
 1

Interactive Video Effects and Games

Rebecca Arvanites
Cristina Domnisoru

6.111
Introductory Digital Systems Laboratory
Professors Chris Terman and Ike Chuang

December 14, 2005

Abstract

 This report documents the development and implementation of live image processing
to produce video effects and two interactive games. The general architecture of the
project consists of two sets of modules, the video decoding and effect-adding modules,
and the game modules which process game logic. A double buffer system is used to store
pixel data from the camera and read the previous frame, and for the effect module to
write a frame while another is being displayed. One game implemented in this project is a
sliding puzzle game using blocks of the camera video as the puzzle pieces that the player
rearranges. Another game overlays falling objects on the camera video and uses color
detection to allow the player to interact with the game by catching the falling blobs and
avoiding the falling bombs.

 2

Table of Contents
Overview (by Rebecca Arvanites)
Module Descriptions
 Subsystem 1 (by Cristina Domnisoru)

1.1 Fvhdelayer Module
1.2 Ntsc to ZBT Module
1.3 Camera Frame Swapper Module
1.4 Display Frame Swapper Module
1.5 Vram Display Module
1.6 Ntsc Decoder Module

Subsystem 2 (by Rebecca Arvanites)
 2.1 Puzzle Game Module
 2.2 Falling Blob Game Module

2.3 Linear Feedback Shift Register (Xilinx Core)
 2.4 Find Color Module

Testing and Debugging
Conclusions
Appendix A: Subsystem 1 Verilog Code (by Cristina Domnisoru)

1.1 Fvhdelayer Module
1.2 Ntsc to ZBT Module
1.3 Camera Frame Swapper Module
1.4 Display Frame Swapper Module
1.5 Vram Display Module
1.6 Ntsc Decoder Module

Appendix B: Subsystem 2 Verilog Code (by Rebecca Arvanites)
 2.1 Puzzle Game Module
 2.2 Falling Blob Game Module

 2.3 Linear Feedback Shift Register (Xilinx Core)
 2.4 Find Color Module

 3

List of Figures
High-Level Block Diagram
Register Arrays to Store Square Location Information
Absolute Square Location
Puzzle Game Block Diagram
Falling Blob Game Screenshot 1
Falling Blob Game Screenshot 2, with paddle_position_avg shown in dark blue
Figure : Falling Blob Game Module and Find Color Module Block Diagrams
Effect Figures: assorted

 4

Overview

 Our interactive video project had two main goals when we started: to apply interesting
effects to video from a camera, and to make games in which the user interacts with the
applied video effects. The user of the system will see themselves on the screen, and their
actions are incorporated into the game while effects are added. This involves
communicating with the camera, adding effects to the video, processing game logic, and
displaying the altered video.
 The structure of the project is made up of two main sets of modules, the video
processing and effect modules, and the game modules. The video processing and effect
modules read and store data from the camera, add effects to the frame, then write and
display the video frames. A double buffer system is used such that the camera writes to
one frame while the video processing modules read from another, and the frames swap
when the camera has finished writing; similarly the effect module writes to one frame
while the display module reads from the other, until the effect module has written the
whole frame and the reader and writer swap frames. The game modules communicate
with the video effect modules by telling them what to display according to the game
logic.
 In the puzzle game, the camera video is rearranged by blocks of pixels, creating a
sliding tile puzzle where the player switches adjacent squares with a blank square in
attempts to put the video in normal order. Buttons are used to select the current square
and swap its location with a blank square.
 In the falling blob game, the camera video of the player is overalyed by falling game-
generated blob objects, some of which the player wants to catch and some of which the
player is trying to avoid. The player uses a red paddle card or their hand to catch the
blobs on the screen, gaining points for catching square objects and losing points for
coming into contact with falling bombs.

Subsystem 1 (by Cristina Domnisoru)

Overall Design
 The overall design of the graphics system is as follows: NTSC data is sent from the
camera through a decoder that parses the stream into coherent pixels in YCrCb format
and processes the sync signals from the camera. The pixels are then sent to an RGB
converter that also delays the sync signals to account for the time required to compute the
conversion to RGB. This module keeps 6 bits for each of the 3 channels, each pixel
becoming 18 bits long. The 18 bit pixels are sent to a memory writing module that
clumps pairs of adjacent pixels together and writes 2 pixels to a ZBT 1 memory location
(which is 36 bits wide). An effect module reads the pixels out of that memory, processes
them and writes them to a ZBT 0 memory location. (ZBT1 and ZBT0 are the two ZBTs
that the Xilinks Labkit contains). A display module reads the pixels out of ZBT 0 (these
are processed pixels) and outputs them to the screen. The display module reads one
memory address at a time and outputs the two pixels contained in it one after the other.

Memory Constraints

 5

Before elaborating on the particular modules involved, we will provide an explanation of
the memory requirements that constrained the entire design. Given a limited amount of
memory, we had to make two basic choices: how many pixels to store per frame and how
many bits to store per pixel. A 720 x 480 image has 365.600 pixels. A ZBT ram has
524.288 rows. Since the camera outputs 720 * 480 pixels per frame, we decided that there
was no need to store more pixels than that per frame (interpolation could always be done
at the output to obtain a larger image). At that resolution, there are enough rows in one
ZBT to store one frame at one pixel per row, or two frames at 2 pixels per row. Since
each row of a ZBT is 36 bits wide, we decided to store 2 pixels per row, implying 18 bits
per pixel and 6 bits out of 8 per channel. These choices allowed us to store 4 frames in
memory, 2 per ZBT. ZBT’s are convenient for image processing because they do not
have wasted cycles and can be clocked at 65 MHz , the required speed for XVGA,
sufficient to accommodate our display.

Buffer System
Our design uses 4 buffers (since we can store 4 frames in memory). 2 buffers are used by
the camera to store input and are read by the effect modules. The other 2 buffers are used
by the effect module to store processed pixels and are read by the display module. Two
modules, called camera_frame_swapper and display_frame_swapper control which frame
is used by which module at a particular point in time. The two buffers used by the effect
and display are indispensable because they allow the effect to move pixels from their
original location. Effect modules process pixels sequentially, row by row and from left to
right. Each pixel however, upon being processed, could be reassigned a position that is in
a different location. Therefore, if we were to use only one buffer for display, on a write
cycle an effect might write a pixel in some arbitrary location and the display module
might display that pixel out of order. This would cause unwanted artifacts. In order to
allow the effects to move pixels freely when they construct the following image, the
effect modules have to have a work buffer that is not currently being displayed.
Consequently, the display module and effect module share the display ZBT (ZBT0) but at
any given point in time the effect is writing to one buffer and the display is reading from
the other buffer. When the effect completes the working buffer and thus a new frame is
ready, the buffer swapper swaps the buffers and now the display is reading the new buffer
and the effect is starting to fill another buffer from the beginning. While this buffering is
necessary, buffering the input is not.
 It is possible not to use memories at all to obtain the input from the camera, since
the camera outputs pixels in sequence and we can just grab them as they come. However,
the camera outputs pixels at a different frequency (on a different clock) than the monitor
requires pixels for display, and to output at the frequency required by the monitor it is
much easier to use a frame that is already complete. It is also possible to use only one
buffer at the input and simply allow the camera to output whatever pixel it wants on the
write cycles and on the read cycles to read and display the pixels in order. Since no
processing is done and the frame rate greatly exceeds the speed of most real-world
changes, this is not a problem. In fact, this was the initial implementation of this system
written by Professor Chuang as an example of ZBT and camera usage and it worked very
well. We decided against these two approaches because we wanted to allow ourselves the
possibility of “freezing” frames. In other words, we wanted to be able to have the camera

 6

write to a buffer and then write only to the other buffer, leaving the first with a still
image. This capability is very useful for generating interesting effects, because it allows
us to differentiate between the current events in the picture and the initial events in the
picture. For example, this allowed us to freeze frames and then apply effects to those
objects in the frame that had changed. This allows for a primitive (but useful) way of
applying effects to people (by having them walk into the sight of the camera after the
frame has been frozen).
 There are two main operation modes for controlling the buffers. In one mode, the
buffers swap automatically after frame completion. In the other mode, the buffers can be
controlled manually. The freeze frame effects all operate in the manual mode. The
manual mode uses 4 switches on the FPGA (switches 7 through 4) and their value
indicates the buffer being used, in order from 7 to 4, by camera to write (ZBT1), by effect
to read (ZBT1), by effect to write (ZBT0), by display to read (ZBT0).

Addressing Memory
Since we have decided to store 2 pixels per row of memory and only 2 buffers, we can
have a computation-free addressing system. This is very useful because it allows for more
time for interesting computation. The system is organized such that each 2 adjacent pixels
on one row are clumped together. When examined on the logic analyzer, the maximum
row was 508 and the maximum column was 720. We only have to store 508 * 360 pairs,
so 508 * 360 memory locations per frame. 508 and 360 are both less then 2 ^ 9 (512) and
therefore we can just concatenate their binary representations and only take up 18 bits.
The 19th address is the buffer bit. The address will be specifically stored as a 19 bit
number such that bit 18 is frame, 17:8 is 9 bits of hcount ignoring the least significant
(because we’re dividing by 2, 2 pixels per address) and vcount is bits 7:0. A separate
module is provided for address computation.

Overall Timing
In order to accommodate buffer swapping and using both memories to read and write, the
timing of the system is rigorous. Both ZBTs operate using the same write enable signal
such that if the camera is writing to ZBT1, the effect is writing to ZBT0. If the effect is
reading ZBT1, the display is reading ZBT0. This write enable signal flips every clock
cycle such that the timing is read-write-read-write etc. The write enable signal is cotrolled
by the parity (lowest order bit) of a counter that increments each clock cycle. In practice
this is not an actual counter but the hcount (x value) signal generated by the XVGA
module from Lab4. Therefore, we write to each memory every 2 clock cycles and read
from each memory every 2 clock cycles. This is possible because we are storing 2 pixels
per memory location, and therefore, when the effect module writes every 2 clock cycles,
it writes 2 pixels at once. When the display module is reading every 2 clock cycles, it is
reading 2 pixels at once. So effectively every clock cycle the display gets a new pixel
(and therefore we were able to clock our circuit at 65 Mhz as required by the monitor). If
the camera also output pixels at that frequency it would not be a problem for the system
to accommodate it, but as it is the camera outputs slower so even though the camera has
the opportunity to write 2 new pixels every other clock cycle sometimes it writes the
same 2 pixels to the same memory address.

 7

Camera-Display Timing

A particular timing issue that we had not anticipated was the fact that we couldn’t clock
our monitor at some multiple of the camera clock and that we had to use a synchronizer.
The camera part of the processing and the display part of the processing are therefore
completely dissociated.

Following is a more thorough description of the modules involved in the graphics
datapath . The modules will be described in detail in the general data path direction from
camera to monitor.

1. NTSC Decoder

This module (called ntsc_decode.v) was written by Javier Castro and it parses the stream
output from the camera. The decoder issues an f signal representing the field bit, either
even or odd, from the camera, and a v and h signal for vsync and hsync of the camera. It
outputs 30 bits of ycrcb and a data valid dv signal every time a pixel has been parsed. The
code is included in the appendix.

2. ZBT 6.111

This module is a ZBT interface module written by Isaac Chuang. It does not hide the 2
cycle latency in reads and writes from ZBTs and it inverts the clock and we to the
memory in order to have enough data setup time before the clock edge of the memory.
This module is used to interface with both ZBTs and it is very convenient and simple to
use.

