
Programmable Audio Visualizer

Dany Qumsiyeh, Mike Spindel

November 6, 2005

Abstract

This project is a programmable audio visualizer that can display

synchronized graphics on multiple displays. It is capable of executing

a user-specified program each frame that can contain mathematical

functions as well as configuration commands for a set of special pur-

pose graphics rendering hardware. The implementation is composed

of three parts: a frontend audio processing module, a specialized mi-

croprocessor, and an output display module. The frontend processor

maintains a 1s audio sample FIFO and executes an FFT and beat-

detection algorithm. This data is then available to the the graphics

processor, which executes a user-defined program to render the vi-

sualization to a framebuffer. The output module maps parts of the

framebuffer to appropriate external displays.

Contents

1 Description 1
1.1 Display . 1
1.2 Memory . 1
1.3 Processor . 1
1.4 Effects . 1

2 Module Descriptions 3
2.1 Pre-processing Block . 3
2.2 Display Block . 6
2.3 Processor Block . 6
2.4 Effects Module . 7

3 Division of Labor 8

List of Figures

1 Example pseudo-code. 2
2 Preprocessing Block Diagram 3
3 Display Block Diagram . 3
4 Processor Block Diagram . 4
5 Effects Module Diagram . 5

i

1 Description

1.1 Display

The system is designed to support multiple synchronized displays. This will
be done by having the effects engine operate on a single, large, virtual buffer.
Displays are then mapped onto sections of this buffer with positions that
reflect their relative physical locations. Even with a single display, having
a larger virtual buffer hides edge effects and allows patterns to emerge from
off-screen.

1.2 Memory

The system will maintain two large virtual buffers in one or more SRAM
chips. While the display modules read from one buffer, the engine writes to
the other, and the mapping switches when a frame is completed. The map-
ping from global coordinates to the DRAMs is handled by a memory manager
module. This module provides read ports (in the pixel coordinate system)
for each display module, and both read and write ports for the effects mod-
ule. To meet SRAM port limitations, restrictions can be enforced such has
having displays not share a single SRAM module.

1.3 Processor

Effects are created by a processor which loops through instructions in BRAM.
Example code that could be compiled is shown in figure 1. The processor can
execute the usual arithmetic commands, along with a simple “if” that can
skip a certain number of instructions. The special commands “convolve” and
“generate”, however, run long operations on the buffers in memory, during
which pc is halted. Predefined registers supply the parameters for these
commands.

1.4 Effects

The system will be able to apply a variety of programmable effects to the
buffer for every frame. In general, a convolution can be applied, and any
number of generators used, which can overlay patterns and waveforms on the
screen. A number of motion effects (such as rotate, translate, and zoom) can

1

Figure 1: Example pseudo-code.

//initialize

if (resetbutton) skip 1

rANGLE <= 0

//configure motion effects

reg(motion1type) <= (rotate)

reg(motion1param1) <= rANGLE

reg(motion2type) <= (translate)

reg(motion1param1) <= rX

reg(motion1param2) <= rY

//specify convolution filter

reg(convolve00) <= 1

reg(convolve01) <= 2

...

//do the convolution

convolve

//configure parallel generators

reg(gen1type) <= (waveform)

reg(gen1param1) <= rSIZE

reg(gen2type) <= (scope)

//run generators

generate

//configure generators again

reg(gen1type) <= (circle)

reg(gen2type) <= (disabled)

//run new generators

generate

//vary parameters

rANGLE <= rANGLE + 1 //spin

r1 <= (rX < rY)

if (r1) skip 1

r3 <= r1 * r2

//etc

2

modify the convolution and generators, with the limitation of the number
of motion module instances. The 2D convolution filter is small, but fully
specified by user registers, and can implement effects such as blur or edge-
detect. A C 9 7 S a m p l e F I F O

F F TB e a t D e t e c t i o n F F T B R A M
n e w _ f r a m eb e a t

t o g e n e r a t o r s

Figure 2: Preprocessing Block Diagramx v g a d i s p l a ys c r e e n x , yc o l o r M e m o r yM a n a g e rx v g a d i s p l a ys c r e e n x , yc o l o r
g l o b a l x , yc o l o r S R A MS R A M

Figure 3: Display Block Diagram

2 Module Descriptions

2.1 Pre-processing Block

ac97 sound module provides samples at regular intervals.

