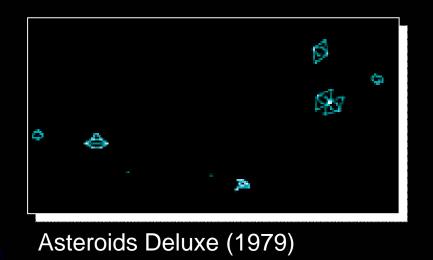

Asteroids

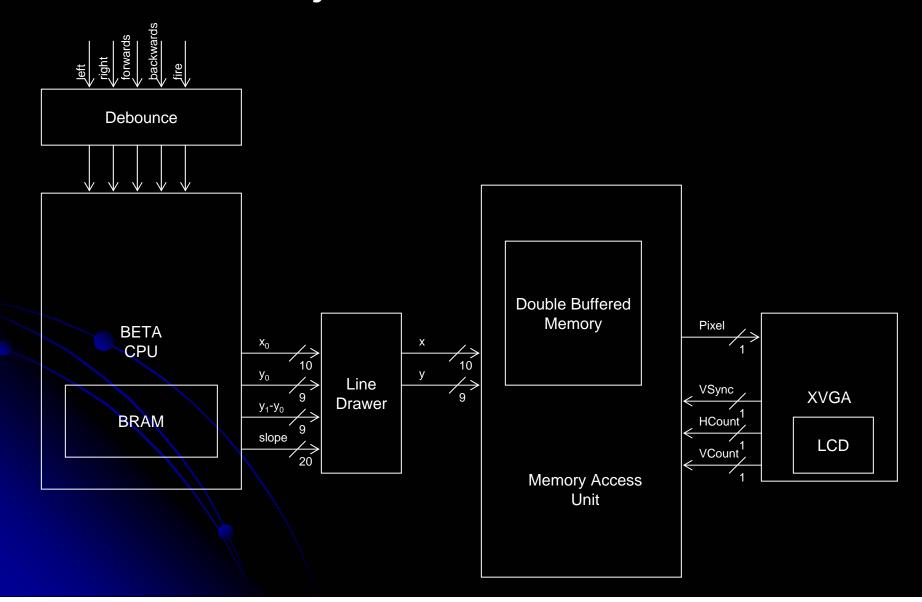
6.111 Final Project – Fall 2005 Shield Xiao & James Verrill

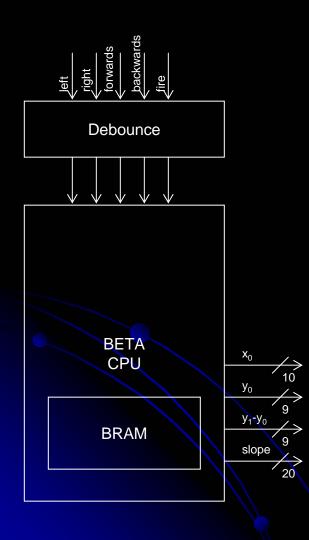

Introduction

Asteroids?

- Classic Video Game
- First Version appeared around 1978
- Biggest Selling Game of its time(!)
- Features vector graphics

Asteroids Arcade (1978)




Project Overview

Aims

- 1. Create a hardware system which draws vectors onto the screen
- 2. Create a Beta Processor to run programs to utilise vector drawing hardware
- 3. Using the above: Create a version of Asteroids
- Add features to the basic asteroids game (e.g. sound effects, scoring)

Project Overview

CPU

Functions

- Run compiled programs to generate outputs to vector drawing system
- Eventually run Asteroids game
 - Processing User Inputs
 - Moving Asteroids and Ship
 - Detecting Collisions

Implementation

- Existing Beta Definition
 - 32 bit Multiply and 32 bit Divide

Outputs

- Left Most Point on a Vector (x_0, y_0)
- Slope of Vector (as decimal)
- End y co-ordinate of Line

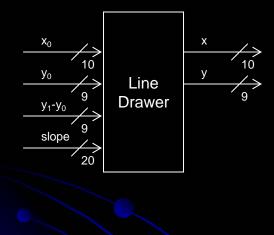
CPU (2)

Debounce BETA \mathbf{x}_0 CPU 10 y₀ $y_1 - y_0$ BRAM slope 20 Considerations

- Speed
 - Movement of each asteroid will require
 - 72 multiplies (rotation of co-ordinates and translation in space)
 - 16 subtracts and 8 divides (calculation of slopes)
 - Taking: 248 cycles
 - Detection Collisions of each asteroid will require
 - 24 subtract and compare operations (4 per bullet and 4 per ship)
 - Taking 48 cycles
 - Total: 17760 cycles per frame
 - Movement of ship and bullets will be inconsequential in comparison

Line Drawer

Function


- Implements Bresenham Line Drawing
- Calculates which pixels on/off for given line

Outputs

• Pixels that exist on given line

Considerations

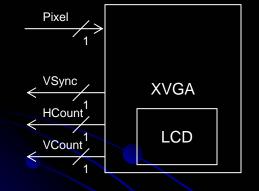
- Speed
 - Possibility of drawing ~500 complete diagonal lines the length of screen
 - Maximum 1024 cycles to output all pixels for each line
 - Maximum of 512000 cycles
 - Have 541632 cycles (running at 32.5MHz)
 - Reality: lines are much shorter than screen

Frame Generator

Double Buffered Memory Pixel Х 10 У VSync HCount VCount Memory Access Unit

• Function

- Generate a pixel representation of the next frame based upon inputted pixel values
- Output to the VGA module whether a pixel is black or white given a demanded pixel


Considerations

- Storage of Frames
 - Need ability to write to next frame and read from current frame
 - Implement using Double Buffered Memory to allow simultaneous read and write operations to different memory locations
 - Store next and current frames separately in memory

VGA Module

Function

- Request information about each pixel in the screen
- Transform pixel information into appropriate signals
- Transmit to the LCD screen
- Generate Count and Sync signals to control other modules

Questions?

(not difficult ones)