3. RGB Converter

This module (called fvhdelayer.v) takes the fvh and dv signals issued by the NTSC
decoder and delays them by 5 cycles, and also takes the ycrcb input from the NTSC
decoder and calls a Xilinx ycrcb to RGB converter. This converter requires 5 cycles in
order to complete the multiplications involved in the conversion, so in order to keep the
pixel and dv, fvh synchronized we have to delay the latter by the forementioned 5 clock
cycles. This module is clocked at the clock of the camera because the fvh signals are
changing with respect to that clock.

4. NTSC_TO_ZBT

The ntsc_to_zbt module is central to the image processing subsystem. The original was
written by Isaac Chuang and we changed it to accommodate our project. This module has
to interface between data from the camera and (delayed and converted to RGB) and a
ZBT memory. More specifically, it takes in fvh, dv, RGB, and has to issue an address and

 8

a data value that will afterwards be written in memory to that address. This module has to
clump 2 pixels into one and write them to the correct address, by outputting the data they
represent at the correct time. The difficulty involved comes from the fact that the camera
operates at its own ~27 Mhz clock frequency, whereas the memory has to operate at 65
Mhz to accommodate the monitor which requires that frequency. This requires clock
synchronization. Essentially, this module will receive as input f, v, h, dv and data that are
all synchronized with each other. In other words, dv corresponds to valid data and v, h, f
correspond to that same data stream. However, these signals are generated from the
camera and so they are also synchronized to the edges of the camera clock. Since the
memory is clocked at a different frequency that is not a multiple of 27, this module must
generate some new signals that correspond to these but that are synchronized to the
output clock.
The module computes a row and column based on fvh (by counting) . The camera outputs
coherent data only when f = 0 and in that case it outputs all the even rows then all the odd
rows etc. By detecting the edge of the frame, we compute an even/odd bit that flips if the
frame flips. Since NTSC sends all of the odd rows or even rows before sending a vsync, a
counter that increments to vsync would only have as a maximum value half of the height
of the video. Therefore, when we compute the address to store a pixel in, we must add a
bit that specifies whether this pixel is in an odd row or an even row. For example, a pixel
in the even field with row = 100 in reality should be displayed in the row 200, because it
is currently in the 100th even row. We can compute a signal that tells us whether data is
ready to be written by checking that data is valid, that data just became valid (we want
the write enable signal to be a pulse) and that the f = 0. We call the even/odd bit
even_odd.
Given that we have the row, column, write enable, data and even_odd synchronized to
the camera frequency, we must synchronize them to the ZBT frequency. We therefore
latch each of those signals twice on the 65 Mhz frequency. Latching only once would be
risky because we might be looking too close to a clock edge of the slower clock in which
case we might induce meta stability. After latching the signals on the fast clock, we have
a synchronized row, column, data and write enable that are at the proper frequency for
writing to the ZBT. We also have the field parity bit and they are all now synchronized to
the faster clock. The new generated signals are called x , y, we, data and eo. We currently
have we that becomes high when data is ready to be written. We need to generate a signal
that depends on the edge of we but that only goes high every other edge of we. Since we
is synchronized with the x and y signals just computed and those signals count in order
across the screen) (in other words, if we get a new row and a new column, meaning, the
next x and y, we also get a new we because a new set of data just became valud), we can
just use the lowest order bit of x and create a new signal called ntsc_we, that is only high
every other edge of we. This ntsc_we will be high for one cycle every 2 valid pixels that
we get. Therefore, we keep a running pixel buffer that is 36 bits and whose bits get
shifted right by 18 bits every we edge, meaning every new pixel. When we have gotten 2
new pixels, this buffer will contain them and the ntsc_we will go high for once cycle
causing the output data to latch the 2 new pixels instead of the 2 old ones etc. The
address pertaining to those pixels is computed combinationally by the address module
and the output address is updated to be synchronized with the new data. This address is
computed using the camera_write_frame input as a highest bit.

 9

Therefore, every time new data comes from the camera, the data and address output by
the ntsc to zbt is held for at least two 65 Mhz clock cycles, and since read and writes
happen on alternative clock cycles we can be certain that the data will indeed be written.
 The ntsc to zbt module satisfies the requirement that every time the camera
outputs two new pixels it presents them on the address and data output and holds them for
at least two clock cycles so they are guaranteed to be read. It does not, however, provide
a guarantee that there will be new data on every write cycle or provide a guarantee about
how many cycles the data will be constant.

4. Camera Frame Swapper

The Frame Swapper has a reference address and a memorized maximum address and it
compares the two with one another. If the reference address has reached the maximum
address, the frame swapper decides that it is time to swap frames and swaps them. The
two frames and the outputs of the frame swapper and they are each represented with one
bit. The camera frame swapper operates in two modes plus an additional manual mode.
The manual mode is the most straightforward: in this mode, the frame swapper isn’t
doing anything and we control the frame by hand with two switches. One switch
communicates to the ntsc_2_zbt module what frame to write to and the other to the effect
module telling it what frame to read from. Both of these frames refer to ZBT1 which is
designated as the input SRAM, the Camera ram etc. The normal mode swaps the buffers
according to the reference address and the maximum address. An explanation of these
two addresses follows:
 The reference address comes from the ntsc_to_zbt module and it is the output
address of that module. It always represents the address that the ntsc_to_zbt module
wants to write to next. Since the camera outputs data sequentially, the module will write
to memory sequentially and after writing a whole frame it will reach the pixel with row
508 and column 720 which is the last pixel to be written. Since we’re computing the
address in by {frame, column/2, row}, we should set the max address to {360, 508} being
its 18 least significant bits. The 19th bit is not important since we want our swapper to
swap buffers no matter what buffer is currently being written.
 In swap_only_once mode, the buffer swapper will swap the write buffer once and
then keep the camera always writing to the same buffer. The effect will continue
swapping buffers as before. This allows us to overlay a freeze image (a still image) with
a moving image , both of which can be manipulated.
 We made a design choice to swap the buffers at the frequency of the camera
which is lower than that of the display, meaning that we wait until the camera has output
a new frame to swap the camera buffers. The other natural alternative would have been to
swap buffers at the rate at which the display displays them. However, since the camera is
the source of new information it seemed logical to use that as a guide for frame
swapping.

5. General Effect Module

There is no one Effect Module. There are multiple effect modules and they each have
different properties, take slightly different inputs and outputs. However, their backbone is

 10

the same: They output a read address representing the memory address they wish to read.
They take as input the data output by ZBT1. Their memory address is muxed with the
write address issued by the ntsc_to_zbt depending on whether there is a write cycle or a
read cycle. They output new data to be a written and a new address to write this data to.
They also take effect_read_frame and effect_write_frame as inputs from the camera
frame swapper and the display frame swapper respectively. Each effect does something
different with the information that it is provided, but at a higher level they can all be
thought of as functions that all have access to the same parameters and use them in
different ways.
The specific contract of effect modules is that every time they get a pixel (meaning, every
read cycle, which is every other cycle), they have to process it and output a new location
and data and write that on a write cycle to the other memory.

The more information we can provide an Effect Module, the more interesting the
effects that we can create. We initially thought that we would like an effect module to
have access to the last two frames in order to determine differences between them, and
also to an initial frame. However, we didn’t have enough room for 3 frames to be stored.
Eventually we figured out a way to pretend that we have the 3 frames without actually
storing them all. The initial frame can not be circumvented, if we want it we must store it
in one of our buffers . However, the preceding frame and the current frame can be
obtained by reading a memory address on a read cycle and on the very next write cycle ,
having the camera overwrite that memory address. This can be done by outputting the
address of the ntsc_to_zbt and giving it to the effect module. The effect module then
issues a read request with that address (with the proper buffer bit) and we delay the
datapath from ntsc_to_zbt to the memory by 2 cycles such that if ntsc_to_zbt issues a
write request on a certain clock cycle, the address is first passed to the effect, read, and
then overwritten on the next cycle. Ntsc_to_zbt can also pass to the effect module the
data that it is going to write to memory, so that now the effect module has access to all 3
frames.

The effect modules also have to know whether the current cycle is a read or write
cycle because for many timing must be precise.

However, the effect module still can’t read the previous frame and the initial
frame. It can read the initial frame and current frame (by stealing from camera) or the
previous frame and current frame. However, the first is not terribly relevant because if
there have been large changes from the initial frame, the current and previous frame
should be good enough approximations of each other.

Effect modules process 2 pixels at once but are constrained to writing both to the
same memory location. This is an unfortunate effect of our design choice: since we are
reading 2 pixels at once, if we had to write them to two different locations we would end
up with 2 write cycles per read cycle and that would completely alter the timing of the
whole circuit. Therefore, we restrict effects to write to only one memory location. Pixels
are thus stuck together forever.

In addition to the signals specified here, other signals from the circuit could be
given as inputs to the effects, there is not any conceptual restriction preventing that.

6. Display Frame Swapper

 11

The display frame swapper is virtually identical to the Camera frame swapper except less
flexible. It is not really useful not to swap buffers on the output. Freezing the image on
the output side is not nearly as interesting because the frozen image can not be further
processed. However, it would be interesting to swap the reading buffer (read frame 1 then
read frame 2 etc) and not swap the writing buffer. The image in that case would be a
flickering swap between two different images.

7. XVGA

This module was borrowed entirely from Lab4. It has the specifications for XVGA 1024
* 768 display and generates hsync, vsync, blank and hcount and vcount. These are not
reference to anything but they have the proper timing to display to the monitor. The
lowest order bit of hcount is used as the write enable for both ZBTs and for the two
muxes that select the address on read/write cycles for the ZBTs.

8. Vram Display

The Vram Display works as follows: it uses vcount and hcount which are issued by the
xvga module and camera_read_frame issued by the display_buffer_swapper and
computes the address that it wishes to read from memory. The display modules latches
the output from memory and outputs one pixel every clock cycle. It gets a new pair of
pixels out of memory every 2 clock cycles.

Figure 1: High-Level Block Diagram

 12

Subsystem 2 (by Rebecca Arvanites)
Subsystem 2.1 Puzzle Game Module

 The puzzle game is a sliding puzzle where the pieces are randomized blocks of video
from the camera. Gameplay consists of sliding the pieces of video around the screen by
using the buttons on the labkit to select a current square. There is a blank square which
appears black and and a current square which is highlighted in blue. Pressing the left,
right, up and down buttons moves the current square one block in the specified direction
so long as the new location is onscreen. When the blank square and the current square are
adjacent, pressing the enter button swaps the two squares.
 The purpose of the puzzle game module is to communicate to the puzzle effect
module where to display each block. This task involves keeping track of the position of
each puzzle piece, including the current and blank squares, interpreting button presses,
and checking when switching squares is allowed. Depending on the input square
requested by the puzzle effect module, the puzzle game module outputs the location
where that block of video should be displayed.
 Two arrays of registers are used to store and access the location information requested
by the puzzle effect module (see Fig. 1). The lookup_by_location array uses indices of
absolute square locations to store which block is in each location at the moment. The
lookup_by_block array uses indices of specific blocks to store which square location each
block is in at the moment. Figure 1 shows the absolute square locations numbered 0
through 7, with block 4 in square location 0. When the effect module makes a request for
a location, it is using the absolute square location that the current pixel being processed is
in. Lookup_by_block of the index requested holds the new location of the block that was
originally in the requested location when unscrambled. The number of columns and the
width or height of the squares are used to convert from square location to the actual pixel
location. The x-position is assigned by ((lookup_by_block[2] % num_col)* blob_width)
and the y-position is assigned by ((lookup_by_block[2] / num_col)* blob_height).

