Sentry Security Camera

6.111 Final Project
Ray Wu, Bo Zhu, and Robert Speaker

14" December 2005

Speaker, Wu, Zhu 1

Section 1
Project Abstract

Safety is an important issue to many. Security personnel need to make sure the
buildings they are guarding are well monitored. Homeowners and storekeepers that leave
their property want to keep intruders away, or at least capture criminals on tape for the
police. Because hiring guards and watchmen is expensive, a cheaper alternative lies in
using today’s video and audio processing technology to do the job.

By using field programmable gate arrays (FPGAs), off the shelf circuit
components, microphones, and a common digital video camera, we built a device to
provide for the aforementioned security needs. The Sentry Camera is designed to provide
a security monitoring machine that uses visual and audio input to identify a target that’s
either moving or producing noise. This device can be installed in homes and facilities to
monitor the premise for intruders. Both motion and sound that trigger the device can then
be used as signals to perform a host of responses, including tracking the target and
recording it.

Section 2

Table of Contents

1. Abstract

2. Table of Contents

3. List of Figures

4. List of Tables

5. List of Hardware used

6. Overview

7. Module Descriptions
a. Robert’s Modules:

1.
1i.
1ii.
1v.
V.
Vi.

Master Controller
Motion Calculator
Motor Control
Display Module
Picture Taker

Test angle generator

b. Ray’s Modules

1.
1i.
1ii.
1v.
V.
Vi.
Vii.

Video Processor Overview
NTSC To RAM

VGA With RAM
CalcMBError

Calc_camera angle

Video RAM

Video Testing and debugging

c. Bo’s Modules

1.
ii.

iii.
1v.

V.
Vi.
Vii.
viil.

Audio Processor Overview
Microphones Amplifiers and
ADCs

ADC Controller

Sound Source Location
Algorithm

Differencer

Slopefinder

Angle Calculator

Testing and Debugging

8. Conclusion
9. Appendix: Verilog Code

Speaker, Wu, Zhu 2

cOON DN B~ WN -

11
15
19
21
22

23
25
27
29
30
31
32

33
34

35
39

43
45
46
47

48
49-153

Speaker, Wu, Zhu

Section 3

List of Figures

Figure 1
Overall Block Diagram of the whole system showing all the
subcomponents and how they interact with each other.
Figure 2
Block diagram of the Motion Calculator module
Figure 3
Angles are representated as a 6 bit number from 0-35giving
precision within 10 degrees.
Figure 4
The layout of a Unipolar (Bifilar) motor and the four coils used to
drive it (IA+, IA-, IB+, and IB-)

Figure 5

A Block diagram showing the wiring of the motor to the driver chip
Figure 6

Overall block diagram of the video processing module
Figure 7

Video Recording timing
Figure 8

Video Interframe comparison
Figure 9

VGA parameters for various resolution and frame rates
Figure 10

Macroblock comparison description
Figure 11

Calculation of Video Angle
Figure 12:

Block diagram of the Audio Processing Module.
Figure 13:

The microphone amplifier and AD7871 ADC setup
Figure 14:

Timing Diagram for AD7871 Analog to Digital Converter.
Figure 15:

Logic Analyzer output for ADC Controller.
Figure 16:

Finite State Machine of the ADC Controller.
Figure 17:

Triangle model of Time Difference of Arrival
Figure 18:

The possible locations for the sound source
Figure 19:

Superposition of audio vectors

11

12

15

17

23

25

26

27

28
29

33

34

35

37

37
39

41

42

Speaker, Wu, Zhu

Section 4
List of Tables

Table 1

A mapping of each switch on the labkit and its corresponding function
Table 2

A mapping of each button on the labkit and its corresponding function
Table 3

State transition diagram to drive the Unipolar stepper motor
Table 4

Timing Characteristics of AD7871 Analog to Digital Converter

16

35

Section 5
List of Hardware Used:

RN R W=

AIRPAX LB82731-M1 Stepper Motor
LM18293N Push-Pull Driver Chip

Camera Mount

2 275-017A SPDT Submini Roller Lever Switches
4 Omni-directional Condenser Microphones

4 External AD7871 ADC’s

CCX-Z11 Video Camera

External Power supply for motors

6.111 FPGA labkit

Speaker, Wu, Zhu

5

Speaker, Wu, Zhu 6

Section 6: Overview

This document outlines the sentry security camera design project that we created
for our 6.111 final project. In this project we came up with a system that is capable of
tracking motion and centering the camera on that motion. In addition the system is
capable of sensing when a loud crash or bang occurs somewhere outside the field of view
of the camera and will move the camera to locate where the sound is coming from. If
someone were breaking into a store upon breaking the glass the camera would detect this
sound, move the camera to the location of the sound and begin visual tracking of the
target. The camera will follow the target wherever it detects motion. The system will
also take pictures of the motion it detects. To implement this design we broke up the
system into parts. Ray was responsible for the Visual motion tracking. Bo was
responsible for the audio detection and location. And Robert was responsible for the
motor control, video capturing, and integration of the other components. An overall
block diagram of the system can be seen in figure 1.

shapshot] reset
camera_mul1: 0];[Lmanual_ouerr‘ide i
———PD d_reset clock
Deb:
ebounce (to all modules> (to all modules>
d_camera_mul1:@]| 9-shapshot d_manual_override

Micl 3
» 1e [5:01 v_motion A~ 4
D:L +|a 2n9 > Master Controller K—————— Video tv-in_i2c_dat
Audio a_motion v_angle_h(5:0] |Processork}———
ioo Processor X K——F—
1 .
) moving u_anglg_uES.B] Camera
) Mic3 take_picture
move_cameral3:0] é édebug_info [x:0] l
Mic4 Motion Display read_data
Calculator Module Kt Bl =

T
Coils to & e | A .
stepper motor EE © (& hsync Usynilank rgb_pixell23:0]

Camera Motor LCD

Figure 1: Overall Block Diagram of the whole system showing all the
subcomponents and how they interact with each other.

As with any large project the best way to go about working on it is to break the
large problem into smaller sub problems. The block diagram above shows the smaller
modules that piece together to form the system as a whole. The Master Controller is the
integrating module that connects all the smaller modules together. It is responsible for

Speaker, Wu, Zhu 7

managing all the user input. The Video Processor is responsible for taking the camera
input and detecting motion using a sum of absolute luminance differences algorithm.
Similarly, the Audio Processor is responsible for taking input from the microphones and
calculating where the sound came from by comparing the time delay between each audio
signal. The Master Controller then feeds these results to the Motion Calculator which
determines which direction it needs to move the motor to center the camera on the
motion/audio. In addition to this, the Master Controller sends debugging information to a
Display Module that displays this information on the LCD screen. Each one of these
modules will now be described in detail.

Section 7.a.1 Master Controller (Robert)

Speaker, Wu, Zhu 8

The master controller is responsible for integrating all the sub modules together
and connecting everything up to the FPGA’s input and output connections. It is based off
of the template labkit.v file written by Nathan Ickes. It incorporates some modifications
used to set up the XVGA and ZBT memory (which will be discussed in section 7.a.v)
written by Javier Castro and Ike Chuang respectively. One of the main jobs of the master
controller was to take the input from the labkit’s buttons and switches and feed them to
their appropriate modules. Tables 1 and 2 map each button/switch to their designated
function. For more information on what each switch/button does you can look at the
section marked in the Section Reference column.

Table 1: A mapping of each switch on the labkit and its corresponding function

Switch Name Brief Description High Low Section
Number Reference
0 Manual Toggles Between Manual Automatic 7.a.ii
Override Automatic Motion and Motion Motion

Manual
1 Debug Angles Switches between the Generated Real Angles 7.a.vi
angles generated from | Debug Angles
video and audio
processors and debug
angles generated for
testing
2 Unused - - - -
3 Continuous Switches between Discontinuous- | Continuous- 7.b
Video Feed active comparison on Still Two Active
two video frames and Background Frames
comparison of one
active and one still
background
4 High Contrast Toggles the video High Contrast Low 7.b
Video Mode contrast for better Contrast
detection by
increasing the false
positive rate
5 A/V Priority Tells the Motion Audio trumps Video 7.a.ii
Calculator what takes video trumps audio
priority, visual motion
or audio detection
6 Video Controls whether the Display No display 7.b
Processing interframe comparison interframe
Display is displayed on the video
LCD or not comparison
7 Picture Viewer Controls whether the | Picture Viewer Display 7.a.iv
Display display module or the Module

picture view is
displayed on the LCD

Speaker, Wu, Zhu 9

Table 2: A mapping of each button on the labkit and its corresponding function

Button Name Description Section
Reference
Enter Reset Re-initializes all modules -
0 Snapshot When in Manual Override mode will take 7.a.v
pictures of the current video display
1 Unused - -
2 Simulated When in Debug Angle mode will trigger the 7.a.ii/7.a.vi
Audio motors to move as a result of simulated audio
Motion motion
3 Simulated When in Debug Angle mode will trigger the 7.a.i1/7.a.vi
Video motors to move as a result of simulated video
Motion motion
Up Move up When in Manual Override mode will move the 7.a.i
camera up
Down Move When in Manual Override mode will move the 7.a.ii
down camera down
Left Move left | When in Manual Override mode will move the 7.a.i
camera left
Right Move right | When in Manual Override mode will move the 7.a.ii
camera right

The master controller takes the inputs from the switches and buttons listed in the
tables above and will feed them to the appropriate modules that do the processing. All of
these buttons and switches are debounced and synchronized with a 65 MHz clock that the
master controller generates. The debouncing is necessary to remove any intermediate
noise that is generated from manual switches. The synchronization makes integrating all
the modules much simpler since everything is running on the same clock. The reason
that a faster clock than the labkits normal 27 MHz clock was used was because in order
to display 1024x768 resolution on the LCD (refreshing at 60 Hz) a much faster clock
speed is needed. This increased clock speed made writing to the ZBT and video ram
more difficult because of propagation delays. After interlacing the read and writes across
different clock cycles everything could be driven at the faster 65 MHz clock.

The master controller also integrates the sub modules together. It takes the angles
generated from audio and video processing units and feeds them to the motion calculator
module. The motion calculator then uses the angles to determine how to move the motor.
The master controller takes in the video input from the camera via the composite video-in
on the labkit and feeds these signals to the onboard video RAM and ZBT RAM. The
video processing unit uses the video RAM to compare frames to find motion. The master
controller stores the video into the ZBT RAM whenever the user wants to take a picture
or whenever motion is detected (see section 7.a.v for details). The master controller also
generates debugging information to display on the labkits LED’s.