3

P CI n c r e m e n tfl i p I n s t r u c t i o nM e m o r y
T i m eL o g i cC o n t r o lL o g i cT i m e r s t a r tv a l u e d o n e

R e g i s t e r F i l eW AA , B

E f f e c t sA L UA S E L b eat b utt ons
A L U F N

W D

t o m e m o r y m a n a g e r
params F F TB R A MP C S E LW E R FA L U F Nc _ e n a b l eg _ e n a b l eA S E L

A Bi nc _reset i nc _val

i n c _ r e s e ti n c _ v a l
ZZ S a m p l eF I F O

Figure 4: Processor Block Diagram

4

T i m eL o g i c T i m e r P i x e lF S Me n a b l es t a r td o n ev a l u e m e m o r y w r i t e
T r a n s l a t ex , yM o t i o nM o t i o n v e cv e c G e n e r a t o rG e n e r a t o r B l e n d

C o n v o l v eF S M
M u l t / A d ds u mx , yp c o l o r f r o m m e m

mem pm e m o r y a d d r

e f f e c t f nx ' , y '
c o l o r

c o l o r
c o l o rpp pp

S a m p l eF I F O F F TB R A M

Figure 5: Effects Module Diagram

5

sample fifo maintains a running buffer of the most recent samples in BRAM,
and provides multiple read ports for fft, beat detect, and generator
modules.

fft does fft on the sample buffer on every new frame signal, writing the
results to fft bram.

beat detect reads data from fft bram and sample buffer and produces a
beat value for the current sample.

2.2 Display Block

xvga[n] display interface modules which request pixels in sequence and take
in a color value.

display[n] translates screen coordinates to absolute coordinates in the global
buffer.

memory manager translates read and write requests for global buffer co-
ordinates to the correct SRAM requests.

2.3 Processor Block

pc register holds the value of the current instruction address.

increment increments pc by inc val. if inc reset is asserted (when an empty
instruction is encountered), it resets pc to the first instruction, and
toggles the value of flip (used by the memory manager to determine
which buffer is which).

instruction mem BRAM holding the visualizer program.

time logic interprets the current instruction and outputs how many clock
cycles the instruction will take.

timer times out the value produced by time logic, to hold pc still while long
computations take place.

control logic maps the current instruction to the listed control signals.

6

register file register file with one write port and many read ports. Two read
addresses come from the current instruction, and the others are fixed
to the configuration registers for the convolve and generator modules.

asel mux chooses whether to substitute inputs such as beat or button values
for the register A value.

alu the usual arithmetic functions, with the result written to a register.

effects takes parameters from the fixed read ports of register file and com-
municates with memory manager to update the buffer in memory. sub-
modules described below.

2.4 Effects Module

timer times out the value produced by time logic.

time logic takes parameters from register file and the current coordinates,
and outputs how many clock cycles are required for the convolution or
generators to finish.

translate adds a translation vector to the pixel coordinates, obtained by
summing the vectors produced by the motion modules.

motion[n] takes parameters from register file and coordinates from pixel fsm,
and produces the vector for the motion effect requested.

generator[n] takes parameters from register file, and uses data from fft bram
or sample buffer to produce a color for the current pixel coordinates.

blend combines the colors from the generator[n] modules with the current
pixel from memory manager based on the parameters.

conv fsm steps through the coordinates nearby the current pixel, for do-
ing the convolution. It expects a final convolution sum at the end,
and passes that color value up to pixel fsm. It requests from mem-
ory manager the old pixel values, which are actually received by mult add.

mult add takes the pixel value from memory manager, and offset coordi-
nates. based on the parameters from register file, multiplies the pixel
by the appropriate value and outputs the running sum.

7

3 Division of Labor

Dany Qumsiyeh will write the display blocks, and processor blocks (without
effects). Mike Spindel will write the preprocessor blocks, and effects blocks.
We will share writing motion and generator modules.

8