0

Stores index of
lookup_by_block

1
2
3
4
5
6
7

Figure 1: Register Arrays to
Store Square Location
Information

0 Current_square
1 Blank_square

2

Stores index of
lookup_by_location

3
4

Lookup_by_block Lookup_by_location

 13

5
6
7
8
9

0

block 4

1

2

current
square

3

4

5

6

blank
square

7

Fig. 2: Absolute square locations

 The first two registers in the lookup_by_block array store the current square and blank
square locations. When any of the direction buttons on the labkit are pressed, the module
detects the first button press, checks if the current square is allowed to move in the
indicated direction, and if so updates the location of the current square in the
lookup_by_block array. If the current square is adjacent to the blank square and the enter
button is pressed, the locations of the squares are updated by cross-referencing between
the two arrays. The current and blank square locations are switched, the blocks stored in
the current and blank square locations are switched, and the locations of the blocks are
also switched.

 14

Fig 3 Puzzle Game Block Diagram
 Another feature of the puzzle game is random initial scrambling of the video puzzle
pieces after button one has been pressed to synchronously reset the random number
generator, and button zero is pressed to scramble the puzzle pieces. Button one resets the
puzzle pieces to their original ordered positions, and loads a seed value into the linear
feedback shift register which then generates a pseudo-random sequence of zeros and
ones. The pseudo-random one-bit output, sd_out, is input to the puzzle game module
which uses the bit to decide whether to swap puzzle pieces zero with one, two with three,
and so on, or pieces one with two, three with four, and so on. One of these swaps is done
every clock cycle while button zero is pressed, which swap depending on whether sd_out
is zero or one.

Subsystem 2.2 Falling Blob Game

 In the falling blob game, 50 pixel wide squares and small circles are generated by the
game’s blob submodules and overlayed on top of the video to appear falling down the
screen in front of the camera. Red objects and usually skin color is detected by the
find_color module, such that the player can use a red card or their hand to interact with
the game by catching the square falling objects and trying to avoid the round bombs (see
Fig.). The hex display on the labkit keeps a running score with a point added for catching
a square object and a point subtracted for making contact with a round bomb object.
 Display of the falling objects is implemented by outputting 18-bit pixel data,
blob_game_pixel, which is put into a mux with the 18-bit vr_pixel data from the
vram_display module. The falling blob game outputs nonzero pixels for hcount, vcount
where the blobs are positioned, and pixel data equal to zero in the absence of blobs. A
mux chooses falling_blob_pixel for display when nonzero and otherwise displays
vr_pixel which is the video from the camera.
 Positions of the eight falling objects, four squares and four bombs, are updated every
new frame on the positive edge of the clock. A counter that increments from 0 to 150

 15

allows one square and one bomb to start falling, that is it allows the y-position to
increment, every 50 new frames. The game module’s pixel assignment also uses the
counter to only display the blobs when they start moving downwards in order to stagger
the appearance of the objects. When a blob object reaches the bottom of the 548 pixel
screen, it regenerates at the top of the screen. Whenever a blob object is generated, a
randomized x-position is assigned using the input pd_out from the linear feedback shift
register.

Figure : Falling Blob Game Module and Find Color Module Block Diagrams

 The LFSR randgen contains 24 shift registers which use feedback to change their
outputs every clock cycle. From the 24-bit output of the LFSR, different 9-bit intervals
are assigned to each blob x-position when the blob begins to fall from the zero y-position.
The speed at which the blobs move down the screen is set by the switches 4-7 on the
labkit.
 The interactive aspect of the falling blob game is created by the find_color module
which communicates to the falling blob game module the position of the user controlled
paddle distinguished by the color red. The game module uses the input
paddle_position_avg to determine when the user’s paddle has hit the game’s blob objects.
When the x-position of a blob is such that its x-maximum is larger than the paddle’s x-
minimum and its x-minimum is less than the paddle’s x-maximum, and the y-positions
also coincide, then the blob has hit the paddle. In this case the blob is regenerated at the
top of the screen and the score is updated depending on whether the blob was a square or
a bomb.

 16

Falling Blob Game Screenshot 1

Subsystem 2.3 Linear Feedback Shift Register Module (Xilinx Core)

 Two linear feedback shift register modules were used to generate pseudo-random
numbers for use in the game modules. The chain of shift registers uses feedback to
modify the state of each register so that the output sequence changese with every clock
cycle. The output is either a one-bit serial output of the final register, as used for the
puzzle game, or a parallel output bus of all the registers, as used for the falling blob
game. The resulting sequence is only pseudo-random because it repeats through a
mathematically determined cycle, but for the purposes of our games the results are
satisfactorily random.

Subsystem 2.4 Find Color Module

 The find_color module takes as input vr_pixel from the display module, and looks at
the pixels which are being displayed on the screen to determine the average location of
the first 128 red pixels in each frame. This paddle_position_avg is output to the falling
blob game module to check for intersection with game objects so that the user can
interact with the game.
 A target red pixel value range which detected the red user paddle card well was
determined experimentally, with a red value greater than 40 and green and blue values
less than 28. The sensitivity to detecting red was found by replacing vr_pixel with
entirely green pixels whenever vr_pixel was within the test range. Replacing red pixels
with green pixels was kept for the final game version so that the player can see the area
that the game recognizes as the paddle. The entire red area is not considered the paddle,

 17

however, only a 20 pixel wide rectangle starting from the paddle_position_avg point is
used for hit detection. The find_color module adds a dark blue rectangle where the paddle
is positioned in the game, so that the player can see the in-game position of the paddle
(see Fig.).
 The average position value of the first 128 red pixels in the frame is calculated by
comparing each vr_pixel to the range of red pixels described. When vr_pixel is in the
correct color range, hcount_1 and vcount_1 are added to a running total of x and y
position respectively, and a counter incremented to keep track of how red pixels have
been found. Hcount_1 and vcount_1 are the x and y positions of vr_pixel, hcount and
vcount from the vram_display module delayed by 3 clock cycles to allow for the
vram_display module’s processing of vr_pixel. When the counter reaches the number of
pixels to be averaged, 128, the sum of x and y positions of red vr_pixel are bit-shifted by
7 places to calculate the average position of the red pixels, and the result is stored as
paddle_position_avg and output to the falling blob game module to use for hit detection.

Falling Blob Game Screenshot 2, with paddle_position_avg shown in dark blue

Testing and Debugging (by Rebecca Arvanites)

 Testing and debugging was easily the most time-consuming portion of this project. At
every step of implementing the project, there were mistakes and problems at several
levels that needed to be fixed. Early on we tried to separate our modules while we were
making them so that we could test them separately before integrating them; even so, it
was still a challenge to put together modules which we thought were working. With the
puzzle game, the video modules were being developed, getting the memories and buffers
working, at the same time as the game module was being developed. Each subsystem was

 18

tested independently, and the puzzle game module was first implemented using color
blobs as the puzzle pieces.
 Before the cross-referencing register array structure was decided upon, the initial
puzzle game contained cumbersome case statements to check every square location for a
certain block. It was difficult to keep track of the squares because the game module was
assigning the blob positions but could not refer to them to figure out which block was
where. This led to confusing debugging where some of the blob squares were switching,
but always with the same block, until we realized that the blocks being switched were
using the absolute locations that the blocks were originally in instead of the changing
locations. Then we came up with the idea of tracking every block and every location from
the initial positions, so that we did not need to check every block to find which one is in a
certain location, or check every location to find a certain block.
 Integrating the puzzle game with the puzzle effect module also required many hours of
debugging to get the modules working together. The coordinates provided by the game
module needed to be translated for the effect module because the effect module was
processing two pixels at the same time since our system stores two pixels in each address.
Thus every hcount, vcount position intended for one pixel that the game module
communicates to the effect module needed to be divided by two to allow space for two
pixels instead of one. Once the blocks of video were being displayed, we then ran into
what seemed to be a logic error since the blocks were switching predictably and
smoothly, just in the wrong places. It seemed that the problem was with the game module
making wrong switching assignments, but when we loaded the same code with blob
blocks it was making the correct switches. After a while we realized that the problem was
the effect module was using the wrong hcount and vcount to calculate the translation
between absolute numbered squares and actual square positions of the video blocks.
 Another part of the project that required extensive debugging was making the
find_color module functional. The first step was finding a good threshold red value to
search for, which was specific to the user’s paddle or skin color but would not select
large parts of the background. It was not difficult replacing the red pixels with green
pixels, to show that the color was being detected, but taking an average of the location of
the red pixels was more challenging. At first I was trying to use the vsync signal to
control when to look for the specified color, as in look for the color and add the positions
of the red pixels when vsync is high (in the middle of a frame) and then between frames
when vsync goes low divide by the total number of pixels to compute the average
position of the red or specified color pixels. However this did not work and for an
unknown reason the sum and the average were never computed, as I saw by displaying
the signals on the led hex display and observing that they were always zero even though
the values the module was supposed to be adding were nonzero.
 After testing some loops with counters that did not help, I used a new control signal
called ‘look’ which when it is high causes the module to search for red pixels and when it
is low the module does not search for red pixels. When look is high, the module looks for
red pixels, adds their locations, and when the specified maximum counter number has
been reached look is set to low and the average of the red pixel positions is computed.
Look is reset to active high every new_frame, so that a new average of red pixel positions
is taken for every frame.

 19

 Until I changed the control signals for this module, it was confusing that the average
position was never computed. I used the led hex display to check that vsync was
functioning, and it was, so I displayed the 3-cycle delayed hcount and vcount values,
which were changing and should have been added to get a large sum and then divided to
find the average. Eventually I decided to implement what I wanted in a another way, that
is use new_frame to signal the module to start looking for red, and the counter to stop
collecting position values and take the average.

Testing and Debugging (by Cristina Domnisoru)

Testing and Debugging were elaborate and time consuming. I tried to build my
part of the project starting on Javier’s video ram module, and afterwards realized that we
needed ZBTs. I began reading the ZBT documentation and got very confused by the
clocking and DLLs until Ike released some example code upon which it was easier to
build.

Initially I was expecting the memory management and i/o part of the project to
work seamlessly pretty quickly and to spend most of the time getting effects to work.
Unfortunately, memory clocking was more involved than I expected. I was not able to
really make any progress until I spend time thoroughly understanding the modules that I
was trying to modify.