Integrating components together is almost always more difficult than one
anticipates and so we prepared for this early in order to get adequate debugging and
testing time. Every so often in the development cycle we would share each others code

Speaker, Wu, Zhu 10

to make sure that we knew what the other’s modules were doing to make sure that no
one interpreted specifications differently and that implementations were compatible.
This worked remarkably well because the integration was very straightforward and the
only real bugs we had were with spelling typos and a few problems with the video
display. Originally, the video processing unit was being driven at a 78 MHz clock in
order to draw frames at 75 Hz on the LCD but we had to downgrade this speed in order to
make the modules compatible. This was not a very large change since the LCD does not
care if the it is begin driven at 75 Hz (78 MHz clock) or 60 Hz (65 MHz clock). Testing
the picture taking mechanism was very easy as well because it was easy to see whether
the pictures were displayed on the screen or not. The only difficulty was in choosing the
parameter of how long to hold the write enable high. We decided to use 0.1 seconds
because through experimentation we found that was a reasonable value for catching a
person walking by the camera.

Speaker, Wu, Zhu 11

Section 7.a.11 Motion Calculator (Robert)

The Motion Calculator module is responsible for getting the information from the audio
and video processors and determining which direction to move the camera in order to
find this motion. A block diagram of the motion calculator can be seen in figure 2.

Reset — 3 Al Modules

Clock_65mhz —_— All Modules

Signals sent to stepper motor coils
hlAp hlAn hiBp hiBn

Manual_Override —»;

m_move[3:0]——»| Look _left Horizontal
v_angle_h[5:0] —»| Look_right Motor Control
v_angle_v[5:0] —

v_motion ———— Motion Calculator

a_angle[5:0] —|
a_motion ———»

Priority =" Look_Up Vertical

cant_move_up —| Look_Down Motor Control

cant_move_down—»|

VIAp vIAn vIBp vIBn

l l l l Signals sent to stepper motor coils

Moving v_expired h_expired blank

Signals sent to Master Controller

Figure 2: Block diagram of the Motion Calculator module

The Motion Calculator can run in two different modes depending on the state of
the Manual Override switch. If Manual Override is asserted then the motion calculator
will not listen to the video and audio angles that are given to it, but will instead take input
from the user in order to determine which direction to move the camera. The
m_move[3:0] signals come from the labkits up, down, left and right buttons and will
move the camera in the specified direction. Using this mode was very useful for
debugging the control of the motor before the audio and video processor code was
complete. This also made it a lot easier to get the correct timing for stepping the motor
coils as discussed in section 7.a.iii. When Manual Override is not asserted the Motion
Calculator ignores the user inputs and runs in automatic mode. It takes the angles from
the video and audio processors and determines where to move the camera. The signals
v_angle h[5:0] and v_angle v[5:0] are the horizontal and vertical angles relative to the
current view of the camera that the video processing unit has determined motion to be
found at. The v_motion signals tells the Motion Calculator when these angles are valid,
i.e. when motion has been detected. Simarly, a angle[5:0] is the angle relative to the
current camera view that the audio processing unit has determined sound to be coming
from. a motion is the signal when sound is detected and the angle has been computer.
Since the motor can only move in 10 degree steps (see section 7.a.iii) we only need to
report angles with 10 degree precision. We, therefore, represent the angles as a 6 bit

Speaker, Wu, Zhu 12

number from 0-35, where each number multiplied by 10 represents the actual angle
degree. This can be described best by looking at figure 3 which shows the possible angle
values relative to the camera view.

3 013,

Current
Camera
View

Figure 3: Angles are representated as a 6 bit number from 0-35 giving precision
within 10 degrees.

If the motion calculator will determine whether to turn clockwise or counter
clockwise based on whichever takes less steps. For example, if it is given an angle of 2,
it will tell the motor control unit to move clockwise for 2 steps of the motor, whereas if it
is given a 35 it will move 1 step counter-clockwise instead of 35 steps clockwise. A
design decision was made to keep track of all angles relative to the current view of the
camera. Keeping track of angles in this fashion drastically reduces the complication that
would result if the motion calculator needed to keep a state of where it has already
moved. If the motor was told to move 30 degrees but in actuality it only moved 29 then
over time these off by one errors would add up and keeping track of the angle state would
be infeasible. Furthermore, if relative angles were not used, there would be added
complication due to the fact that the motion calculator would have to initialize itself.
When the system is first powered on, the calculator has no idea in what direction the
camera is facing so it would need to go through some initializing step to set the initial
angle state. Keeping track of the relative angles meant that no initialization was needed
and that there was no stored state so off by one angles have no effect other than being off
by one. The downside of using relative angles was that everything must move with the
camera, thus increasing the weight that the motor has to move. All of the microphones
and wires required for the audio processor needed to be mounted on top of the motor, in
addition to the camera and all of its wires. This added weight made it very difficult for
the motors to produce enough torque to move the motors. Furthermore, the additional
wires upon spinning of the motor often became twisted and limited the motor from
spinning to its full capacity.

The motion calculator was implemented so that whenever the motor is currently
moving it will not accept any inputs from the video or audio processing units. When the
camera is moving it will always detect motion so we need to ignore this input. After
movement has stopped the calculator continues to ignore input for a configurable amount
of time (2 seconds was our final solution). This blanking period was necessary because
when the motor stops moving there is inevitably some jitter from the motor coming to a

Speaker, Wu, Zhu 13

sudden stop that could be misinterpreted as motion. To prevent the video processor from
sending the motor in a continuous stream of motion because of post-movement jitter, we
decided to ignore signals for 2 seconds after movement has ceased. The downside of this
decision is that the camera is slower to follow objects in motion because it takes 2
seconds after each movement before it begins processing again. Whenever we are in this
delay state, the calculator sets the output blank high so that other modules know that it is
not accepting any input to avoid unneeded computation.

The motion calculator takes in a priority signal that is used to determine which
takes priority when both audio and video are detected at the same time. If priority is low
then video will trump audio. If any audio signal comes in when we are already
processing a video angle then the audio signal will be ignored. If priority is high then the
opposite will happen. This was mainly used for debugging purposes to test each
component of the system individually.

The motion calculator produces several outputs. It produces a moving signal that
is set high whenever the motion calculator is driving the motors. This signal is sent to the
video and audio processing units so that they can avoid doing any computation during
times when the motion calculator would not listen to them anyway. The complements to
this signal are the 4 expire and v _expire signals which signal when movement has
finished and the processing units can begin to start sending new angles. In the final
implementation the video processing unit ignored these signals and computed a new
angle regardless of whether the motor was moving or not. However, the audio processing
unit was reset after movement terminated and began recalculation.

The other outputs of the motion calculator module are the signals sent to the
motor control modules that actually drive the motor. The look left, look right,
look _down, and look up signals are the fwd/reverse signals sent to the horizontal and
vertical motor controllers which drive the motors in the clockwise/counterclockwise
direction as described in section 7.a.iii.

Originally, our design incorporated 2-dimensional movement. After
experimenting with the motors we ran into difficulty getting movement along the y-axis
because the stepper motors we chose (see section 7.a.iii) did not have enough steady-state
torque to hold the camera still when the motor was not driven. The system still generates
all the signals necessary to move the camera along the y-axis despite the fact that these
signals were not actually connected to a motor in our final design. The cant move up
and cant_move_down signals are inputs that tell the motion calculator when the motor
cannot move anymore because of mounting constraints. Whenever the motor reached its
maximum position it would hit a doorbell switch that prevented any further motion in this
direction. The switches used for this were 275-017A SPDT Submini Roller Lever
Switches running from an external 5V power supply and fed into the labkits user ports.

Testing the motion calculator module went smoothly. Using the test angle
generator described in section 7.a.vi we were able to test the motion calculator module
before the audio and video processing modules were completed. The test angles were
sent to the motion calculator and we were able to see that the motor would move the
specified number of degrees (within 10 degree increments). We also experimented with
the timing of when the angles were asserted to make sure that the angles were ignored
when the motor was in motion or we were in the blanking state. The display module

Speaker, Wu, Zhu 14

made debugging the motion calculator really easy and so this was one of the first
modules to be completed.

Speaker, Wu, Zhu 15

Section 7.a.111 Motor Control (Robert)

The motor control module was responsible for driving the motor to move the
camera. We chose to use stepper motors because their movement is much more
controlled than a DC motor. Stepper motors are capable of moving a discrete distance at
each step. Another possibility would be to use a servo motor which is also capable of
moving a discrete angle (and possibly more accurately) but servos are more expensive
than the simple stepper motors we used. We found stepper motors already in the lab
room so we decided to use them since they were available and we could start using them
immediately without having to wait for ordered parts to arrive. In hindsight, it might
have been better to get more efficient motors, because the motors we used had difficulty
producing enough torque to move the required weight. The specific type of stepper
motor that we used was an AIRPAX LB82731-M1 Stepper Motor. These motors are
unipolar (Bifilar), the layout of which can be seen in figure 4.

+\V/cc

Unipolar Motor

|
A-¢f A+ B- [B+

$ Gnd

Figure 4: The layout of a Unipolar (Bifilar) motor and the four coils used to drive it
(IA+, IA-, IB+, and IB-)

The AIRPAX LB82731-M1 Stepper motors have 4-75 Ohm Coils that are used
to step the motor in both full and half-step increments. We decided to use half-step
increments because we needed more precision than that provided by full steps. From
experimental testing of the motors (because the spec sheets were not available), the full
steps moved the motor about 20 degrees compared to the 10 degrees for each half step.
The motor control module is essentially an FSM that generates the [A+, IA-, IB+, and IB-
signals that are sent to the motor to charge and discharge each of the 4 coils. The state
transition diagram for half step increments can be seen in Table 3. The motor is cabable

Speaker, Wu, Zhu 16

of moving in both clockwise and counterclockwise directions depending on which order
the states are traversed. There are 8 states all together and experimental testing showed
that for reasonable performance a maximum of a 10 Hz clock could be used to transition
from state to state without skipping any steps. The faster you transition between the
states the less torque the motor will have since it has less time to charge each coil. We
decided to use a SHz clock to allow the quick movement necessary to track visual motion
and still provide the necessary torque to move the camera mount.

Table 3: State transition diagram to drive the Unipolar stepper motor in half step
increments. Increasing state produces clockwise movement and decreasing state
produces counter-clockwise movement.

State 1A+ 1A- IB+ IB-
1 On Off On Off
2 On Off Off Off
3 On Off Off On

4 Off Off Off On

5 Off On Off On

6 Off On Off Off
7 Off On On Off
8 Off Off On Off
1 On Off On Off

The motors require a lot of current to charge and discharge each coil. Even
though the labkit is capable of producing enough voltage to drive the stepper motor, we
decided to use an external power supply to avoid surges of current that may interfere with
other signals driven by the labkit. A 12V power supply was used to supply the current.
We also used a LM 18293N Push-Pull Driver Chip to amplify the signals coming from the
labkit. A layout of how the motors are wired up to this chip can be seen in figure 5.

