

Figure 2 - Asteroid Module Diagram

Shield Xiao & James Verrill 6.111 Project Proposal
November 6, 2005 Revision Number: 4

Bullet Module

destroy
1

x
11 y
10 pixel
8

yin
10

xin
11

x_spdin
4

y_spdin
4

create
1

hcount
11vcount
10vsync
1

Bullet Module

destroy
1

destroydestroy
1

x
11

x
11 y
10

y
10 pixel
8

pixel
8

yin
10

yinyin
10

xin
11

xinxin
11

x_spdin
4

x_spdinx_spdin
4

y_spdin
4

y_spdiny_spdin
4

create
1

createcreate
1

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

Ship Module

destroy
1

destroydestroy
1

x
11

x
11 y
10

y
10 pixel
8

pixel
8

create
1

createcreate
1

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

Parameters

Initial x = centre of screen

Initial y = centre of screen

Initial speed = 0

Initial angle = 0

forward
1

forwardforward
1left
1

leftleft
1right
1

rightright
1back
1

backback
1

x_spd
4

x_spd
4

y_spd
4

y_spd
4

angle
9

angle
9

module will at the end of every frame, calculate its new position value based

upon its speed.

Asteroid Module

The bullet module (shown in

Figure 2) is initialised using the

xin, yin, x_spdin and y_spdin,

inputs.

When a bullet is fired by the

played, one of the bullet

modules will be initialised. Initial

values for the speed and

position will be calculated based

upon the angle, speed and

position of the ship and will

show the bullet as having been fired directly forwards from the ship at a

particular relative speed.

The bullet module outputs appropriate pixels for use in the video based upon

its current position and the values of hcount and vcount. When a bullet is

destroyed, destroy will be taken high by gameplay and the module will stop

outputting pixel values. By detecting changes in vsync the bullet module will at

the end of every frame, calculate its new position value based upon its speed.

Ship Module
The ship module depicted in Figure 4

is always initialised to place the ship

in the centre of the screen. The ship

is created by taking the create line

high. The bullet module outputs

appropriate pixels for use in the

video based upon its current position

and the values of hcount and

vcount. When the ship is destroyed,

Figure 3 - Bullet Module

Figure 4 - Ship Module

Shield Xiao & James Verrill 6.111 Project Proposal
November 6, 2005 Revision Number: 4

destroy will be taken high by gameplay and the module will stop outputting

pixel values.

By detecting changes in vsync the ship module will at the end of every frame,

calculate its new position, speed and angle values based upon its current

position, speed and angle and the inputs from the joystick.

The control system will function as follows:

• Forwards and Back will affect the speed in the forward/backwards

direction. Holding the joystick forwards or backwards will cause the

ship to accelerate/decelerate linearly upto some maximum speed.

• Left and Right will affect the ships angle. Holding Left or Right will

cause the ship to rotate with constant angular velocity

Visual Module

The visual module shown in Figure 5

creates a border around the screen

and a score bar at the bottom of the

screen. The video module outputs

appropriate pixels for use in the video

based upon the values of hcount and

vcount.

Sound fx Module

The sound fx module generates 4

possible sound effects. A thruster sound

for when the thrusters is being used, a

destruction sound for when an asteroid

is hit, a fire sound for when a bullet is

fired and a destroyed sound for when

the ship collides with an asteroid and is

itself destroyed. These are activated using the appropriate control line and the

output is sent to the audio module.

Video and Audio Modules

The audio and video modules interface with the hardware systems to provide

the actual inputs and outputs. These will function using similar methods to the

final labs. The audio module will take in sound data and play it out using the

Visualscore
10

scorescore
10 pixel

8

pixel
8

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

lives
10

liveslives
10

Figure 5 - Visual Module

Sound fx sound
8

sound
8

vsync
1

vsyncvsync
1

ready
1

readyready
1thruster
1

thrusterthruster
1destruction
1fire
1

firefire
1

destroyed
1

destroyeddestroyed
1

Figure 6 - Sound fx Module

Shield Xiao & James Verrill 6.111 Project Proposal
November 6, 2005 Revision Number: 4

ac_97 hardware. The video module will display pixels in 256 colours based

upon its input and provide appropriate control signals.