There were several bottlenecks in the process. A memorable one was trying to get
the buffer swappers working. I knew, by the design of my addresses, that there had to be
some maximum address that was getting written and based on NTSC standards I kept
making guesses and checking them with my code. I was looking for a behavior where my
guessed maximum would cause buffer swapping and that guessed maximum plus 1
would not. I spent a very long time trying to figure this out, thinking that perhaps my
address was computed incorrectly until I decided to set aside my fear of the logic
analyzer and ask it. I found out very quickly that the camera had a number of rows and
columns that I would never have guessed. Someone more experienced would have known
that NTSC has 480 relevant rows, not total rows. The logic analyzer made it easy to
figure out what the camera was doing. I thus learned that even if I feel confident of my
own modules and I can make a timing diagram to justify their behavior, there can always
be surprises when interfacing with devices and code that one did not write. Being able to
observe the actual behavior of the system at that point becomes crucial.
 I realized throughout this project that I have a problem that I am not sure how to
address. If I am trying to figure out a bug, I make implicit and unconscious assumptions
about what I think it is and what I think it isn’t, so that even if I check all the possibilities
I will not carefully check the ones that I don’t expect. This is difficult to overcome and it
caused me the biggest waste of time during this project. For a 3 day period my display
had periodic black lines repeating every other pixel. Since 2 pixels are stored in memory
at a time I thought that this might be a problem with the processing of one of the two
pixels and that it is systematic. I noticed that these lines were not occurring in the noise
coming from memory in the parts that weren’t being overwritten. I noticed that if I wrote
the pixels in memory reflected, the lines were still vertical. This indicated a problem after
the memory read location so in the effect or afterwards. Eventually I started replacing the
pixel data along the datapath with white, module after module, to isolate the problem. I

 20

eventually isolated it to the effect module. This was not surprising because the lines were
not there when I had only one memory and read/write modules. However, the effect
module consisted of 3 lines of code none of which were affecting the data. They were
simply copying it from one memory to another. The system was deliberately constructed
such that the first effect added would do nothing. I then looked at the warnings and
discovered that one of my wires was the wrong size and that I was outputting 19 bits
instead of 36. The remaining bits were padded to 0s and that explains the black. The bug
itself was very frustrating because it made me think that there was some fundamental
flaw in my timing design, but the resolution of the bug made me think that there is a
fundamental flaw in my debugging technique.
 For the most part of the project I developed it and tested it little by little, taking
snapshots every time something worked and every time something really didn’t work but
did something unexpected. I kept debugging logs (textfiles) in which I wrote what I was
thinking about what was and what was not working. Over and over I reached the
conclusion that if something doesn’t work, the change this bit of code and hope for the
best approach is bad. It is bad because if the change doesn’t fix the code you might then
try another bit of code etc, thus wasting a lot more time than thinking about it would have
taken. If it does work then you lose understanding of your code, and after a few lucky
guesses you no longer really know why its’ working so that next time it breaks it will be
much more difficult to figure out. At the end of this project I think I prefer the
understanding and going straight for the target rather than fiddling and experimentation
approach.
 I spent a very long time trying to get the double buffering system working and it
was only in the last few days before the due date that I was able to actually focus on what
I wanted which is video effect processing. When I started developing effects, working on
the project changed in that I didn’t really have any specific goals but I was playing
around trying to get a multitude of things to work. The effects that I developed are not
specific except for the puzzle effect. They are explorations and involve tweaking
thresholds and taking pictures of the screen. Effect modules have their own debugging
spin. It happens very frequently that I do not understand why a certain effect occurred or
if I change variables the system reacts in an unpredictable fashion. I realized that the best
way to test an idea in terms of an effect is to provide oneself with switches that can
change the parameters of the algorithm, because there might be ranges of parameters that
work much better than others. The effect exploration part of the project was fun in certain
ways but frustrating in other ways.
 The following section illustrates my explorations in digital effect creation.

Puzzle Effect

The puzzle effect module is a simple effect. For each pixel, the module figures out which
Square (or rectangle, in this image) it belongs to. The effect then issues a request to the

Puzzle module to ask where that block went. The
effect then checks whether that pixel is in the
blank blobk or in the current block (current block
is the block we are selecting right now and then
maps the pixel to the correct place in memory

 21

without changing its value. This puzzle is conceptually simple but the computation it
needs to do is involved enough that we can’t easily stack other effects on top of the
puzzle effect without causing glitches.

Digital Effect Results

Simple Effects

Simple effects only operate on the current
pixel. Such effects would not require the
double buffering system.

The image below is reddified.
The image to the left is inverted
The image in the corner has a color filter
applied that changes certain colors. It is
difficult to specify such effects because
RGB also encodes luminance. Virtually
any effect that one can think of that is a
computable function of the position and

color of one pixel can be implemented. Currently, the restriction on these simple effects
is time. It is possible to extend the amount of time available for computation of a pixel by
latching and pipelining. In the current implementation the delaying has to be done by
hand depending on the particular computation.

Frame Swapping Schizophrenia
This effect flips alternating frames. When viewed, it looks like a flickering image that is
flipping every second. It is difficult to get a picture where both symmetrical sides are in
focus. Stopping the frames from flipping implements a pretty reliable random number
generator, where heads and tails represent the real image and the flipped image.

 22

Edge Detector (weffect.v)

This effect compares the current frame that the camera (ntsc_to_zbt) is trying to write to
the frame previously written in memory. The algorithm is very simple : For each channel
of the two pixels being processed, take the highest order 3 bits and if the current and
previous pixel differ by more then 1, write a white pixel in that memory location.
Otherwise, write a black pixel in that memory location. A white pixel will be written if a
condition like the following is true for all the channels.

((cam_w_delayed_twice_copy_data[12:10] - undelayed_e_write_data1[12:10]) > 1'b1)||
((undelayed_e_write_data1[12:10]- cam_w_delayed_twice_copy_data[12:10]) > 1'b1)

This was not the intended effect. I was
hoping to detect things that had changed
from the previous frame in a way that
would allow one to detect motion.
However, from frame to frame a person is
not capable of moving fast enough to
cause a perceptible difference. The only
pixels that are changing fast enough are
noise and edges. Edges are continuous in
reality but they become jagged when
displayed on a discrete pixel grid. Pixels at
object boundaries are constantly changing
from belonging to one object or another
and are doing so at a frequency that is

comparable to the frame rate of the camera. In a way, this edge detector works because of
noise.

Effects involving freeze frames (based on blueoff.v and weirdo.v)

This family of effects was achieved by turning the
camera frame swapping to manual and at some point

Figure 1 Edge Detection

 23

flipping a switch such that the camera is writing always to one of the buffers while the
effect is reading from the other one. The effect is essentially stuck always reading the
same picture. However, the effect has access to the image that the camera is writing, pixel
by pixel, so this allows us to display various things depending on their relationship to the
image that was there before.

Basing the effect on freeze frame properties

This image was taken by pointing the camera at my mouth, flipping the switch so that the
effect is no longer getting updates, and applying a certain threshold to the computation so
that if the pixels in the freeze frame have certain RGB values, they effect will write the
freeze frame to memory, and otherwise it will write the current frame to memory. By

manipulating the color thresholds this allows us to replace parts of images
with other images. This image was taken with a digital camera. In reality,
the big open mouth is standing still and the face inside can move around.

The threshold can be set manually using switches (up to 3 bits)

The
picture
with the
mouth

uses the
base
algorithm,

in which both images look correct color-wise. If we introduce delays in the signals that
are subtracted, for example delay the current frame by one cycle, or affect certain bits, the
images retain their overlayed aspect but become much more arbitrary. We thus get pretty
noise such as in the images above.
In this category of effects, in general, a deformation is based on the properties of the
freeze frame. This would allow us to produce images where people put their face on a
funny body (the standard amusement park trick) or where we replace particular parts of
images with something else. The effect structure is very general and if we were able to
accurately determine the RGB values of a color we would have great control over this
effect. It would be interesting to find the value of skin color, even if restricted to certain
lighting, and replace only that. This way, when people walked across the screen, their

skin would become affected by whatever
algorithm we desire (or replaced by
another image etc)
Basing the effect on current frame
properties

Figure 2 using blueoff.v

Figure 3 freeze frame Figure 4 freeze frame, different
threshold

 24

This category is in a way equivalent to the previous one. It does the opposite in that the
effect is dependent on the properties of the current image. In this image I took a freeze
frame of a 100 euro bill with the map of Italy and France and then set the algorithm to
show the freeze frame image only if the current image had certain properties in that area.
The current image itselve was altered to pink and green. (There is a map of Italy on the
sweater in the picture).

Effects based on the difference
between the current frame and
the freeze frame

This category of effects is one
that I was particularly interested
in .

In this image you can see a boy
sitting in a chair and a ghostlike
copy of that boy bending towards
the monitor. This image was taken
by freezing the frame when the boy
was standing in the chair and the
subsequent motion was ghostlike.
This kind of effect can be achieved
by comparing the current frame
and the freeze frame and based on
their difference decide whether
they are the same. I found that the
tweaking of this process was very
difficult and that if I did too much arithmetic the image would gain artifacts (such as turn
pink like the one above). This image is a variation of the above where new things that
appear onto the image have a shimmery yellow/blue like effect. The foreground is a hand
and the yellow boy in the back wasn’t there when the freeze frame was taken.

 25

The image below shows another equivalent attempt, except that this one caused the
shadows to be red. The hand that’s frozen is the one above whereas the one blow is
actually moving.

I

had a lot of problems understanding how come certain effects are happening the way they
are, in particular color changes in situations where I am not changing the color at all. The
process of affecting the colors that we want was hard until I thought of the idea of taking
a freeze frame of the color that I want and then looking for it in the image rather than
trying to guess it ahead of time. This had better results :

In this picture, my leg is showing a

pattern that was frozen in the other buffer. The
image on the right shows a face that is frozen but

 26

can only be seen if one holds a white paper over it (or skin color etc).

Conclusions (by Rebecca Arvanites)

 By the end of the project, we had developed a library of varied video effects that could
be added in parallel with the games we developed. The games were functional and
entertaining to play, especially given all the hard work it had taken to get everything
working. Some aspects that we had previously thought would be trivial parts of the total
project, such as displaying the video as block puzzle pieces, turned out to be more
challenging than expected. Initially we decided to implement the puzzle game as our first
task because we considered it the most simple or at least straight-forward. However, the
integration took longer than expected due to a small logic error which became harder to
find once the system consisted of all modules combined and interacting.
 The puzzle game was implemented as we designed it, although our final version was a
four by two configuration which we realized may not actually be solvable for some
random initializations. Our parametrized design allows us to easily change the number of
squares to fix this, the number of rows and columns being limited by the computation
limits of the fpga to powers of two.
 The fire game was implemented fairly close to what we discussed, without the final
touch of adding video effects to the player when they miss objects or are hit by bombs.
When we designed the game we were not exactly sure how we would enable the player to
interact with the game, we thought about edge detection to find the person onscreen, as
well as color detection. The color detection at first seemed like it would not be very
robust, but we were pleased to find that tweaking the color range produced fairly
consistent results.
 We completed our checklist of developing the specific puzzle and falling blob game,
video, and effect modules, however we wish we had more time to explore the additional
ideas that came up with while working on the project. Given more time we would like to
play with storing previous camera frames and trying to implement a video effect where
objects on camera only appear while moving, and when they stop moving they fade into
the background. We would also like to add features to the falling blob game, such as the
originally intended effects applied when the player misses catching objects or is hit by
bombs, or use a ROM to make the blob objects that player catches into specific items
such as cats or ice cream cones.

Digital Effects Conclusion (by Cristina Domnisoru)

Given the setup of our system it has been easy to come up with various visual effects,
some of which are interesting, some of which are reproducible. The best so far happened
by accident and I can not reproduce it. It slowly dissolved moving objects into the
background but if one stood still it one would appear on the screen. I have a video
recording of it but I don’t know why it happened . Many effects were created and
overwritten after pictures were taken of them. The files contained in the project currently
are the backbones of the basic types of effects. Making digital effects is not hard. Making
the digital effect that you had in mind is more difficult.

 27

-
If I did this again from the beginning:

I would change my expectations of the amount of time various parts would require. In
terms of design, I would implement the 4 buffers without specifically tying 2 to display
and 2 to input, but rather I would have a single buffer swapper that issues the signals for
all those buffers. That way, if an effect didn’t’ need to use the double buffering capability
of the input, it could have 3 frames instead of 2 for output and processing and that would
open up a new array of possibilities.