Speaker, Wu, Zhu 17

5V External 12V External
Power Supply Power Supply

1,9,16 8
1A+ 2 3 |A+ Brown
Clk ———»f
|A-° Orange
1A- 7 6
Reset —| LM18293N
Motor Control Push-Pull AIRPAX
FSM ush-rul LB82731-M1
Fwd 1B+ 10 Driver Chlpﬂ IB+ Yellow Stepper Motor
wd ——»
Rev 5 Hz Half Step B- 15 14 B Gray
State Transitions
4,512,13
Black, White,|
Red, Green l
GND GND

Figure 5: A Block diagram showing the wiring of the motor to the driver chip

One of the biggest problems we had with the motor was that when the motor was
not being driven, there was not enough torque to hold the camera mount in place. When
there was motion, the motor could move the mount but when motion ceased the motor
was not powerful enough to hold the vertical mount up. We had to remove vertical
motion from the system because there was no way to get the mount to stay steady.
Oscillating the motor back and forth would not work because the video processing unit
would detect these oscillations as motion. Another downside of the fact that the motors
had very low steady state torque was the interference with the microphone and camera
wires. When we integrated all the components together, the motor would not always
move in the desired direction since it kept being pulled back by the wires. If we were to
do this project again we would probably make use of some other type of motor with more
power to avoid this problem.

The motor was mounted on an aluminum casing that provides 360 degrees
horizontal rotation. The original mount allowed vertical motion as well but this part was
removed after we decided to limit the rotation to 1-dimension. The mount was also
modified to support the microphones that needed to be 2 ft apart in order to get accurate
audio signal delay times. To limit the weight of the mount we resourcefully recycled a
cardboard pizza box to support the microphones. A picture of the mounting display can
be seen below.

Speaker, Wu, Zhu 18

Testing the motor control consisted of using the Manual override mode to move
the motor in the user specified directions. Getting the state transition timing proved to be
very difficult without the data sheet for the motors. After some manual testing of
connecting various motor wires to the power supply we were able to determine the
appropriate state machine and wiring configuration. We experimented using the motor
with varying weights to get a sense of how much it could handle. Unfortunately the
amount of weight of all the microphones and the camera was just on the threshold of how
much the motor could tolerate. We perhaps pushed the motor past its limits because on
the day before the project presentation the original motor burnt out. Luckily, we had a
spare motor that we were able to use as a replacement. Because of the large number of
wires used by the microphones we ran into a lot of unforeseen problems with the motors
interfering with the motion when we integrated all the components together. Eventually,
we decided the best option was to coil all the wires up and hang them vertically so that
they would twist with the motor. However, the added resistance from the wires was
enough to pull the motor back and interfere with the motion. If we were to do this again
we would probably get the help of some mechanical engineer to come up with a better
wiring solution.

Speaker, Wu, Zhu 19

Section 7.a.1iv Display Module (Robert)

The display module served as a debugging tool for both the video and audio
processing units. It uses the XVGA module written by Javier Castro to display pixels to
the LCD screen. A screen shot of the display module in action can be seen below.

As you can see from the picture the display module is broken up into 4 quadrants each
displaying its own debugging information. Each quadrant will be explained separately.

Upper Left Quadrant:

The Upper Left Quadrant was a debugging tool for the audio processor that
pictorially represented the vectors corresponding to the possible location of the audio
source. There are 4 pink squares that represent the 4 microphones, which were arranged
all on the same plane at 90 degree angles. Whenever sound is detected the horizontal and
vertical pairs of microphones each act independently to find the possible direction that
the sound is coming from. Each pair can limit the number of possible locations down to
two vectors, meaning there are 4 to choose fromm. This quadrant is displaying the 4
different vectors (represented as white squares) and their relative distance from each
microphone. The intersection of these vectors is the calculated location.

Speaker, Wu, Zhu 20

Upper Right Quadrant:

The Upper Right Quadrant was used as an extension to the information displayed
in the upper left. Once the audio processing unit has limited the number of possible
sources of audio down to 4 vectors it then finds the intersection of these vectors in order
to find the actual location. The upper right quadrant displays this location as a pink
square on an X-Y plane that represents the plane that the microphones share. Even
though we only needed to determine the angle to find the motion we thought it would be
useful to display the predicted location as well to get a feel for the distance of the object.

Lower Left Quadrant:

This quadrant was used to help debug the motion calculator unit to make sure it
was telling the motor to move in the right direction, regardless of whether the motor was
actually moving in that direction or not. A single circle with arrows depicting which
direction the camera is trying to move is displayed in this quadrant. This was useful in
the early stages when we were having difficulty getting the motor to move because it
allowed us to continue work on the other modules and see that they were generating the
correct signals even though the motor control module was not working.

Lower Right Quadrant:

In the lower right quadrant there are 3 compasses that display the angles that the
video and audio processing units are saying they detected motion in. The angles are
reported using the same format that they are reported to the motion calculator module
(see figure 3). The white compasses represent the horizontal and vertical angles from the
video processor and the red compass is the horizontal angle from the audio processing
unit. The blue squares represent the angles with 0 degrees being straight up.

These visual debugging tools made it a lot easier to test all the components
because it is much easier to see on a screen what the system is trying to do than it is to
interpret signals on the logic analyzer. As you can see its not the prettiest interface
because there is some noise on the display. This is a result of the circles taking too much
computation time to do the x> + y* <= r* computation. A better implementation would
have used ROM’s to draw the circles, since they are in fixed positions. However, since
this was just a debugging tool we decided it was not necessary to re-implement
everything.

Speaker, Wu, Zhu 21

Section 7.a.v: Picture Taking (Robert)

Since we are marketing our device as a security camera we thought that it would
be a good idea to record images in addition to just following the motion. It would be
inefficient to store video 24 hours a day 7 days a week so we decided to simply capture
screenshots using the labkit’s ZBT RAM. Pictures can be taken in one of two ways. One
way is at the user’s control. When the system is running in Manual Override mode (see
section 7.a.ii), a user can take a picture of whatever is currently in view of the camera by
hitting button 0 on the labkit. The system also takes pictures automatically whenever
video motion is detected. Upon assertion that the video processor has found motion the
ZBT write enable is held high for a short duration, capturing a single frame onto the
screen. Note that picture taking is handled within the master controller code and is not a
standalone module.

Speaker, Wu, Zhu 22

Section 7.a.vi: Test Angle Generator (Robert)

One of the hardest parts about working in a group is managing your work
schedule so that you are not blocked waiting for group members to complete their part of
the assignment. Since I knew that it was going to take awhile for my group members to
finish the audio and video processing units, I decided to implement my own test module
that would simulate their functionality. The test angle generator module simply assigns
values to the a_angle, v_angle v, and v_angle h signals and increments every so often.
This allowed me to test the automatic motor movement before the audio and video
processors were complete and also made the integration easier since it was simply a
matter of replacing the fake signals with the real ones.

Speaker, Wu, Zhu 23

Section 7.b.1 Video Processor Overview (Ray):

We tried to make our device as real-world as possible. A sentry camera connected
to a recording device or an alarm should accurately detect movement (intruders).
However, while it needs to be sensitive, it should also minimize false alarms. In our case,
we wanted to have the camera track motion and follow the moving object. Motion
detection can theoretically set off a host of responses, from calling the police to recording
the intruder on video. In our case, when the video processing module detects motion, the
motion is recorded in zbt memory and the moving target is tracked by having the camera
move toward the motion source.

The sentry camera receives continuous, raw video data from a Sony digital video
camera. In order to process motion and address hardware limitations, however, the data is
stored and modified in an efficient manner. In addition, a motion tracking algorithm with
high success rate, capable of differentiating signal from noise in addition to tracking
motion under various lighting conditions, had been developed.

The sony digital camera feeds a bitstream with at an approximately 14Mhz clock
to an onboard ADV7185 chip. The chip sends digital video data from the camera to an
ntsc_decode module to convert the data into a 24-bit stream of YCrCb (8 bits luminance
and a pair of 8-bit chrominance). For the project, only the Y (luminance) values were
used. The 8-bit Y data, along with the camera hsync, vsync, and data valid signals were
sent to the video processing module.

The general block diagram for the video processing module is shown in Figure 6.

Speaker, Wu, Zhu 24

From NTSC_DECODE

From LabKit

pidn-contrast
i displag_one_frame[

reset

clock_27mhz
clock-65mhz
vram_clk
vram_we

high_cantrast

NTSC_TO_RAM

vdatal7:@]

=t N
vaddr[15:a] p
vwe [

record r

ddr_select[15: 0]

VideoRam
256x19¢

reset

Calc_MBError

reset

Calc_Camera_Angle

vram_addr[15:0]

pixel_clock

vram_clk

uram_clk

vram_data_in

write_select
memdatal?7:@]
vram_data_out,

j———ran-data-outy

pixel_clock
recording
done_retrieving_data|
difference_luma

dif ference_ready
macroblaock
write_select
motion_center(8:@]
motion_mbX[(8:0]

|motion-niX(810]

pixel_clock

center_ready
v_angle_h[5:0]
v_angle_v[5:@]
angle_calculated

orale-caleulsted 4

vga_out_redf?:01]

vga_out_greenl[7:81]

vga_out_bluel?:0]

vga_out_sync_b

vga_out_blank_b

VIDEO_PROCESSING
(VGA_WITH_RAM)

vga_out_pixel_clock

vga_out_hsyne

vga_out_vsync

center_ready

To LabKit

motion_center(8:@]

v_angle_h[5:81

v_angle_v[3:0]

angle_calculated

VVVVVVVVVVVVVV

debugl63:0]

Sentry Camera VYideo Blocks

6.111 - Fall, 2085

Page 1

Raymond Wu ReORI0
12/12,2085

Figure 6: Overall block diagram of the video processing module. Luminance video
data coming in from the NTSC_Decode module is assigned to video data registers
and assigned to be stored in the appropriate locations in the VideoRam. The master
Video_Processing module (vga_with_ram) interfaces with the ram and also sends
luminance data to be processed for motion to Calc. MBError. If motion is detected,
Calc_Camera_Angle is used to find the real-world angle the camera needs to be
moved to center on the motion.

Speaker, Wu, Zhu 25

Section 7.b.11 NTSC TO RAM (Ray):

Luma values are continually fed by the video camera and need to be stored
synchronously to the videoram. This module takes the 8 bit luma values, and adjusts the
videoram address (vaddr) and data (vdata) appropriately. Furthermore, because the
videoram has memory limitations, the module samples every other pixel horizontally and
every other line. NTSC TO RAM stores at 256x192 addresses, with each address
having 8 bits, corresponding to the size of each pixel luma value. Addresses are 16 bits
with the first 8 bits corresponding to row and the second corresponding to column.