Integrated System

Gameplay Video Adapter

& Screen

Audio AC97
and Speakers

reset
1

resetreset
1

forward
1

forwardforward
1

back
1

backback
1

left
1

leftleft
1

right
1

rightright
1

button
1

buttonbutton
1

pixel
88

sound
88

ready
11

debouncer

vsync
11

vcount
1010

hcount
1111

Ship Module

destroy
1

x
11 y
10 pixel
8

create
1

hcount
11vcount
10vsync
1

Parameters

Initial x = centre of screen

Initial y = centre of screen

Initial speed = 0

Initial angle = 0

forward
1left
1right
1back
1

x_spd
4

y_spd
4

angle
9

Ship Module

destroy
1

destroydestroy
1

x
11

x
11 y
10

y
10 pixel
8

pixel
8

create
1

createcreate
1

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

Parameters

Initial x = centre of screen

Initial y = centre of screen

Initial speed = 0

Initial angle = 0

forward
1

forwardforward
1left
1

leftleft
1right
1

rightright
1back
1

backback
1

x_spd
4

x_spd
4

y_spd
4

y_spd
4

angle
9

angle
9

Bullet Module

destroy
1

x
11 y
10 pixel
8

yin
10

xin
11

x_spdin
4

y_spdin
4

create
1

hcount
11vcount
10vsync
1

Bullet Module

destroy
1

destroydestroy
1

x
11

x
11 y
10

y
10 pixel
8

pixel
8

yin
10

yinyin
10

xin
11

xinxin
11

x_spdin
4

x_spdinx_spdin
4

y_spdin
4

y_spdiny_spdin
4

create
1

createcreate
1

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

Asteroid Module

destroy
1

x
11 y
10 pixel
8 size
1

yin
10

xin
11

x_spdin
4

y_spdin
4

spin_spdin
3size
1create
1

hcount
11vcount
10vsync
1

Asteroid Module

destroy
1

destroydestroy
1

x
11

x
11 y
10

y
10 pixel
8

pixel
8 size
1

size
1

yin
10

yinyin
10

xin
11

xinxin
11

x_spdin
4

x_spdinx_spdin
4

y_spdin
4

y_spdiny_spdin
4

spin_spdin
3

spin_spdinspin_spdin
3size
1

sizesize
1create
1

createcreate
1

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

x5 x60

x1

Sound fx sound
8

sound
8

vsync
1

vsyncvsync
1

ready
1

readyready
1thruster
1

thrusterthruster
1destruction
1fire
1

firefire
1

destroyed
1

destroyeddestroyed
1

x1

Visualscore
10

scorescore
10 pixel

8

pixel
8

hcount
11

hcounthcount
11vcount
10

vcountvcount
10vsync
1

vsyncvsync
1

lives
10

liveslives
10

x1

Figure 7 - Integrated System Diagram

Implementing each of these modules the integrated system diagram is shown

in Figure 7. An appropriate number of each sub module is implemented in the

gameplay module to take into account the overall game specification, e.g. 60

asteroid modules, 5 bullet modules (based upon speed of bullets, rate of firing

and size of screen), 1 ship module.

Levels of Implementation

The basic implementation will feature the basic function as described above

excluding the sound effects module. Collision detection will initially be basic

and implemented by simplifying asteroids, bullets and ships to be rectangles.

If we complete these tasks in sufficient time we play to also implement the

following:

1. The sound effects system

2. Alien robots

3. Power-ups

4. Improved Collision Detection

5. Choice of spaceship

Shield Xiao & James Verrill 6.111 Project Proposal
November 6, 2005 Revision Number: 4

Division of Workload

From Figure 7 the modules will each be created by one team member.

Shield will create the:

• Gameplay

• Asteroids

• Visual

James will create the:

• Ship

• Bullets

• Video Adapter