Fvhdelayer Module

//
// purpose: to take 30-bit ycrcb pixel input from the video decoder module and the fvh
//and dv signals issued by that module and convert the pixel data into RGB. Also to delay
//the fvh and dv signals to account for the RGB conversion delay
//
/*Inputs: - reset, clk (system reset, system clock 65 Mhz)

- fvh_in1 are 3 bits given by the video decoder module and they represent
 a field bit (for even and odd field), vsync and hsync as issued by the camera
-data_valid_in1 is the data valid bit issued by the video decoder module. If high it
means that the ycrcb input is a valid input that corresponds to the camera.
-ycrcb is the 30 bit colored pixel output by the camera (processed by the video
decoder module)

Outputs: - fvh_out is the 5 cycle delayed version of fvh_in1
 -data_valid_out is the 5 cycle delayed version of data_valid_in1
 -RGB is the 18 bit equivalent in RGB of the 30 bit ycrcb input. The 18 bits are
 the 6 most significant bits of R, G, B in that order.
*/
//

module fvhdelayer(reset, clk, fvh_in1, fvh_out, data_valid_in1,
 data_valid_out ,ycrcb, RGB);
 input reset, clk;
 input [2:0] fvh_in1; // 3 bits given by the video decoder module
 input data_valid_in1; // issued by the video decoder module.
 input [29:0] ycrcb; //30 bit colored pixel output by the camera

 output [2:0] fvh_out; / / 5 cycle delayed version of fvh_in1

 output data_valid_out; //5 cycle delayed version of data_valid_in1
 output [17:0] RGB; //Red, Green, Blue, 6 bits each

 wire [7:0] R, G, B;

 //this is the one of the Xilinx ycrcb to RGB converters
 //it takes 5 clock cycles to compute

 28

 YCrCb2RGB converter (.R(R), .G(G) , .B(B) , .clk(clk) ,
 .rst(reset) , .Y(ycrcb[29:20]), .Cr(ycrcb[19:10]),
 .Cb(ycrcb[9:0]));

 //select the most significant 6 bits of the R G B channels
 assign RGB [5:0] = B[7:2];
 assign RGB [11:6] = G[7:2];
 assign RGB [17:12] = R[7:2];

 /*delay fvh_out, data_valid_out by 5 clock cycles because the
 CrCb2RGB converter takes 5 clock cycles to
 compute the proper RGB values. */

 reg [2:0] fvh_in2, fvh_in3, fvh_in4, fvh_in5, fvh_in6;
 reg [2:0] fvh_out;
 reg data_valid_in2, data_valid_in3, data_valid_in4,
 reg data_valid_in5, data_valid_in6;
 reg data_valid_out;

 always @ (posedge clk)
 begin
 data_valid_in2 <= data_valid_in1;
 data_valid_in3 <= data_valid_in2;
 data_valid_in4 <= data_valid_in3;
 data_valid_in5 <= data_valid_in4;

 data_valid_out <= data_valid_in5;

 fvh_in2 <= fvh_in1;
 fvh_in3 <= fvh_in2;
 fvh_in4 <= fvh_in3;
 fvh_in5 <= fvh_in4;

 fvh_out <= fvh_in5;
 end
 endmodule

Ntsc_to_zbt Module

// Written by: I. Chuang <ichuang@mit.edu>
// Modified by : Cristina Domnisoru
//
//
//
//The original version of this module writes 4 8-bit pixels to one
//memory address
//every 4 clock cycles. This version writes 2 18-bit pixels to one
//memory address
//every 2 clock cycles. In the current version the address to be written
//is computed
//differently from the original, taking a camera_write_frame bit input.
//this input is either 0 or 1
//and will represent the highest order bit of the addresses being
//written. This allows an
//external user to control which buffer the module is writing data to
//

module ntsc_to_zbt(clk, vclk, fvh, dv, din, ntsc_addr, ntsc_data,
 ntsc_we, camera_write_frame);

 input clk; // system clock
 input vclk; // video clock from camera

 29

 input [2:0] fvh; // delayed signals from delayer module
 input dv; // delayed data valid to match fvh and din
 input [17:0] din; //RGB data converted from camera
 input camera_write_frame; //bit indicating which buffer to write to

 output [18:0] ntsc_addr; //address to write
 output [35:0] ntsc_data; //data to write to that address. Contains 2
 //pixels
 output ntsc_we; // write enable for NTSC data

 //the image will be aligned to these 2 start values.
 parameter COL_START = 10'd0;
 parameter ROW_START = 10'd0;

 //the row and col registers are used to compute the current
 //coordinates of the pixel based on fvh.

 //This module receives input which changes depending on vclock, the
 //clock of the camera, and outputs data which changes on the edges of
 //clk, the 65 Mhz clock used in the rest of the system. The module
 //must synchronize the data.

 reg [9:0] col = 0; //synchronized to vclock
 reg [9:0] row = 0; //vclock
 reg [17:0] vdata = 0; //vclock
 reg vwe; //vclock
 reg old_dv;
 reg old_frame; // frames are even / odd interlaced
 reg even_odd; // decode interlaced frame to this wire

 wire camera_write_frame;

 wire frame = fvh[2];
 wire frame_edge = frame & ~old_frame;

 always @ (posedge vclk) //LLC1 is reference
 begin
 old_dv <= dv;
 //this means data just became valid
 vwe <= dv && !fvh[2] & ~old_dv;
 old_frame <= frame;
 even_odd = frame_edge ? ~even_odd : even_odd;

 //all of the meaningful data from the camera is transmitted with
 //f bit being 0, and it alternates by transmitting all odd rows,
 //then all even rows, then all odd rows etc.
 if (!fvh[2])
 begin
 col <= fvh[0] ? COL_START :
 (!fvh[2] && !fvh[1] && dv && (col < 1024)) ?
 col + 1 : col;

 row <= fvh[1] ? ROW_START :
 (!fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;

 vdata <= (dv && !fvh[2]) ? din : vdata;

 end
 end

 30

 // synchronize with system clock

 reg [9:0] x[1:0],y[1:0];
 reg [17:0] data[1:0];
 reg we[1:0];
 reg eo[1:0];

 //latch twice to make sure data is stable in case the first latching
 //occurred too close to a rising clock edge of the faster clock.
 always @(posedge clk)
 begin
 {x[1],x[0]} <= {x[0],col};
 {y[1],y[0]} <= {y[0],row};
 {data[1],data[0]} <= {data[0],vdata};
 {we[1],we[0]} <= {we[0],vwe};
 {eo[1],eo[0]} <= {eo[0],even_odd};
 end

 // edge detection on write enable signal

 reg old_we;
 wire we_edge = we[1] & ~old_we;
 always @(posedge clk) old_we <= we[1];

 //
 reg [35:0] mydata;
 always @(posedge clk)
 if (we_edge)
 //if we just got a we, shift the data to accommodate the newly
 //acquired pixel in the lowest order 18 bits of mydata
 mydata = { mydata[17:0], data[1] };

 // compute address to store data in

 wire [18:0] myaddr;

 //compute the hcount and vcount equivalents to get the address.
 //the eo bit is for even frame or odd frame.
 //since the camera outputs all the odd rows or all the even rows and
 //then issues a vsync, we must know whether we are have odd rows or
 //even rows and multiply the relevant vertical counter by 2 and add
 //the even/odd bit.

 wire [9:0] local_vcount = { y[1][8:0], eo[1] };
 wire [10:0] local_hcount = { 1'b0, x[1]};

 address altern(local_hcount, local_vcount, myaddr,
camera_write_frame);

 reg [18:0] ntsc_addr;
 reg [35:0] ntsc_data;

 //ignore every other we_edge. Still update mydata but only every
 //other clock cycle, aka when the column’s lowest order bit is 0 ,
 //issue a we_edge. This ensures that a we_edge is only happening
 //every other time the data is valid so that until the next we_edge
 //we have time to get another 2 pixels

 wire ntsc_we = (we_edge & (x[1][0]==1'b0));

 31

 always @(posedge clk)
 //only update the output values every other clock cycle
 if (ntsc_we)
 begin
 //make sure the highest order bit if the address is the frame
 ntsc_addr <= {camera_write_frame, myaddr[17:0]};
 ntsc_data <= mydata;
 end

endmodule // ntsc_to_zbt

Camera_frame_swapper Module

/*purpose : to control the 2 buffers located in memory 1 that are used
by the camera and by the effect to read. This module has two main modes
of operation. One of them is normal buffer swapping, the other is
swapping once where the module begins by writing to one frame and then
the other frame but it never returns to the first frame it wrote.

Inputs :
 - clk, reset (system clock and reset)
 - address_currently_being_written = the address that the swapper
 Uses to figure out that it is time to swap buffers. The simplest
way to tell that it is time to swap the camera buffer is to look at the
address that ntsc_to_zbt just issued a write request for. Since this
module writes in order, when it gets to the maximum address that it
will write to, it will loop back to the beginning. The maximum address
can be computed with the address function and by knowing the maximum
row and column that the module will reach. In this case, the number is
written in binary and was obtained from the logic analyzer. Note that
only 18 bits of the address are considered. This is because the 19th bit
is the frame bit and we want to swap frames regardless of the current
frame.
 -swap_only_once. If this is 1, the camera buffer will start at 0
and switch to 1 and never return to 0.

Outputs: -write frame
 -read frame

These are bit inputs and they are always the opposite of each other in
normal operation. They are initialized to 0, 1 and they swap values
every time the address_currently_being_written reaches the maximum
value.
*/

module camera_frame_swapper(clk, reset,
 address_currently_being_written, write_frame, read_frame,
 swap_only_once);

 input clk; // clock
 input reset;
 input [18:0] address_currently_being_written; // reference
address
 input swap_only_once; //control input

 32

 output write_frame; //frame control
 output read_frame;

 //initialize frames
 reg write_frame = 0;
 reg read_frame = 1;

 //this wire has value 1 whenever the current address has reached
 //maximum value.
 wire addr_eq_max = (address_currently_being_written[17:0]
 == 18'b101101000111111101);

 reg old_addr_eq_max = 0;

 wire addr_eq_max_edge ;
 assign addr_eq_max_edge = addr_eq_max & ~old_addr_eq_max;

 //if we have an edge , that mans the address just reached max
and we want to swap buffers
 always @ (posedge clk)
 begin
 old_addr_eq_max <= addr_eq_max;

 if ((swap_only_once == 0) || (swap_only_once == 1 &&
 write_frame == 0))
 begin
 write_frame <= addr_eq_max_edge
 ? ~write_frame : write_frame;
 read_frame = ~write_frame;
 end
 else if (swap_only_once == 1)
 read_frame = sfft_eq_max_edge
 ? ~read_frame : read_frame;
 end
 endmodule

Display_frame_swapper Module

/* purpose: swap display buffers
This module is virtually identical to the camera swapping module
It is a simplified version of that module and more detailed comments
are provided there. Unlike the camera swapping module, this module
always swaps buffers. Like the camera swapping module, this module can
be turned off altogether and replaced with manual buffer control.

module display_frame_swapper(clk,reset,address_currently_being_written,
 write_frame, read_frame);
 input clk; // system clock
 input reset; // system reset
 input [18:0] address_currently_being_written; // reference
address

 output write_frame; // control frames
 output read_frame;

 reg write_frame = 0;

 33

 reg read_frame = 1;

 wire addr_eq_max;

 assign addr_eq_max = (address_currently_being_written[17:0]
 == 18'b101101000111111101);
 reg old_addr_eq_max = 0;

 wire addr_eq_max_edge ;
 assign addr_eq_max_edge = addr_eq_max & ~old_addr_eq_max;

 //

 always @ (posedge clk)
 begin
 old_addr_eq_max <= addr_eq_max;
 write_frame <= addr_eq_max_edge
 ? ~write_frame:write_frame;
 read_frame = ~write_frame;
 end
 endmodule

Vram_Display Module

/*
Purpose: Read pixels out of the display buffer from ZBT 0 and output them to screen