Because both a history and current frame need to be stored and because motion
capture should operate for slow motion, a two-frame memory architecture with a delay
was added. The signal “record” goes high when the 60Hz fvh[2] (frame) goes high after
the set number of frame delays. When record is high, either storeInA or storelnB is high,
instructing the ram to store either in the memory allocated for frame A or that for frame
B. The two store signals alternate, so that the two frames stored are always a set number
of frames away from each other.

A timing example is shown in figure 7:

wh2] |

record

storeInA

storelnB

Figure 7: Record goes high in this example every other frame, triggering on the
posedge of fvh[2], (skipping every other frame). Memory write (vwe) is high
whenever record and dv are high and fvh[2] is low. storeInA and storelnB alternate
each time record occurs.

Each of the two frames takes up 256x96 addresses, and the module switches
between storing in memory A and B, with an adjustable delay of frames in between
(default is 4 frames). In order to switch from storing in frame A to storing in B, a shift of
96 is added to the “row” address of vaddr.

The camera also sends vsync and hsync signals, serving to align the {row, col}
address. Every time vsync is received, both row and column addresses are reset to 0.
hsync resets only column addresses to 0. For other data-valid signals (dv high), column is
incremented until 256 column (and 96 row) address are filled. Because of limitations in
the block ram memory size, not every pixel in a frame from the camera is stored. Instead,
every fourth pixel on each line and every other line are stored. In the vga with ram

Speaker, Wu, Zhu 26

module, the process for displaying the pixel onto the screen reverses the sampling
process, displaying every pixel in memory four times in a row and column.

Several video input adjustments are implemented in this module. In order to
increase contrast in some situations, pixel luminance can be changed to be either black
(8°d0) or white (8’d255) with a threshold or 8’d120 determined through trial and error.
All luma values received that are higher than 120 will be converted to 255 and all values
under the threshold are changed to 0. If the high contrast feature is turned off, the 8-bit
luma values received are unchanged.

Another feature added to improve motion detection was to freeze frame storage in
memory B while continuing to write new frames into memory A. As long as the camera
does not move, the motion detection algorithm is comparing the background to whatever
appears in the foreground (in frame A), significantly improving motion detection and
serving as an enhancement tool with practical applications.

The outputs of the module go directly to the vga with ram module, which uses
vaddr, vdata, vwe, and record to store the luminance data into appropriate either location
A or B in memory. A display of the two memories outputting a history and a current
frame is shown in figure 8.

Figure 8: Luminance data from memory A (top picture display) and B (bottom
picture display) are shown above on the monitor. The two displays are a constant
frame length apart in order to allow for motion detection to capture slower
movement.

Speaker, Wu, Zhu 27

Section 7.b.11 VGA WITH RAM (Ray):

Video data, memory address location, and record signals sent from the
ntsc_to_ram module are used by this module to write the video data into ram. A 65 MHz
pixel clock is generated with the appropriate clock signals for displaying pixels on the
computer monitor. Several different clock setups could have been chosen, but because the
screen displayed data at 1024x768 pixel resolution, and we wanted to have a clock speed
that’s slow enough to allow for intensive processing and calculation, we chose 65 MHz
for the pixel clock. The full set of data is shown in Figure 9.

Horizontal {in Pixels) Vertical {in Lines)
Format Pixel Clock - -
{MHz) Active | Fromt | Sync | Back | Active | Fromt | Sync | Back
Video | Porch | Pulse | Porch | Video | Porch | Pulse | Porch
6d0:3430, GOHz | 26.175 60 16 Ofi 48 40 11 z 21
6d0:480, T2Hz | 31.500 60 24 40 128 420] c] 28
60::380, TSHz | 31.500 630 16 o 48 40 11 2 Iz
G0:480, #5Hz | 36.000 B0 az aa 112 40 1 <] 25
200:600, 56Hz | 38.100 £00 az 128 128 GO0 1 Ll 14
200:600, G0Hz | 90,000 200 40 128 gg GO0 1 q poic)
800:600, 7T2Hz | 50.000 200 6 120 G} 600 a7] 23
800:600, TSHz | 49.500 200 16 =] 160 600 1 z 21
800:600, 36Hz | 56.250 200 3z 63 162 600 1 c] 27
102763, BOHzZ | 65.000 1024 | 24 136 160 TS c]] 20
102763, TOHz | 75.000 1024 | 24 136 144 TEa] & 20
102768, TSHz | 78.750 1024 |16 O 176 TEE 1 <] 28
102768, 85Hz | 94.500 1024 | 498 O 208 TEE 1 <] 36

Figure 9: We could have chosen from any of the above clock setups, but settled on
the 1024x768, 60Hz format. This was decided primarily because the our computer
screen resolution was set to 1024x768 and we wanted to have enough clock time to
process moderately intense calculations. (Source: Rick Ballantyne, Xilinx Inc.)

As suggested by its name, the vga with ram interfaces with the block ram
memory. Under normal operation (without motion detection), the module writes to
memory whenever ntsc_to ram sends data with vwe (video write enabled) high. In
addition, vga with ram reads from video memory at the location corresponding to
current drawing position on the screen. Every memory pixel is displayed four times on a
row and column, generating a 4x4 pixel block with the same luma value on the screen.

Speaker, Wu, Zhu 28

Although the image quality is degraded, it is more than sufficient for motion detection, as
will be discussed later.

To perform motion detection, which uses the same memory for reading and needs
sufficient clock cycles for processing, luma data storage is interrupted. When the signal
“recording” is high, normal storage processes prevail. However, at the moment recording
is low, motion processing starts. Memory writing is turned off and access is given to the
video processing methods.

Motion tracking begins with calculating the differences in luma values in the two
time-separated frames. The algorithm is interested in the sum of absolute difference
(SAD) for each 8x8 pixel macroblock. An example of SAD calculation is shown in
Figure 10. A full frame has 32x12 macroblocks, and for each macroblock, an SAD value
is calculated and sent to the Calc. MBError module for further processing.

Direction of
Motion

History Frame Current Frame

Figure 10: In this example, 4x4 pixel macroblocks outlined in red are shown with
the pixel luminance in gray and white. Motion moves up (the gray area moved up 2
pixels). The motion detection algorithm measures differences in SAD values in the
two frames. For each macroblock that “sees” the two-pixel up movement, SAD
values will be high because the difference in luma value in the pixel positions is high.

Speaker, Wu, Zhu 29

Section 7.b.1iv Calc. MBError (Ray):

This module receives luma difference data from the vga with ram module and
calculates SAD values for each of the 384 (32 * 12) macroblocks of the frame, actively
keeping tack of the four highest SAD blocks. When vga with ram finishes sending luma
differences for the two frames, “done retrieving data” is made high, and the
calc_mberror module computes the sum of the SADs from the four highest blocks. If the
sum is past a threshold (set through testing at 25000), then signal “center ready” is set to
high and the coordinates of the four high SAD macroblocks is averaged and sent to
vga with mem for angle calculation.

Speaker, Wu, Zhu 30

Section 7.b.v Calc_Camera Angle (Ray):

If motion is detected, the camera needs to turn to the motion such that the target
area will be centered by the camera. This module takes the 9-bit motion center
coordinate and determines deviation from the camera’s “center macroblock™ (row=6,
col=16). Assuming the object is around 4 feet away, it calculates using rough cases how
much to turn the camera both in tilt and swivel movements. Figure 11 shows the
calculation procedure.

mbrow < 8§, mbrow < 15, 15<mbrow<8 | mbrow > 17, | mbrow > 24,
move 20° left | move 10° left | no movement | move 10° move 20°
right right

Swivel Movement Calculation

mbcol < 4, move 10° up

4 <mbcol < 4, no movement

mbcol > 8, move 10° down

Tilt Movement Calculation

Figure 11: Calculation for angles after motion is detected. The Calc_Camera_Angle
module takes in the motion center macroblocks coordinates and determines how
much to move the camera so as to center the camera on the moving target.
Calculations are performed assuming the target is 4 feet away.

Speaker, Wu, Zhu 31

Section 7.b.vi VideoRam (Ray):

The memory used in this project was a 256x192 dual-port block ram with 8 bits
for luminance for each address. Pixel luminance values were stored and partitioned in
two different areas on the ram, corresponding to each of the two different frames being
stored. Although two separate rams could have been created (for dual access reading), a
simplification was made such that displaying debug video on the screen was easier
reading one ram and displaying both frames (see Figure 8).

Write enabled for the ram is controlled by vga with_ram. Writing is disabled, or
reading is enabled, when luma difference values need to be calculated. Otherwise, the
write is switched off and on depending on data sent from the camera. When generating
pixels for the monitor, writing is turned off.

Speaker, Wu, Zhu 32

Section 7.b.vii Testing and Debugging of the Video
Module (Ray):

Debugging was mostly done through the logic analyzer, oscilloscope, and led/hex
display outputs. For the state machine used to calculate recording, storeInA, and storeInB
in the ntsc_to_ram module, the logic analyzer was sufficient to determine whether or not
the module was working. Every module in the video processing unit has 64 bits of debug
output that can be sent to the hex-display or any of the user/analyzer outputs for the logic
analyzer.

Initially, the video quality was poor with much noise, which negatively affected
motion detection. We corrected with several fixes. Originally, in module ntsc_decode,
recording was triggered off the vsync (fvh[1]) from the camera, however the signal fvh[2]
was much better defined under the oscilloscope, and when we triggered off fvh[2], results
improved. Furthermore, an adjustment in the pixel clock speed to a lower clock (from
78.5MHz to 65MHz) allowed for more processing time and eliminated much of the noise
in the video.

If the video processing module were designed again, we would have used ZBT
memory storage instead of block memory. Not only is ZBT memory faster, but there’s
more of it (4 megabytes), enough to store more than two high quality (1024x768 pixel)
frames. With such memory, a more complicated algorithm could be made. For example,
instead of comparing across just two frames, multi-frames could be used and we could
estimate not only where the motion is, but where it is going. In addition, by using edge
detection on high quality images, we can possibly make the camera zoom in on the target.

Algorithm design is very flexible, and in our case, while our motion detection
worked well, there were definite limitations. We can define the general area of motion,
but because every moving block can potentially create two blocks with high SAD values
(one block in the location where the object is moving to and the other where the object
was), exact motion detection is not particularly precise. A higher resolution detection
process, but one with more processing requirements, would be to actively find motion
vectors for each macroblock, and choosing an area with high vector amplitude. These
vectors represent macroblock movement from one frame to the other.

Speaker, Wu, Zhu 33

Section 7.c.1 Audio Processor (Bo)

The audio processor takes inputs from four amplified microphone outputs, digitizes the
data from the ADC (Analog to Digital Converter), which is driven by the ADC Controller
Module. The data is sent through signal processing modules (Differencer, Slopefinder,
and Angle Calculator) to calculate the direction of a sound source. This angle is output to
the Master Controller, which drives the underlying motor to point the camera at the sound
source. This angle is output along with other intermediate angles from Slopefinder
instances for debugging purposes, as shown in the block diagram Figure 12. The timer
modules are used to accurately drive the ADC, which has stringent timing constraints.