Inputs: reset, clk;
 Hcount, vcount : takes these signals from the xvga module and computes an
address to read from memory
 Display_read_frame : takes this input from display_frame_swapper and uses it to
compute highest order bit of address to read from memory
 Vram_read_data : data output by memory
Outputs:
 Vr_pixel : 18 bit single pixel to display to screen
 Vram_addr : address to issue read request to memory
*/

module vram_display(reset,clk,hcount,vcount,vr_pixel,
 vram_addr,vram_read_data,test,display_read_frame);

 input reset, clk;
 input [10:0] hcount;
 input [9:0] vcount;
 input test;
 input display_read_frame;

 output [17:0] vr_pixel;
 output [18:0] vram_addr;
 input [35:0] vram_read_data;

 wire [18:0] alternate_addr;
 address newaddress(hcount, vcount, alternate_addr,
 display_read_frame);

 34

 wire [18:0] vram_addr = test? {vcount, hcount[9:1]}:alternate_addr;

 wire hc2 = hcount[0];
 reg [17:0] vr_pixel;
 reg [35:0] vr_data_latched;
 reg [35:0] last_vr_data;

 always @(posedge clk)
 last_vr_data <= (hc2 == 1'b0) ? vr_data_latched: last_vr_data;
 vr_data_latched <= (hc2 == 1'b1)
 ? vram_read_data :vr_data_latched;

 // must display the last data latched from memory for the next 2
//cycles while waiting for the new read request to be processed by
//memory
 always @(hc2) /*each 36-bit word from RAM is decoded
 to 4 bytes */
 case (hc2)

 1'b0: vr_pixel = last_vr_data [35:18];
 1'b1: vr_pixel = last_vr_data [17:0];

 endcase
endmodule

Puzzle Game Module

//
//
/*purpose: tell puzzle effect module where to display each block of
video
Inputs:
-reset, clk: system reset, 65mhz clock
-request: 6-bit input from puzzle effect module specifies a request for
a square location
-up,down,left,right,enter: buttons to move current square
-buttonone: initializes random number generator, puts squares in correct
original locations
-buttonzero: scrambles puzzle
-random_bit: sd_out from linear feedback shift register
Outputs:
-current_square, blank_square: hcount,vcount locations of current and
blank squares
-requested_coords: hcount,vcount locations of the requested square for
puzzle effect module
-num_row_out, num_col_out, blob_width_out, blob_height_out: parameters
*/
///

module puzzle_game (clk, reset, up, down, left, right, enter,

buttonzero, buttonone, random_bit, current_square, blank_square,
requested_coords, num_row_out, num_col_out, request, blob_width_out,
blob_height_out);

 input [5:0] request;
 input vclock; // 65MHz clock
 input reset;
 input up;
 input down;
 input left;
 input right;

 35

 input enter;
 input buttonone;
 input buttonzero;

input random_bit; /*random bit is sd_out from linear feedback shift
register rngen */

 output [20:0] current_square;
 output [20:0] blank_square;
 output [20:0] requested_coords;
 output [3:0] num_row_out;
 output [3:0] num_col_out;
 output [8:0] blob_width_out, blob_height_out;

 parameter num_squares = 8;
 parameter coords_index = 21*(num_squares)-1;
 parameter screen_width = 720;
 parameter screen_height = 548;
 parameter max_width = 360;
 parameter max_height = 508;
 parameter num_row = 2;
 parameter num_col = 4;

 parameter blob_width = 180;
 parameter blob_height = 254;

 reg [3:0] num_row_out = num_row;
 reg [3:0] num_col_out = num_col;

 wire [20:0] current_square;
 wire [20:0] blank_square;

 /*puzzle square positions: stored in 8 registers size [20:0], [20:10]

xpos, [9:0] ypos; positions of squares from left to right, then top
to bottom

 */

wire [20:0] position [num_squares-1:0];

 /*array indices are the square locations which don't change,
array values are the lookup_by_block indices which refer to a
specific block

 */

 reg [3:0] lookup_by_location [num_squares-1:0];
 reg [3:0] lookup_by_block [num_squares+1:0];
 /* need location for each block, current_square, and blank_square;

lookup_by_block[0] is current_square, lookup_by_block[1] is
blank_square */

 reg game_over = 0; //game_over =1 stops play

reg old_right=0;
wire press_right;
assign press_right = ~old_right & right;
reg old_left=0;
wire press_left;
assign press_left = ~old_left & left;
reg old_up=0;
wire press_up;
assign press_up = ~old_up & up;
reg old_down=0;
wire press_down;
assign press_down = ~old_down & down;
reg old_enter=0;
wire press_enter;
assign press_enter = ~old_enter & enter;

 36

reg old_buttonzero=0;
wire press_buttonzero;
assign press_buttonzero = ~old_buttonzero & buttonzero;

/* button 1 resets squares to correct position, initializes random

number generator,
 button 0 scrambles squares */

always @(posedge vclock) begin
 old_vsync <= vsync;

 if (buttonone) begin
 game_over <= 0;

 lookup_by_location[0]<= 4'd2;
 lookup_by_location[1]<= 4'd3;
 lookup_by_location[2]<= 4'd4;
 lookup_by_location[3]<= 4'd5;
 lookup_by_location[4]<= 4'd6;
 lookup_by_location[5]<= 4'd7;
 lookup_by_location[6]<= 4'd8;
 lookup_by_location[7]<= 4'd9;

 lookup_by_block[0]<= 4'd0;
 lookup_by_block[1]<= 4'd1;
 lookup_by_block[2]<= 4'd0;
 lookup_by_block[3]<= 4'd1;
 lookup_by_block[4]<= 4'd2;
 lookup_by_block[5]<= 4'd3;
 lookup_by_block[6]<= 4'd4;
 lookup_by_block[7]<= 4'd5;
 lookup_by_block[8]<= 4'd6;
 lookup_by_block[9]<= 4'd7;
 end //end if buttonone

 else if (buttonzero) begin
 if (random_bit) begin
 lookup_by_location[0]<= lookup_by_location[1];
 lookup_by_location[1]<= lookup_by_location[0];
 lookup_by_location[2]<= lookup_by_location[3];
 lookup_by_location[3]<= lookup_by_location[2];
 lookup_by_location[4]<= lookup_by_location[5];
 lookup_by_location[5]<= lookup_by_location[4];
 lookup_by_location[6]<= lookup_by_location[7];
 lookup_by_location[7]<= lookup_by_location[6];

 lookup_by_block[lookup_by_location[0]]<=

lookup_by_block[lookup_by_location[1]];
 lookup_by_block[lookup_by_location[1]]<=

lookup_by_block[lookup_by_location[0]];
 lookup_by_block[lookup_by_location[2]]<=

lookup_by_block[lookup_by_location[3]];
 lookup_by_block[lookup_by_location[3]]<=

lookup_by_block[lookup_by_location[2]];
 lookup_by_block[lookup_by_location[4]]<=

lookup_by_block[lookup_by_location[5]];
 lookup_by_block[lookup_by_location[5]]<=

lookup_by_block[lookup_by_location[4]];
 lookup_by_block[lookup_by_location[6]]<=

lookup_by_block[lookup_by_location[7]];
 lookup_by_block[lookup_by_location[7]]<=

lookup_by_block[lookup_by_location[6]];

 end //end if random_bit

 37

 else begin
 lookup_by_location[0]<= lookup_by_location[7];
 lookup_by_location[1]<= lookup_by_location[2];
 lookup_by_location[2]<= lookup_by_location[1];
 lookup_by_location[3]<= lookup_by_location[4];
 lookup_by_location[4]<= lookup_by_location[3];
 lookup_by_location[5]<= lookup_by_location[6];
 lookup_by_location[6]<= lookup_by_location[5];
 lookup_by_location[7]<= lookup_by_location[0];

 lookup_by_block[lookup_by_location[0]]<=

lookup_by_block[lookup_by_location[7]];
 lookup_by_block[lookup_by_location[1]]<=

lookup_by_block[lookup_by_location[2]];
 lookup_by_block[lookup_by_location[2]]<=

lookup_by_block[lookup_by_location[1]];
 lookup_by_block[lookup_by_location[3]]<=

lookup_by_block[lookup_by_location[4]];
 lookup_by_block[lookup_by_location[4]]<=

lookup_by_block[lookup_by_location[3]];
 lookup_by_block[lookup_by_location[5]]<=

lookup_by_block[lookup_by_location[6]];
 lookup_by_block[lookup_by_location[6]]<=

lookup_by_block[lookup_by_location[5]];
 lookup_by_block[lookup_by_location[7]]<=

lookup_by_block[lookup_by_location[0]];
 end
 end //end if buttonzero

 else if //game_over if squares in original locations

 (lookup_by_location[0]== 4'd2&&
 lookup_by_location[1] == 4'd3 &&
 lookup_by_location[2] == 4'd4 &&
 lookup_by_location[3] == 4'd5 &&
 lookup_by_location[4] == 4'd6 &&
 lookup_by_location[5] == 4'd7 &&
 lookup_by_location[6] == 4'd8 &&
 lookup_by_location[7] == 4'd9
)

 game_over <=1;

 else
 old_right <= right;
 old_left <= left;
 old_up <= up;
 old_down <= down;
 old_enter <= enter;
 old_buttonzero <= buttonzero;

 //when buttons pressed check if should move current_square
 if (press_right &&
 ((lookup_by_block[0])/num_col==(lookup_by_block[0]+1)/num_col))
 lookup_by_block[0] <= lookup_by_block[0]+1;
 else if (press_left && (lookup_by_block[0] % num_col)>0)
 lookup_by_block[0] <= lookup_by_block[0]-1;
 else if (press_up && (lookup_by_block[0]+1>num_col))
 lookup_by_block[0] <= lookup_by_block[0]-num_col;
 else if (press_down && (num_squares-num_col>lookup_by_block[0]))
 lookup_by_block[0] <= lookup_by_block[0]+num_col;

 //if current_square is next to blank_square user can swap the squares
 else if (press_enter)
 if(
 (

 38

 ((lookup_by_block[0]+1==lookup_by_block[1]) ||
 (lookup_by_block[1]+1==lookup_by_block[0]))
 &&
 (lookup_by_block[0]/num_col ==lookup_by_block[1]/num_col)) ||
 (lookup_by_block[0]+num_col==lookup_by_block[1]) ||
 (lookup_by_block[1]+num_col==lookup_by_block[0])
)
 begin //beginB
 /*switch blank_square and current_square in
 lookup_by_location */

 lookup_by_block[0] <= lookup_by_block[1];
 lookup_by_block[1] <= lookup_by_block[0];

 //switch squares in lookup_by_location

 lookup_by_location[lookup_by_block[0]] <=

lookup_by_location[lookup_by_block[1]];
 lookup_by_location[lookup_by_block[1]] <=

lookup_by_location[lookup_by_block[0]];

 //switch actual blocks in lookup_by_block

 lookup_by_block[lookup_by_location[lookup_by_block[0]]]
<= lookup_by_block[lookup_by_location[lookup_by_block[1]]];
 lookup_by_block[lookup_by_location[lookup_by_block[1]]]
<= lookup_by_block[lookup_by_location[lookup_by_block[0]]];

 end //end beginB
 end //end else if ~game_over
end //end @ posedge vclock

//need to assign pixel locations from square locations

assign position [0][20:10] = ((lookup_by_block[2] % num_col)*
blob_width);

assign position [0][9:0] = ((lookup_by_block[2] / num_col)*
blob_height);

assign position [1][20:10] = ((lookup_by_block[3] % num_col)*
blob_width);

assign position [1][9:0] = ((lookup_by_block[3] / num_col)*
blob_height);

assign position [2][20:10] = ((lookup_by_block[4] % num_col)*
blob_width);

assign position [2][9:0] = ((lookup_by_block[4] / num_col)*
blob_height);

assign position [3][20:10] = ((lookup_by_block[5] % num_col)*
blob_width);

assign position [3][9:0] = ((lookup_by_block[5] / num_col)*
blob_height);

assign position [4][20:10] = ((lookup_by_block[6] % num_col)*
blob_width);

assign position [4][9:0] = ((lookup_by_block[6] / num_col)*
blob_height);

assign position [5][20:10] = ((lookup_by_block[7] % num_col)*
blob_width);

assign position [5][9:0] = ((lookup_by_block[7] / num_col)*
blob_height);

assign position [6][20:10] = ((lookup_by_block[8] % num_col)*
blob_width);

assign position [6][9:0] = ((lookup_by_block[8] / num_col)*
blob_height);

assign position [7][20:10] = ((lookup_by_block[9] % num_col)*
blob_width);