Timer 1 Timer 2 Timer 3
1 expired2] reset_timer2
expired1| |reset_timer1 reset_timer3 | |expired3
RN —
data}j}ﬁ‘:o]_ db1[13:0] delay1[2:0]
const_bar 7 » . 7
MicAmpOutt AtoD =N db2[13:0] Differencer 1 dlir1[1:p]
— | Converter [~ 7 7
db3[13:0]
rd -
data2]y 30 abaiz Differencer 2 &
< ®
t_b D
MicAmpOut2) AtoD co::;: B
— | Converter f— - '
ADC Slopefinder 2 Slopefinder 1
Controller = =
dataSIJ’a‘:D] o o o 2
MicAmpOut3 A to D cons/t_bar & % é =5
C cs_bar ,_E// 2 k=) /%
onverter d_bar = o
Ve y Angle A A
dated]) 30 Calculator
t_b
MicAmpOutd| AtoD CQ:SSE:
— | Converter [*— -~
Angle12[5:0] Angle22[5:0] A_Motion A_Angle[5:0] Angle11[5:0] Angle21[5:0]

Figure 12: Block diagram of the Audio Processing Module. Analog mic inputs are
converted to discrete data, which is used to calculate the location of the sound
source by signal processing modules.

Speaker, Wu, Zhu 34

Section 7.c.11 Microphones, Amplifiers and ADCs (Bo)

The physical components of the Audio Processing module are the microphones,
microphone amplifiers and Analog to Digital Converter chips. The electret microphones
have an output range of only a few millivolts, so they need to be amplified for usable
signals to be detected by the ADC. The 30dB signal amplifier converts the microphone

outputs to an approximately 0-5V range signal.
A+Sv

BUSV/INT Cout>
| RD Cind
gfgk €5 (ind
R1 be IICE & J,J MicAmpOut SR (el
18K 11 pex a!luF
c1 f R4 — — +Sv E
| 2ok L convst 14/3/0L00K-§§——9‘_5V e
@.1uF Q1 2 Its vss 127 5
2N3924 Q2 3 |s% 26 o
Mic 2N3904 RD vIn a
] Fa— 25 -
BUSY/ INT REFOUT o
T L s bo Y M &
—ov —
6 | DB13/HBEN CREF s [—L
7 {pB12/SSTRB AGND {22 Lan”
8 o1 +Su
DB11/SCLK vop 2L
9 | DB16/SDATA DBa.DBS {22
—— 10 ppg DB1,DB9 P2
11 ppg DB2/DB10 [18
13 py7 DB3/DB11 [LC

13/ pBe DB4.DB12 [1&
€71—4 DGND DBS/DB13 [13
AD7s?1

Figure 13: The microphone amplifier and AD7871 ADC setup, which is
implemented four times (one for each mic). The Microphone amplifier output is fed
into the ADC. The data bits are output to the FPGA labkit, and timing signals from
the labkit are input to the ADC.

As shown in Figure 13, the microphone amplifier signal is input to the Vj, pin of the
ADC. The ADCs are Analog Devices AD7871 chips, which output 14-bit data at a
maximum of 83K samples per second. The data is output to the FPGA labkit through
userpins for processing. The ADC controller drives the ADC through three timing
signals (RD_BAR, CS_BAR, and CONVST BAR), which will be detailed below.

The clock pin of the ADC is tied to Vs (-5V) in order to select the internal laser-trimmed
2MHz clock, which the ADC will use to time its analog to digital conversion cycles. The
14/8 bar/clock pin of the ADC is tied to V44 (+5V), which selects the mode for parallel
output. The alternative is to output the data serially. We selected parallel mode because
there were less timing issues; once the conversion is complete, all data bits are available
for reading.

Pin NC is a No-Connect pin. C, is the decoupling point for on-chip reference. It is
permanently tied to ground with a 10nF capacitor. Refy,is a 3V output.

Speaker, Wu, Zhu 35

Section 7.c.111 Analog to Digital Converter Controller (Bo)

The ADC Controller is responsible for transmitting and receiving signals from the ADC
chips. In order for the ADC to operate correctly, the signals RD BAR, CS BAR, and
CONVST BAR need to be timed properly.

ty il

R TRACK/HOLD
CONVST GOES INTO HOLD

-y
S l|l p‘
iz '| —a p— Ly
ts pu—
1%]
RD TRACK /HOLD RETURNS TO h, f

TRACK, SIGNAL ACQUISITION
te |.._
iy

BEGINS
—

THREE-STATE . VALID

DB13-DEO

-
L

INT

teomvenT -

Figure 14: Timing Diagram for AD7871 Analog to Digital Converter. Low
CONVST_BAR begins conversion, low INT_BAR signals end of conversion, and
low RD BAR and CS_BAR generate valid data.

Figure 14 shows the timing diagram for the AD7871. When CONVST BAR is pulsed
low, the ADC begins its conversion on the rising edge of the pulse. CONVST BAR
must be low for at least 50ns in order for the ADC to recognize it as a valid low pulse, as
indicated in Table 1, the timing characteristics table. After the conversion is complete,
the ADC switches INT BAR low, and waits for the rising edge of a synchronous low

RD BAR and CS_BAR pulse before switching INT BAR high again. RD BAR and

CS BAR must be held low for at least 60 ns in order for valid data to be generated. 57 ns
after the falling edge of the RD BAR and CS_BAR pulses, the 14-bit data becomes
valid, and will stay valid until 5ns after the rising edges of RD BAR and CS_BAR.

Table 4: Timing Characteristics of AD7871 Analog to Digital Converter

Limit at TMIN' TMAX Limit at TMINs TMAX
Parameter (J, K, A, B Versions) | (T Version) Units Conditions/Comments
t 50 50 ns min | CONVST Pulse Width
t; 0 0 ns min | CS to RD Setup Time (Mode 1)
ty 60 75 ns min | RD Pulse Width
Iy 0 0 ns min | CS to RD Hold Time (Mode 1)
ts 70 70 ns min | RD to INT Delay .
ts® 57 70 ns max | Data Access Time after RD
! 5 5 ns min | Bus Relinquish Time after RD
50 50 ns max

Speaker, Wu, Zhu 36

Each sample conversion begins with the low CONVST BAR pulse. Therefore, in order
to have consistently spaced samples, CONVST BAR must be clocked. Timerl counts
for 960 65MHzclock cycles, or 15 ps, and then pulses the expiredl signal high for one
clock cycle. It is at this high pulse that CONVST BAR starts to be pulsed low.

To ensure that output signals obey the timing characteristics detailed above, the amount
of time that each signal is pulsed must be controlled accurately. The output pulses have
no upper bound restrictions; only lower bound. Therefore, a universal pulse timer that
counts for at least the highest lower bound fulfills the role. Timer2 counts for 10 65MHz
clock cycles, or 154 ns, which is well above the highest lower bound of 60 ns. In
implementation, the low pulses of CONVST BAR, CS BAR, and RD BAR are timed
with Timer2, and get switched back to their high state after expired2 of Timer2 pulses
high.

Because there are four ADCs that need to be driven, a synchronous system to drive all
four at once is the most sensible option. If all four ADCs are asynchronous, data would
be valid at different times, throwing off the synchronous system that the rest of the
modules rely on to operate. Unfortunately, the amount of time to compute one sample is
not fixed; it depends on the amplitude of the analog signal. Therefore, INT BAR (which
signals the end of conversion) arrives at different times for each ADC for each sample.

In order to drive the ADCs synchronously, the RD BAR and CS BAR pulse signals
cannot depend on INT BAR. They must be pulsed after a consistent time period after
conversion starts, as shown in the Logic Analyzer output in Figure 15. This time period
must be a safe amount that is longer than the maximum time conversion can take. The
spec sheet for the AD7871 indicates 12 us as the maximum conversion time; in our
project, Timer3, which clocks this simulated time period, switches expired3 to high after
14 pus.

L& 1: Sample

L& 1: CKO[)

L& 1: A3 Flint_bard]

L& 1: A3 Blint_bar3]

L& 1: A3 Blint_bar2]
|La1: A3 dfcs bar)

L& 1: A3_3lint_barl)

L& 1:
A3 2[conwst_bar)

Figure 15: Logic Analyzer output for ADC Controller. The INT _BAR signals are
not synchronous, and remain low until CS_BAR (and RD_BAR, not shown) pulses
low at a consistent interval.

With this scheme, the maximum sampling rate cannot be achieved, because maximum
sampling rate is only possible if RD BAR and CS BAR are pulsed almost immediately
after INT BAR falls low. However, this scheme does successfully synchronously drive
the four ADCs, which is a much more important feature to have. Even with a lower
sampling rate, each sample arrives every 15 us. The speed of sound in air is 1180 ft/s,

Speaker, Wu, Zhu 37

equating to one inch every 70us. Therefore, the resolution of our 67K samples/second
system is approximately 0.2 in, which is very reasonably accurate for our purposes.

In terms of actual implementation, the ADC Controller is a Finite State Machine. It has
five states, all of which are sequenced forward by timers. There is only one path for the
states to progress along, as shown in Figure 16.

State 1

CONVST{1,2,3,4} =1
CS{1,2,3,4} =1

State 2

CONVST{1,2,3,4} = 1
CS{1,2,3,4} =0

State 0
CONVST{1,2,3,4} =0
CS{1,2,34) =1

expired2 =1 expired3 =1

RD{1,2,3,4} = 1 RD{1,2,3,4} =1 RD{1,2,3,4} =0

expired2 =1

expired1 =1

State 4

CONVST{1,2,3,4} = 1
CS{1,2,3,4} =1

State 3

expired2 = 1 fCONVST{1,2,3,4} =1
CS{1,2,3,4}=0

RD{1,2,3,4) = 1 RD{1,2,3,4) =0

Figure 16: Finite State Machine of the ADC Controller. The states represent
different time periods of the ADC timing diagram. The signals are output to all four
ADC:s at once to satisfy the synchronous system. (“SIGNAL{1,2,3,4} = X” indicates
value X is applied to SIGNAL1, SIGNAL 2, SIGNAL 3, and SIGNAL4)

State 0: (Begin A to D conversion)

The ADC controller is beginning the conversion process. It starts sets CONVST BAR
low, while keeping CS BAR and RD BAR high. The system progresses to State 1 when
expired2 from Timer2 reaches high, at 10 65MHz clock cycles after entering State 0.

State 1: (A to D conversion in process)

The ADC controller ends the low pulse applied to CONVST BAR. It resets
CONVST BAR high, and maintains CS BAR and RD BAR high. The system
progresses to State 2 when expired3 from Timer3 reaches high, at 912 65MHz clock
cycles after entering State 1.

Speaker, Wu, Zhu 38

State 2: (A to D conversion finished)

The ADC controller prepares for valid data. It keeps CONVST BAR high, and sets
CS BAR and RD BAR low. The system progresses to State 3 when expired2 from
Timer2 reaches high, at 10 65MHz clock cycles after entering State 2.

State 3: (Valid data ready for reading)

The ADC controller is in valid data mode. It keeps CONVST BAR high, and keeps
CS _BAR and RD BAR low. The system progresses to State 4 when expired2 from
Timer2 reaches high, at 10 65MHz clock cycles after entering State 3.

State 4: (Wait for next conversion cycle)

The ADC controller is in waiting mode. It keeps CONVST BAR high, and flips
CS _BAR and RD BAR high. The system progresses back to State 0 when expired]
from Timer] reaches high, at 960 65MHz clock cycles after entering State 0 four states
ago.

Speaker, Wu, Zhu 39

Section 7.c.1iv Sound Source Location Algorithm (Bo)

For purposes of clarity and comprehension, the algorithm for sound source location we
have developed will be explained here.

When a loud, sharp noise is produced near the sentry machine, different microphones
pick up the sound at different times because they are located at various distances from the
sound source. The values of these time differences carry important information about the
relative location of the sound source to the microphones. In the engineering field, this
method of localizing sound is termed “Time Difference of Arrival” or TDOA.

With two microphones at a known and fixed distance apart, we can approximately
constrain the sound source to be from two linear vectors. The derivation begins below.

Sound Source
A/

A 4

Mic1 C Mic2

Figure 17: Triangle model of TDOA (Time Difference of Arrival). The capital
letters A, B, and C represent the angles of the triangle, and the lower case letters a,
b, and c represent the distance/time differences between the vertices.

As shown in Figure 17, the sound source is closer to A than to B. Thus, the time it takes
for sound to travel from the source to A is also less than the time it takes to travel to B.
In fact, because speed = distance / time, and speed is constant, distance and time are
proportional. We can therefore conceptualize the distances a, b and c to also represent
the time it would take for sound to travel between the vertices.

Let a = b + d, where d is the TDOA between point B and point A, the two microphones.

2 2 2
Using the Law of Cosines, we get A = Cos‘l((b +d)" -b" —c]

—2bc

Speaker, Wu, Zhu 40

Superimposing this figure on a Cartesian coordinate system, with vertex A at the origin
(0,0), we get the location of the sound source to be at (x,y) = (bcos(A), bsin(A)), which
results in:

) = (b+d)=b’=c* | (b+d)=b>=c’ ’
Y Y = “2be

To linearize the model for faster computation, we must calculate the slope of the lines.
As the distance b becomes larger than the values ¢ and d, the slope m of the lines
approach:

()
(4]

o e . . C
The initial values of x and y are linearized to be x) =

and yy = 0.
Thus the final linearized model becomes:
2
b1 (dj
c—d + c

c

,forallreal »>0.

Figure 18 depicts one possible solution for the two-microphone linearized model. The
sound source for a particular ¢ and a particular d lies along the two vectors.

Speaker, Wu, Zhu 41

Mig1 Mic2

,/’

Figure 18: The possible locations for the sound source exist on the two vectors, for a
measured d delay and predetermined c distance between the microphones.

With two microphones, two possible paths are calculated. By adding two more
microphones, and positioning them correctly, we can identify the exact location of the
sound source in a two-dimensional plane.

The same calculations are applied on the second pair of microphone data, except
translating the figure onto the Cartesian coordinate system requires switching the x and y
axes, reflecting the new y axis, and adding ¢/2 to both x and y coordinates:

2
p1-[%]
4 c c d,

‘L 2_‘&1; forallreal b>0.

(X2,y2): g— (dzj 72

(4

The intersection point of the two pairs of vectors can be calculated through solving the
two simultaneous solutions for equivalent x and y coordinates. The idealized model for
such a solution is depicted in Figure 19.

Speaker, Wu, Zhu 42

Mig

Sound Source

S |

|
Figure 19: The solutions of the individual pairs of microphones superimposed on
each other result in a intersection point, which represents the location of the sound
source.

Speaker, Wu, Zhu 43

Section 7.c.v Differencer (Bo)

The implementation of the algorithm described above is split up into multiple modules,
each with its mathematical contribution. The Differencer module continuously takes
pairs of 14-bit data and calculates the TDOA between the two microphones when the
sound is valid. A noise is valid if its amplitude is above a certain threshold. In our
specific implementation, that threshold is Oh1554, or correspondingly, 2V from the
amplifier output. Two Differencer modules are instantiated for our project, one for each
opposing pair of microphones.

The Differencer module takes is implemented as a Finite State Machine, with four states:

State 0: (Wait for valid sound)

No registers change value in this state. If the module was just reset, then dirl2, delay,
and count all stay at the value 0. dirl2 indicates the general direction of sound; it is 1 if
dbl (the first set of data) passes the threshold first, and 2 if db2 passes the threshold first.
delay, when nonzero, represents the TDOA between the two microphones for a valid
sound. count is an internal counter register which times the TDOA, and stores its value
into delay when the second microphone data set becomes valid.

The state changes to State 1 if it detects dbl passing the threshold, and changes to State 2

if db2 passes the threshold. During the same clock cycle of state change, dir12 changes
as described above, and count is reset to 0.

State 1: (dbl valid sound)

In State 1, Differencer is waiting for db2 to pass the threshold and become valid. During
the wait, it increments count register and maintains dir12 at 1. If db2 does not become
valid before 15ms (1023 samples) after entrance to State 1, then the sound itself is not
valid, and the state reverts to State 0. dirl2 also reverts to 0.

If db2 does pass the threshold, the current value of count is stored to delay, and the state
changes to State 3.

State 2: (db2 valid sound)

In State 2, Differencer is waiting for dbl to pass the threshold and become valid. During
the wait, it increments count register and maintains dirl2 at 2. If dbl does not become
valid before 15ms (1023 samples) after entrance to State 2, then the sound itself is not
valid, and the state reverts to State 0. dirl2 also reverts to 0.

Speaker, Wu, Zhu 44

If db1 does pass the threshold, the current value of count is stored to delay, and the state
changes to State 3.

State 3: (valid delay, wait for reset)

In State 3, all registers are static at the value they were when State 3 was entered.
Because a valid delay was computed, the motor during this state is moving the sentry
machine to the angle computed in modules further down the pipeline. The Master
Controller module cannot accept any new angles resulting from new delay values until
the motor has arrived at its intended angle and has stopped moving. The Master
Controller sends a reset signal to the entire Audio Processing module when this occurs, to
receive a new angle.

Speaker, Wu, Zhu 45

Section 7.c.v1 Slopefinder (Bo)

The Slopefinder module takes the delay and dirl12 values calculated by the Differencer
module for one pair of microphones, and outputs the possible vector angles that the sound
could be from, as well as the initial x value.

Slopefinder uses simple arithmetic to calculate x, = % In our implementation, c is
fixed to be 120 and d is the delay input. For the angles, it uses a manually-entered lookup

table to map the computed d value to find an approximate slope, represented by

C
d 2
¢ d
(d j . The —value is calculated by a Coregen divider module. In order
a ¢
c

to accurately calculate this value to the hundredth decimal place, the dividend d was
multiplied by 10, and ¢ was replaced by 12 (effectively divided by 10). The resulting

: : . d o
quotient was 100 times the size of the actual value —, but because the new quotient is an
c

integer, it can be used easily in the lookup table with great accuracy.

angle outl and angle out2 represent the two possible vector angles, and are output to the
Master Controller as debug display angles in the format of a 6-bit number, and range
from 0 to 35. This format is specified by the Master Controller. Each of these numbers
represents 10 degrees. posangle is output to the Angle Calculator module, and only
represents the positive slope in 10-degree increments. Like the Differencer modules, two
Slopefinder modules are instantiated, each responsible for one opposing pair of
microphone outputs.

Speaker, Wu, Zhu 46

Section 7.c.vii Angle Calculator (Bo)

The Angle Calculator module computes an approximate final angle for the motor
to rotate to. It takes the posangle outputs from Slopefinderl and Slopefinder2 instances
and averages them to form a reasonable positive angle of the sound source. Angle
Calculator also uses the dirl2 outputs from Differencer to locate the correct quadrant the
sound is coming from. With these direction and average angle values, a final angle is
selected and is output to the Master Controller module.

Speaker, Wu, Zhu 47

Section 7.c.viii Testing and Debugging the Audio (Bo)

In order to effectively test and debug a digital system, one must be confident that the
error is actually in the digital realm, and not a result of flaky physical components. At
the beginning of the project, lots of messy wires and semi-loose connectors were linking
the analog components to the digital labkit, causing many problems even when the digital
system was working properly. After upgrading to ribbon cable, alternating ground wires,
and solid header connectors, many problems went away and we could focus on the digital
system design.

Digital systems that rely heavily on real-world analog signals need to have any assumed
real-world parameters and other constants validated with testing. The ringing amplitude
of a hand clap is not a perfect impulse, so treating it like one in the digital system is a
critical mistake. We performed extensive tests with the oscilloscope to discover a valid
sound threshold at which TDOAs were consistent.

Along the entire project, a common practice we adhered to was to display as much
debugging information as possible. If one value appears to be incorrect, the root of the
problem cannot be determined without feedback on other values that the incorrect
component depended on. One extremely important debugging tool is the video debug
screen shown in a picture in Section 7.a.iv. The upper-left quadrant (when valid data is
input, not the case in picture) shows the two pairs of vectors on which the sound source
could be located. This tool displays a large amount of information in an efficient way,
and although it took a while to create, the debugging time it saved made the tool worth it.

Speaker, Wu, Zhu 48

Section 8 Conclusion

We successfully implemented most of the features we originally wanted in the
sentry security machine. Both audio and visual components could detect a target and send
the signals to the motor control to focus in on the object. The integration of all three
components, along with the various debug display modules, was demonstrated to the
TA’s and instructors on several different occasions. However, we did also experience a
myriad of problems while designing and building the machine. The finished product
experienced some minor failures as well.

Our reliance on relatively cheap (and common in the lab), but malfunction prone,
stepper motors was a mechanical issue that we did not anticipate. The weight of the
camera, mounting board, and four proto-boards were too much to handle for the stepper
motor and both our motors eventually malfunctioned. In addition, the tilt stepper motor
never had enough stability to hold the camera in quasi-equilibrium, so we had to abandon
vertical motion altogether. The mechanical obstacles of allowing 360 degree motion
without entangling wires also impeded our original hopes of fully automatic motion.

Furthermore, in the video processing module, zero-bus turnaround (ZBT memory
should have been used instead of Block RAM. Although the algorithm tracked motion
well, against similar color background and foreground, movement did not increase past
the noise-rejecting threshold. A higher resolution image can fix that (threshold can be
lowered without increasing the probability of false alarm), but only with a higher capacity
memory such as the ZBT.