 39

assign position [7][9:0] = ((lookup_by_block[9] / num_col)*
blob_height);

assign current_square[20:10] = ((lookup_by_block[0] % num_col)*

blob_width);
assign current_square[9:0] = ((lookup_by_block[0] / num_col)*

blob_height);
assign blank_square[20:10] = ((lookup_by_block[1] % num_col)*

blob_width);
assign blank_square[9:0] = ((lookup_by_block[1] / num_col)*

blob_height);

assign requested_coords [20:0] = position [request];
endmodule

Falling Blob Game, Blob Submodule

//
//
//purpose: generates pixels of square objects
/*Inputs:
-x,y: upper-left position of square blob
-width, height: dimensions of square blob
-hcount,vcount: current pixel location being processed
Output:
-pixel: pixel color to display
*/
//

module blob (x,y,width,height,hcount,vcount,pixel);
 input [5:0] width;
 input [5:0] height;
 parameter COLOR = 3'b011; //default color: --

 input [10:0]x,hcount;
 input [9:0]y,vcount;
 output [2:0] pixel;
 reg [2:0] pixel;

 always @(x or y or hcount or vcount) begin
 if ((hcount >= x && hcount < (x+width)) &&
 (vcount >= y && vcount < (y+height)))
 pixel = COLOR;
 else pixel = 0;
 end
endmodule

Falling Blob Game, Blob_bomb Submodule

//
//
//purpose: generates pixels of round bomb objects
/*Inputs:
-x,y: upper-left position of round blob
-width, height: dimensions of blob
-hcount,vcount: current pixel location being processed
Output:
-pixel: pixel color to display
*/
//

module blob_bomb (x,y,width,height,hcount,vcount,pixel);

 40

 input [5:0] width;
 input [5:0] height;
 parameter COLOR = 3'b100;

 input [10:0]x,hcount;
 input [9:0]y,vcount;
 output [2:0] pixel;
 reg [2:0] pixel;

 wire [5:0] r_sqr;
 assign r_sqr = width*width/4;
 wire [10:0] x_1;
 assign x_1 = x+(width/2);
 wire [9:0] y_1;
 assign y_1 = y+(height/2);

 always @(x_1 or y_1 or hcount or vcount) begin
 if (
 (hcount+width>=x_1) &&
 (hcount<= (x_1+width)) &&
 (vcount+width>=y_1) &&
 (vcount<=(y_1+height))
)
 if (
 ((x_1-hcount)*(x_1-hcount) +
 (y_1-vcount)*(y_1-vcount)) <= r_sqr
 ||
 ((hcount-x_1)*(hcount-x_1) +
 (vcount-y_1)*(vcount-y_1) <= r_sqr))
 pixel = COLOR;
 else pixel = 0;
 end
endmodule

Falling Blob Game Module

//
//
/*purpose: manage positions of blobs displayed over video, determine
intersection between player and blobs, display player’s game score
*/
//

/*buttonzero initializes random number generator,
 press_enter resets game */

module falling_blob_game (vclock,reset,enter,buttonzero, hcount, vcount,
 hsync, vsync, blank, switch_speed, pd_out, paddle_position_avg,
 phsync, pvsync, pblank, blob_game_pixel, game_over, data_for_hex);

 input vclock; // 65MHz clock
 input reset;
 input enter; //press_enter used as reset
 input buttonzero;
 input [10:0] hcount; // horizontal index of current pixel (0..1023)
 input [9:0] vcount; // vertical index of current pixel (0..767)
 input hsync; // XVGA horizontal sync signal (active low)
 input vsync; // XVGA vertical sync signal (active low)
 input blank; // XVGA blanking (1 means output black pixel)
 input [2:0] switch_speed; /*speed that objects fall down screen,
 set by switches [7:4] */
 input [23:0] pd_out;
 input [20:0] paddle_position_avg; /*current upper-left coordinate
 of user-controlled paddle */

 41

 output phsync; // game's horizontal sync
 output pvsync; // game's vertical sync
 output pblank; // game's blanking
 output [17:0] blob_game_pixel; // game's pixel
 output game_over //when game_over is 1, gameplay stops
 output [63:0] data_for_hex; //to display game score

 parameter screen_width = 720;
 parameter screen_height = 520;
 parameter blob_width = 6'd30;
 parameter blob_height = 6'd30;
 parameter paddle_width = 20;

 wire [2:0] pixel;
 reg [7:0] counter = 0; //counter used to delay appearance of blobs
 reg [63:0] data_for_hex;
 reg [6:0] score;
 reg [10:0] position_catch_x1;
 reg [10:0] position_catch_x2;
 reg [10:0] position_catch_x3;
 reg [10:0] position_catch_x4;
 reg [9:0] position_catch_y1=1;
 reg [9:0] position_catch_y2=1;
 reg [9:0] position_catch_y3=1;
 reg [9:0] position_catch_y4=1;
 reg [10:0] position_bomb_x1;
 reg [10:0] position_bomb_x2;
 reg [10:0] position_bomb_x3;
 reg [10:0] position_bomb_x4;
 reg [9:0] position_bomb_y1=1;
 reg [9:0] position_bomb_y2=1;
 reg [9:0] position_bomb_y3=1;
 reg [9:0] position_bomb_y4=1;
 wire [3:0] speed;
 assign speed = 2*switch_speed;

 wire [2:0] pixel_catch1;
 wire [2:0] pixel_catch2;
 wire [2:0] pixel_catch3;
 wire [2:0] pixel_catch4;
 wire [2:0] pixel_bomb1;
 wire [2:0] pixel_bomb2;
 wire [2:0] pixel_bomb3;
 wire [2:0] pixel_bomb4;

 reg old_vsync;
 wire new_frame;
 assign new_frame = old_vsync & ~vsync;
 reg old_enter=0;
 wire press_enter;
 assign press_enter = ~old_enter & enter;
 reg old_buttonzero=0;
 wire press_buttonzero;
 assign press_buttonzero = ~old_buttonzero & buttonzero;

 assign phsync = hsync;
 assign pvsync = vsync;
 assign pblank = blank;

 blob catch1(position_catch_x1,position_catch_y1,blob_width,

blob_height,hcount, vcount, pixel_catch1);
 blob catch2(position_catch_x2, position_catch_y2,blob_width,
 blob_height, hcount, vcount, pixel_catch2);
 blob catch3(position_catch_x3, position_catch_y3,blob_width,

 42

 blob_height, hcount, vcount, pixel_catch3);
 blob catch4(position_catch_x4, position_catch_y4,blob_width,
 blob_height, hcount, vcount, pixel_catch4);

 blob_bomb bomb1(position_bomb_x1, position_bomb_y1,blob_width,
 blob_height, hcount, vcount, pixel_bomb1);
 blob_bomb bomb2(position_bomb_x2, position_bomb_y2,blob_width,
 blob_height, hcount, vcount, pixel_bomb2);
 blob_bomb bomb3(position_bomb_x3, position_bomb_y3,blob_width,
 blob_height, hcount, vcount, pixel_bomb3);
 blob_bomb bomb4(position_bomb_x4, position_bomb_y4,blob_width,
 blob_height, hcount, vcount, pixel_bomb4);

 //new pixel_catch and pixel_bomb appear every 50 new_frames

 assign pixel = counter>149 ?
 pixel_catch1 | pixel_catch2 | pixel_catch3 | pixel_catch4 |
 pixel_bomb1 | pixel_bomb2 | pixel_bomb3 | pixel_bomb4

 : counter>99 ?
 pixel_catch1 | pixel_catch2 | pixel_catch3| pixel_bomb1 |
 pixel_bomb2 | pixel_bomb3

 : counter>49 ?
 pixel_catch1 | pixel_catch2 | pixel_bomb1 | pixel_bomb2

 : pixel_catch1 | pixel_bomb1;

 assign blob_game_pixel[17:12] = (pixel[2]==1) ? 6'b111111 : 6'b0;
 assign blob_game_pixel[11:6] = (pixel[1]==1) ? 6'b111111 : 6'b0;
 assign blob_game_pixel[5:0] = (pixel[0]==1) ? 6'b111111 : 6'b0;

//hit detection using paddle_position_avg from find_color module
 wire [10:0]paddle_x;
 wire [9:0]paddle_y;
 assign paddle_x = paddle_position_avg[20:10];
 assign paddle_y = paddle_position_avg[9:0];
 wire [7:0] hit; /*if 0-3 catch objects were caught or 4-7 bombs
 were hit (1 hit, 0 nothing) */
 assign hit[0] = ((position_catch_y1 >= paddle_y) &&
 ((position_catch_x1+blob_width) >paddle_x) &&
 (position_catch_x1<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[1] = ((position_catch_y2 >= paddle_y) &&
 ((position_catch_x2+blob_width) >paddle_x) &&
 (position_catch_x2<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[2] = ((position_catch_y3 >= paddle_y) &&
 ((position_catch_x3+blob_width) >paddle_x) &&
 (position_catch_x3<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[3] = ((position_catch_y4 >= paddle_y) &&
 ((position_catch_x4+blob_width) >paddle_x) &&
 (position_catch_x4<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[4] = ((position_bomb_y1 >= paddle_y) &&
 ((position_bomb_x1+blob_width) >paddle_x) &&
 (position_bomb_x1<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[5] = ((position_bomb_y2 >= paddle_y) &&
 ((position_bomb_x2+blob_width) >paddle_x) &&
 (position_bomb_x2<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[6] = ((position_bomb_y3 >= paddle_y) &&

 43

 ((position_bomb_x3+blob_width) >paddle_x) &&
 (position_bomb_x3<(paddle_x+paddle_width)))
 ? 1 : 0;
 assign hit[7] = ((position_bomb_y4 >= paddle_y) &&
 ((position_bomb_x4+blob_width) >paddle_x) &&
 (position_bomb_x4<(paddle_x+paddle_width)))
 ? 1 : 0;

 //player loses points for missing square blobs
 wire [3:0] blob_miss;
 assign blob_miss[0] = (position_catch_y1==screen_height) ? 1 : 0;
 assign blob_miss[1] = (position_catch_y2==screen_height) ? 1 : 0;
 assign blob_miss[2] = (position_catch_y3==screen_height) ? 1 : 0;
 assign blob_miss[3] = (position_catch_y4==screen_height) ? 1 : 0;

 always @(posedge vclock) begin
 old_vsync <= vsync;
 if (new_frame) begin
 old_enter <= enter;
 old_buttonzero <= buttonzero;
 counter <= press_enter ? 0
 : counter<150 ? counter + 1
 : counter;