The Audio Processor successfully computed a reasonable angle to locate the
sound source. The modules worked well not only within the Audio Processor but also
with other modules via the Master Controller. However, the ideal exact position locator
(commented out “newlocator” module) did not calculate correct x and y coordinates,
which was a result of not having enough time to debug the complex arithmetic
operations. The process of creating the Audio Processor taught us a great deal of what
was necessary to create a robust digital system. Dealing with problems such as driving
four separate ADC chips forced us to think of creative synchronous solutions.
Optimization of algorithms to produce low-latency results, such as linearizing models and
using lookup tables instead of real-time computation was an important lesson learned.

Debugging took the longest part of the whole project. While there were certainly
tools (logic analyzers, oscilloscopes, TA’s) that were available for help, much of the
debugging was made easier on keeping the design and code simple. On several occasions
we rewrote entire modules of code from scratch, using completely different algorithms to
fix the problem. Thankfully, on most occasions our errors were caused by small mistakes
that could be caught with patience and careful observation of the debugging data.

We expected the project to be challenging, but were well rewarded with the result.
Our project taught us much about sound design, “keeping it simple”, and debugging
methods and tools. This project is the culmination of one semester of learning verilog
programming and digital design, and we are very happy with the completion of the sentry
security machine. On a last note, we would like to thank the countless hours the TA’s
(Jae, Javier, Willie, and Eric), lab instructor (Gim), and lecturers (Prof. Chuang and Prof.
Terman) spent helping us design and debug the project.

Speaker, Wu, Zhu 49

Section 9 Appendix: Verilog Code

VA N S N S N I 4
/7

// 6.111 FPGA Labkit -- Template Toplevel Module
//

// For Labkit Revision 004

//

//

// Created: October 31, 2004, from revision 003 file
// Author: Nathan Ickes
//

/*

6.111 Final Project

Created by Robert Speaker, Ray Wu, and Bo Zhu

This is the master controller that integrates all the subcomponents of the sentry
security

system with the appropriate labkit connections.

User inputs:
Switches

2
IS
3
o
o
b

Manual Override (Active High)

Debug Angle Mode (Active High)

Unused

Continuous Video Feed (Active High)

High Contrast (Active High)

Audio/Video Priority (Audio: High, Video: Low)

Video Processing display (Active High)

Picture Viewer/Debug module (Picture: High, Debug: Low)

NOY Ol W RO

Buttons

Enter: User Reset

0: Take Picture

1: Unused

2: Simulate Audio Motion

3: Simulate Video Motion

Up: Move camera up 1f manual override is asserted

Down: Move camera down 1f manual override is asserted
Left: Move camera left if manual override is asserted
Right: Move camera right if manual override is asserted

*/

module master controller (beep, audio reset b, ac97 sdata out, ac97 sdata in, ac97 synch,
ac97 bit clock,

vga out red, vga out green, vga out blue, vga out sync b,
vga out blank b, vga out pixel clock, vga out hsync,
vga out vsync,

tv_out ycrcb, tv_out reset b, tv _out clock, tv out iZ2c clock,
tv_out i2c data, tv_out pal ntsc, tv_out hsync b,
tv _out vsync b, tv out blank b, tv out subcar reset,

tv_in ycrcb, tv_in data valid, tv_in line clockl,
tv_in line clock2, tv_in aef, tv_in hff, tv in aff,
tv_in i2c clock, tv_in iZ2c data, tv_in fifo read,

tv in fifo clock, tv in iso, tv _in reset b, tv in clock,

ram0_data, ram(O_address, ramO_adv_1d, ram0O_clk, ram0O cen b,
ram0_ce b, ram0 oe b, ram0 _we b, ram0 bwe b,

raml data, raml address, raml adv_1d, raml clk, raml cen b,
raml _ce b, raml oe b, raml we b, raml bwe b,

clock feedback out, clock feedback in,

flash data, flash address, flash ce b, flash oe b, flash we b,

output
input

output
output

output
output

input
input

output
inout

inout

output
output
output

inout

output
output
output

input
output

inout
output
output
input

output
input

input

Speaker, Wu, Zhu

flash reset b, flash sts, flash byte b,

rs232 txd, rs232 rxd, rs232 rts, rs232 cts,

mouse clock, mouse data, keyboard clock, keyboard data,
clock 27mhz, clockl, clock2z,

disp blank, disp data out, disp clock, disp rs, disp ce b,
disp reset b, disp data in,

button0, buttonl, button2, button3, button enter, button right,
button left, button down, button up,

switch,

led,

userl, user?2, user3, user4,
daughtercard,

systemace data, systemace address, systemace ce b,
systemace we b, systemace oe b, systemace irqg, systemace mpbrdy,

analyzerl data, analyzerl clock,
analyzer2 data, analyzer2 clock,
analyzer3 data, analyzer3 clock,
analyzer4 data, analyzer4 clock);

beep, audio reset b, ac97 synch, ac97 sdata out;
ac97 bit clock, ac97 sdata in;

[7:0] vga out red, vga out green, vga out blue;
vga out sync b, vga out blank b, vga out pixel clock,
vga out hsync, vga out vsync;

[9:0] tv out ycrcb;
tv_out reset b, tv out clock, tv out iZ2c clock, tv _out iZ2c data,
tv_out pal ntsc, tv_out hsync b, tv_out vsync b, tv_out blank b,
tv _out subcar reset;

[19:0] tv_in ycrcb;

tv_in data valid, tv_in line clockl, tv in line clock2, tv _in aef,
tv in hff, tv in aff;

tv_in i2c clock, tv_in fifo read, tv_in fifo clock, tv _in iso,
tv_in reset b, tv _in clock;

tv_in i2c data;

[35:0] ram0O data;

[18:0] ram0O_address;

ram0_adv_1d, ram0 _clk, ram0 cen b, ram0O ce b, ram0 oe b, ram0 we b;
[3:0] ram0 bwe b;

[35:0] raml data;

[18:0] raml_ address;

raml adv 1d, raml clk, raml cen b, raml ce b, raml oe b, raml we b;
[3:0] raml bwe b;

clock feedback in;
clock_ feedback out;

[15:0] flash data;

[23:0] flash address;

flash ce b, flash oe b, flash we b, flash reset b, flash byte b;
flash sts;

rs232 txd, rs232 rts;
rs232 rxd, rs232 cts;

mouse clock, mouse data, keyboard clock, keyboard data;

50

Speaker, Wu, Zhu

input clock 27mhz, clockl, clock2;

output disp blank, disp clock, disp rs, disp ce b, disp reset b;
input disp data in;
output disp data out;

input button0, buttonl, button2, button3, button enter, button right,
button left, button down, button up;

input [7:0] switch;

output [7:0] led;

input [31:0] wuserl, user2, user4; //use 1,2, and 4 as input, 3 for output
output [31:0] user3;

inout [43:0] daughtercard;

inout [15:0] systemace data;

output [6:0] systemace address;

output systemace ce b, systemace we b, systemace oe b;
input systemace irq, systemace mpbrdy;

output [15:0] analyzerl data, analyzerZ2 data, analyzer3 data,
analyzerd4 data;
output analyzerl clock, analyzer2 clock, analyzer3 clock, analyzer4 clock;

SIS S S S S S S SSSSSSSSSS S
//

// I/O Assignments

//
SIS S S S S

// Audio Input and Output
assign beep= 1'b0;

assign audio reset b = 1'b0;
assign ac97 synch = 1'b0;
assign ac97 sdata out = 1'b0;
// ac97 sdata in is an input

// Video Output

assign tv out ycrcb = 10'h0;
assign tv out reset b = 1'b0;
assign tv _out clock = 1'b0;
assign tv_out i2c clock = 1'b0;
assign tv out iZ2c data = 1'b0;
assign tv out pal ntsc = 1'b0;
assign tv_out hsync b = 1'bl;
assign tv_out vsync b = 1'bl;
assign tv out blank b = 1'bl;
assign tv_out subcar reset = 1'b0;

// Video Input

//assign tv_in i2c clock = 1'b0;

assign tv_in fifo read = 1'bl;

assign tv_in fifo clock = 1'b0;

assign tv_in iso = 1'bl;

//assign tv_in reset b = 1'b0;

assign tv_in clock = clock 27mhz; //1'b0;

//assign tv_in i2c data = 1'bZ;

// tv_in ycrcb, tv_in data valid, tv_in line clockl, tv in line clock2,
// tv_in aef, tv _in hff, and tv_in aff are inputs

// SRAMs

//enable ram0 bank to store pictures in ZBT memory
/*assign ram0Q data = 36'hZ;

assign ram0_address = 19'h0;

assign ram0 _clk = 1'b0;

assign ram0 we b = 1'b0;

assign ram0 cen b = 1'bl;*/

assign ram0_adv_1d = 1'b0;

51

assign ram0 ce b = 1'b0;
assign ram0 oe b = 1'b0;
assign ram0 bwe b = 4'h0;
assign raml _data = 36'hZ;
assign raml address = 19'h0;
assign raml_adv_1d = 1'b0;
assign raml clk = 1'b0;
assign raml cen b = 1'bl;
assign raml ce b = 1'bl;
assign raml oe b = 1'bl;
assign raml_we b = 1'bl;
assign raml bwe b = 4'hF;
assign clock feedback out = 1'b0;

// clock feedback in is an input

// Flash ROM

assign flash data = 16'hZ;
assign flash address = 24'h0;
assign flash ce b = 1'bl;

Speaker, Wu, Zhu

52

assign flash oe b = 1'bl;
assign flash we b = 1'bl;
assign flash reset b = 1'b0;
assign flash byte b = 1'bl;
// flash sts is an input

// RS-232 Interface

assign rs232 txd = 1'bl;

assign rs232 rts = 1'bl;

// rs232 rxd and rs232 cts are inputs

// PS/2 Ports
// mouse_clock, mouse data, keyboard clock, and keyboard data are inputs

// LED Displays

assign disp blank = 1'bl;
assign disp clock = 1'b0;
assign disp rs = 1'b0;
assign disp ce b = 1'bl;
assign disp reset b = 1'b0;
assign disp data out = 1'b0;*/
// disp data _in is an input

// Buttons, Switches, and Individual LEDs

// assign led = 8'hFF;

// button0, buttonl, button2, button3, button enter, button right,
// button left, button down, button up, and switches are inputs

// User I/0Os

//assign userl = 32'hZ;
//assign user2 = 32'hZ;
//assign user3 = 32'hZ;
//assign userd4d = 32'hZ;

// Daughtercard Connectors
assign daughtercard = 44'hZz;

// SystemACE Microprocessor Port

assign systemace data = 16'hZ;

assign systemace address = 7'h0;

assign systemace ce b = 1'bl;

assign systemace we b = 1'bl;

assign systemace oe b = 1'bl;