//update positions of blobs and player score

 position_catch_x1 <= (hit[0] || press_enter ||
 (position_catch_y1 + speed + blob_height)>screen_height)
 ? pd_out[8:0] : position_catch_x1;

 position_catch_x2 <= (hit[1] || press_enter ||
 (position_catch_y2 + speed + blob_height)>screen_height)
 ? pd_out[12:4] : position_catch_x2;

 position_catch_x3 <= (hit[2] || press_enter ||
 (position_catch_y3 + speed + blob_height)>screen_height)
 ? pd_out[14:6]+80 : position_catch_x3;

 position_catch_x4 <= (hit[3] || press_enter ||
 (position_catch_y4 + speed + blob_height)>screen_height)
 ? pd_out[16:8] : position_catch_x4;

 position_bomb_x1 <= (hit[4] || press_enter ||
 (position_bomb_y1 + speed + blob_height)>screen_height)
 ? pd_out[17:9] : position_bomb_x1;

 position_bomb_x2 <= (hit[5] || press_enter ||
 (position_bomb_y2 + speed + blob_height)>screen_height)
 ? pd_out[15:7]+80 : position_bomb_x2;

 position_bomb_x3 <= (hit[6] || press_enter ||
 (position_bomb_y3 + speed + blob_height)>screen_height)
 ? pd_out[13:5]+50 : position_bomb_x3;

 position_bomb_x4 <= (hit[7] || press_enter ||
 (position_bomb_y4 + speed + blob_height)>screen_height)
 ? pd_out[11:3] : position_bomb_x4;

 position_catch_y1 <= (hit[0] || press_enter ||
 (position_catch_y1 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y1 + speed);

 position_catch_y2 <= (hit[1] || counter<50 || press_enter ||
 (position_catch_y2 + speed + blob_height)>screen_height)

 44

 ? 0 : (position_catch_y2 + speed);

 position_catch_y3 <= (hit[2] || counter<100 || press_enter||
 (position_catch_y3 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y3 + speed);

 position_catch_y4 <= (hit[3] || counter<150 || press_enter||
 (position_catch_y4 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y4 + speed);

 position_bomb_y1 <= (hit[4] || press_enter ||
 (position_bomb_y1 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y1 + speed);

 position_bomb_y2 <= (hit[5] || counter<50 || press_enter ||
 (position_bomb_y2 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y2 + speed);

 position_bomb_y3 <= (hit[6] || counter<100 || press_enter||
 (position_bomb_y3 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y3 + speed);

 position_bomb_y4 <= (hit[7] || counter<150 || press_enter||
 (position_bomb_y4 + speed + blob_height)>screen_height)
 ? 0 : (position_catch_y4 + speed);
 end //end else if ~game_over

 //update score each frame depending on value of hit
 score <= score +hit[0]+hit[1]+hit[2]+hit[3]-
 hit[4]-hit[5]-hit[6]-hit[7];
 data_for_hex <= {57'b0,score};

 end //end new_frame
end //end @ posedge vclock

endmodule

Rngen Module (Xilinx Core)

//
//
/*purpose: generate pseudo-random 1-bit output to scramble puzzle game
*/
//

/**

* This file is owned and controlled by Xilinx and must be used
*
* solely for design, simulation, implementation and creation of
*
* design files limited to Xilinx devices or technologies. Use
*
* with non-Xilinx devices or technologies is expressly prohibited
*
* and immediately terminates your license.
*
*
*
* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
*

 45

* SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR
*
* XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION
*
* AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION
*
* OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
*
* IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
*
* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
*
* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
*
* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
*
* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
*
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
*
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*
* FOR A PARTICULAR PURPOSE.
*
*
*
* Xilinx products are not intended for use in life support
*
* appliances, devices, or systems. Use in such applications are
*
* expressly prohibited.
*
*
*
* (c) Copyright 1995-2004 Xilinx, Inc.
*
* All rights reserved.
*

********/
// The synopsys directives "translate_off/translate_on" specified below
are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file rngen.v when simulating
// the core, rngen. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Guide".

module rngen (
 clk,
 sd_out,
 sinit); // synthesis black_box

input clk;

 46

output sd_out;
input sinit;

// synopsys translate_off

 LFSR_V3_0 #(
 "0000000001", // c_ainit_val
 0, // c_enable_rlocs
 0, // c_gate
 0, // c_has_ainit
 0, // c_has_ce
 0, // c_has_data_valid
 0, // c_has_load
 0, // c_has_load_taps
 0, // c_has_new_seed
 0, // c_has_pd_in
 0, // c_has_pd_out
 0, // c_has_sd_in
 1, // c_has_sd_out
 1, // c_has_sinit
 0, // c_has_taps_in
 0, // c_has_term_cnt
 0, // c_implementation
 0, // c_max_len_logic
 0, // c_max_len_logic_type
 "0000000001", // c_sinit_val
 10, // c_size
 "0000001001", // c_tap_pos
 0) // c_type
 inst (
 .CLK(clk),
 .SD_OUT(sd_out),
 .SINIT(sinit),
 .PD_OUT(),
 .LOAD(),
 .PD_IN(),
 .SD_IN(),
 .CE(),
 .DATA_VALID(),
 .LOAD_TAPS(),
 .TAPS_IN(),
 .AINIT(),
 .NEW_SEED(),
 .TERM_CNT());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of rngen is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of rngen is "black_box"

endmodule

 47

Randgen Module (Xilinx Core)
//
//
/*purpose: generate pseudo-random 24-bit output to generate random x-
positions for falling blob game blobs
*/
//
/***

* This file is owned and controlled by Xilinx and must be used
*
* solely for design, simulation, implementation and creation of
*
* design files limited to Xilinx devices or technologies. Use
*
* with non-Xilinx devices or technologies is expressly prohibited
*
* and immediately terminates your license.
*
*
*
* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
*
* SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR
*
* XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION
*
* AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION
*
* OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
*
* IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
*
* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
*
* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
*
* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
*
* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
*
* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
*
* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*
* FOR A PARTICULAR PURPOSE.
*
*
*
* Xilinx products are not intended for use in life support
*
* appliances, devices, or systems. Use in such applications are
*
* expressly prohibited.
*
*
*
* (c) Copyright 1995-2004 Xilinx, Inc.
*
* All rights reserved.
*
**
*******/

 48

// The synopsys directives "translate_off/translate_on" specified below
are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file randgen.v when simulating
// the core, randgen. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Guide".

module randgen (
 clk,
 pd_out,
 load,
 pd_in,
 sinit); // synthesis black_box

input clk;
output [23 : 0] pd_out;
input load;
input [23 : 0] pd_in;
input sinit;

// synopsys translate_off

 LFSR_V3_0 #(
 "000000000000000000000001", // c_ainit_val
 0, // c_enable_rlocs
 0, // c_gate
 0, // c_has_ainit
 0, // c_has_ce
 0, // c_has_data_valid
 1, // c_has_load
 0, // c_has_load_taps
 0, // c_has_new_seed
 1, // c_has_pd_in
 1, // c_has_pd_out
 0, // c_has_sd_in
 0, // c_has_sd_out
 1, // c_has_sinit
 0, // c_has_taps_in
 0, // c_has_term_cnt
 0, // c_implementation
 0, // c_max_len_logic
 0, // c_max_len_logic_type
 "000000000000000000000001", // c_sinit_val
 24, // c_size
 "000000000000000010000111", // c_tap_pos
 0) // c_type
 inst (
 .CLK(clk),
 .PD_OUT(pd_out),
 .LOAD(load),
 .PD_IN(pd_in),
 .SINIT(sinit),
 .SD_OUT(),
 .SD_IN(),
 .CE(),
 .DATA_VALID(),
 .LOAD_TAPS(),
 .TAPS_IN(),
 .AINIT(),
 .NEW_SEED(),

 49

 .TERM_CNT());

// synopsys translate_on

// FPGA Express black box declaration
// synopsys attribute fpga_dont_touch "true"
// synthesis attribute fpga_dont_touch of randgen is "true"

// XST black box declaration
// box_type "black_box"
// synthesis attribute box_type of randgen is "black_box"

endmodule

Find Color Module Code

///
//
/*purpose: looks at display pixels to find 128 pixel averaged location
of user-controlled paddle of a specified color
*/
///

module find_color(clk, reset,enter, hcount, vcount,vsync,
 vr_pixel,get_color,switch2,
 paddle_position_avg,test_pixel);

 input clk; //same as vram_display
 input reset;
 input enter;
 input [10:0] hcount;
 input [9:0] vcount;
 input vsync;
 input [17:0] vr_pixel;
 input get_color; //when switch[5] store pixel color
 input switch2; //switch[2] enable look for color
 output [20:0] paddle_position_avg;
 output[17:0] test_pixel;

 parameter tolerance = 28;
 parameter avg_num = 128;
 parameter paddle_width = 20;

 reg [18:0]paddle_position_x =0; /*need 8 extra bit places to add
 256 11-bit position values */
 reg [17:0] paddle_position_y=0;
 reg [20:0] paddle_position_avg=0;
 reg [8:0]counter = 0;
 reg [10:0] hcount_d1=0;
 reg [10:0] hcount_d2=0;
 reg [10:0] hcount_d3=0;
 reg [9:0] vcount_d1=0;
 reg [9:0] vcount_d2=0;
 reg [9:0] vcount_d3=0;
 reg look; //used to control looking for color
 wire [17:0]test_pixel;

 assign test_pixel = (

 50

 ((hcount_d3-paddle_width)<(paddle_position_avg[20:10])) &&
 ((hcount_d3 +paddle_width) > paddle_position_avg[20:10]) &&
 ((vcount_d3-paddle_width)<(paddle_position_avg[9:0])
) &&
 ((vcount_d3 +paddle_width) > paddle_position_avg[9:0]))
 ? {12'b0,6'b111111}
 :
 (40<vr_pixel[17:12] &&
 0<=vr_pixel[11:6] && vr_pixel [11:6] < tolerance &&
 0<=vr_pixel[5:0] && vr_pixel [5:0] < tolerance)
 ? {6'b0,6'b111111,6'b0}
 : vr_pixel;

 reg old_vsync;
 wire new_frame;
 assign new_frame = old_vsync & ~vsync;

 reg old_enter;
 wire press_enter;
 assign press_enter = ~old_enter & enter;

 always @(posedge clk) begin

 old_vsync <= vsync;
 old_enter <= enter;

 /*delay hcount and vcount by 3 clock cycles to allow for
 Processing by vram_display module- vr_pixel goes with
 hcount and vcount from 3 cycles ago*/

 hcount_d3 <= hcount_d2;
 hcount_d2 <= hcount_d1;
 hcount_d1 <= hcount;
 vcount_d3 <= vcount_d2;
 vcount_d2 <= vcount_d1;
 vcount_d1 <= vcount;

 /*check if pixel being displayed by vram_display is within
 tolerance of the color specified (red) */

 if(new_frame) begin
 look<=1; //want to look for color every frame
 paddle_position_x <= 0;
 paddle_position_y <= 0;
 counter <= 0;
 end

 if(look==1 &&
 hcount_d3>50 && hcount_d3<720 &&
 vcount_d3>50 && vcount<548)

 if(
 40 < pixel[17:12] &&
 0 <= vr_pixel[11:6] && vr_pixel[11:6] < tolerance &&
 0 <= vr_pixel[5:0] && vr_pixel[5:0] < tolerance
)

 51

 /*want to average 128 position values of correct
 color pixels- hcount_1 is current paddle x
 position, vcount_1 is current paddle y position */

 begin
 paddle_position_x <= paddle_position_x +
 hcount_d3;
 paddle_position_y <= paddle_position_y +
 vcount_d3;
 counter <= counter+1;
 /*stop looking for color after 128 position
 values added */
 if (counter>=avg_num-2) look<=0
 end
 else begin
 paddle_position_avg[20:10] <=
 paddle_position_x/avg_num;
 paddle_position_avg[9:0] <=
 paddle_position_y/avg_num;
 end
 end //end posedge clk
endmodule