// systemace irq and systemace mpbrdy are inputs

// Ray uses logic analyzer signals:
// Logic Analyzer

//assign analyzerl data = 16'h0;
//assign analyzerl clock = 1'bl;

Speaker, Wu, Zhu 53

assign analyzerl clock = clock 27mhz;
//assign analyzer2 data = 16'h0000;
//assign analyzer2 clock = 1'bl;

assign analyzer2 clock = tv_in line clockl;
assign analyzer3 data = 16'h0;

assign analyzer3 clock = 1'bl;

assign analyzer4 data = 16'h0;

assign analyzer4 clock = 1'bl;

// use FPGA's digital clock manager to produce a 65MHz clock (actually 64.8MHz)
wire clock_ 65mhz_unbuf,clock 65mhz;

DCM vclkl (.CLKIN(clock 27mhz),.CLKFX(clock 65mhz unbuf));

// synthesis attribute CLKFX DIVIDE of vclkl is 10

// synthesis attribute CLKFX MULTIPLY of vclkl is 24

// synthesis attribute CLK FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN PERIOD of vclkl is 37

BUFG vclk2(.0(clock 65mhz),.I(clock 65mhz unbuf)) ;

// power-on reset generation

wire power on reset; // remain high for first 16 clocks

SRL16 reset sr (.D(1'b0), .CLK(clock 65mhz), .Q(power on reset),
LA0(1'b1), .AI(1'b1), .A2(1'bl), .A3(1'b1));

defparam reset sr.INIT = 16'hFFFF;

// ENTER button is user reset

wire reset,user_reset;

debounce debl (power on reset, clock 65mhz, ~button enter, user reset);
assign reset = user reset | power on reset;

//Ray's code:

wire [15:0] vram addr;
wire [7:0] vram data in;
wire [7:0] vram data out;
wire vram clk;

wire vram we;

wire recording; //high when skipping a frame

wire center ready;

wire [3:0] center mb row;

wire [4:0] center mb col;

wire [12:0] debug; //used for debug

wire [8:0] mb output;

wire [63:0] debug vga,; //ray wu debug (display pix per line)

wire [7:0] rays red, rays green, rays blue;

wire rays hs, rays vs, rays b, rays pixel clock, rays vga out sync b;

wire [5:0] rays v angle v, rays v angle h, bos a angle, bos a anglel, bos a angleZ2,
bos a angle3, bos a angled;

wire rays v _motion, bos a motion;

vga with ram vr(.reset (reset), .clock 27mhz(clock 27mhz), .clock 65mhz(clock 65mhz),
.vga out red(rays red), .vga out green(rays green),
.vga out blue(rays blue),
.vga out sync b(rays vga out sync b), .vga out blank b(rays b),
.vga out pixel clock(rays pixel clock),
.vga out hsync(rays hs), .vga out vsync(rays vs),
.vram addr (vram addr), .vram data in(vram data in),
.vram data out (vram data out),
.vram clk(vram clk), .vram we(vram we), .recording(recording),
.center ready (center ready), .motion center({center mb row,
center mb col}),
.v_angle h(rays v _angle h), .v_angle v(rays v _angle v),
.angle calculated(rays v_motion),
.debug (debug vga), .mb_output (mb output));

// ADV7185 NTSC decoder interface code

// adv7185 initialization module

Speaker, Wu, Zhu 54

adv7185init adv7185(.reset (reset), .clock 27mhz(clock 27mhz),
.source(1'b0), .tv_in reset b(tv_in reset b),
.tv_in i2c clock(tv_in i2c clock),
.tv_in i2c data(tv_in i2c data));

wire [29:0] ycrcbhb; // video data (luminance, chrominance)
wire [2:0] fvh; // sync for field, vertical, horizontal
wire dv; // data valid

ntsc decode decode (.clk(tv_in line clockl), .reset(reset),
.tv_in ycrcb(tv_in ycrcb[19:10]),
.ycrcb (ycreb), .f(fvh[2]),
.v(fvh([1]), .h(fvh[0]), .data valid(dv));

// display memory: test pattern or NTSC video
//assign led = ~vram data out;

wire [15:0] vaddr3;

wire [7:0] vdata3;

wire vclk3;

wire vwes;

vid test pat vp3 (clock 27mhz,vaddr3,vdata3,vclk3,vwe3);

wire [15:0] vaddr4;
wire [7:0] vdata4;
wire vwed ;

//wire vclk4;

wire [63:0] debug ntsc to ram;

wire [5:0] debug led6 ntsc to ram;

wire [8:0] logic output;

ntsc to ram vp4 (.reset(reset), .clk(tv in line clockl),
.fvh(fvh), .dv(dv), .din(ycrcb[29:22]),
.vaddr (vaddr4) , .vwe(vwed4), .vdata (vdata4),
.high contrast (switch[4]), .display one frame (switch[3]),
.debug output (debug ntsc to ram),

.led outputé6 (debug ledé ntsc to ram), .logic output (logic output),

.skippedFrame (recording)) ;

// select video source

/*wire video source;

//assign video source = 0; //always use NTSC video

debounce vid source(reset, clock 65mhz, switch[1], video source);

assign vram addr = video source ? vaddr3 : vaddr4; // fill video RAM with NTSC video
data or b/w bars

assign vram data in = video source ? vdata3 : vdatad;
assign vram clk = video source ? vclk3 : tv _in line clockl;
assign vram we = video source ? vwe3 : vwed;*/

assign vram addr = vaddr4; //fill video RAM with NTSC video data

assign vram data in = vdatad4;
assign vram clk = tv_in line clockl;
assign vram we = vwed;

// debugging
assign analyzer2 data[15:0] = {2'b00, vwed, fvh, tv in ycrcb[19:10]};

parameter VERSION = 8'd51;

wire [63:0] RaysHexData,;

assign RaysHexData[63:0] = debug vga[63:0]; // {56'b0,VERSION) ;

/*display 1l6hex my display (reset, clock 27mhz, debug vga, // {56'b0,VERSION},
disp blank, disp clock, disp rs,
disp ce b, disp reset b, disp data out);*/

//assign led[7] = center ready;
//assign led[6] = debug led6 ntsc to ram[4]; //skippedFrames

Speaker, Wu, Zhu 55

//assign users:

// assign user2[7:0] debug vga[7:0]; //difference luma
//assign user2[31:8] 24'b0;

//assign user3([31:9] = 23'b0;

//user3[8:0] come from ntsc _to ram

//end Ray's code

// generate basic XVGA video signals

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvgal (clock 65mhz,hcount,vcount,hsync,vsync,blank) ;

// feed XVGA signals to display module
wire [2:0] pixel;
wire dhsync,dvsync,dblank;

// wire up to ZBT ram
wire [35:0] z write data;
wire [35:0] z read data;
wire [18:0] z addr;

wire z _we;

zbt 6111 zbtl(clock 65mhz, 1'bl, z we, z addr,
z write data, z read data,
ram0_clk, ram0 we b, ramO address, ram(O _data, ramO cen b);

// generate pixel value from reading ZBT memory
wire [7:0] z pixel;
wire [18:0] z addrl;

vram display vdl (reset,clock 65mhz,hcount,vcount,z pixel,z addrl,z read data);

// code to write NTSC data to video memory
wire [18:0] ntsc addr;
wire [35:0] ntsc data;
wire ntsc we;
ntsc to zbt n2z (clock 65mhz, tv in line clockl, fvh, dv, ycrcb[29:22],
ntsc_addr, ntsc data, ntsc we, 1'b0); //switch[3]); don't need the
debugging switch

// code to write pattern to ZBT memory
reg [31:0] count;

always @ (posedge clock 65mhz) count <= reset ? 0 : count + 1;

//wire [18:0] z addr2 = count[0+18:0];

//wire [35:0] vpat = (switch[1] ? {4{count[3+3:3],4'b0}}
{4{count[3+4:4],4'b0}}); //switch 1 selects between test bar periods

/* wire [35:0] vpat = {4{count[3+3:3],4'b0}}; //switch 1 selects between test bar
periods

// mux selecting read/write to memory based on which write-enable is chosen
wire sw_ntsc = ~switch([2]; //switches between ntsc and test bars
wire my we = sw_ntsc ? (hcount[1:0]==2'd2) : blank;

wire [18:0] write addr = sw_ntsc ? ntsc addr : z addr2;

wire [35:0] write data = sw _ntsc ? ntsc data : vpat;*/

wire my we = (hcount[1:0] == 2'd2);
wire [18:0] write addr = ntsc addr;
wire [35:0] write data = ntsc data;
assign z addr = my we ? write addr : z addrl;

wire manual override;
debounce manual (reset, clock 65mhz, switch[0], manual override);

//generate write enable signal when user presses snapshot button
wire snapshot, picture we; //frame expire;

Speaker, Wu, Zhu 56

synchronize snapper (clock 65mhz, ~button(O, snapshot);

//1if manual override is set use button0 to take pictures

//otherwise pictures will be taken whenever visual motion is detected

reg [26:0] pic delay count = 0;

always @ (posedge clock 65mhz) begin
//take a picture at startup or whenever motion is detected
if (reset || rays v motion) pic delay count <= 26'd6500000; //hold high for 0.1s
else if (pic delay count > 0) pic delay count <= pic delay count - 1;
else pic delay count <= 0;

end

assign picture we = manual override ? snapshot : (pic delay count != 0);

//assign picture we = snapshot;

assign z we = picture we && my we;

assign z write data = write data;

// select output pixel data
wire Picture b, Picture hs, Picture vs;

delayN dnl(clock 65mhz,hsync,Picture hs); // delay by 3 cycles to sync with ZBT read
delayN dnZ(clock 65mhz,vsync,Picture vs);
delayN dn3(clock 65mhz,blank,Picture b);

//reg [7:0] Picture Pixel;

//filter out everything but the picture
parameter HMIN = 64;

parameter HMAX = 600;

parameter VMIN = 64,

parameter VMAX = 400;

wire [7:0] Picture Pixel;

wire picture select;

assign picture select = hcount > HMIN && hcount < HMAX && vcount > VMIN && vcount <
VMAX ;

//assign Picture Pixel[7:0] = z pixel[7:0];
assign Picture Pixel[7:0] = picture select ? z pixel[7:0] : 8'd0;

//debounce pp(clock 65mhz, reset, switch([4], picture select);
/*always @ (posedge clock 65mhz)
begin
Picture Pixel <= picture select ? {hcount[8:6],5'b0} : z pixel;
end */

wire [5:0] v_angle v, v_angle h, a angle; //angles received from video and audio
processing units

wire [5:0] a anglel, a angle2, a angle3, a angled; //all possible locations of the
sound before triangulation

wire v_motion, a motion; //used to determine whether the angles are valid

//debug angles used to demo motion:

wire [5:0] dbg v angle v, dbg v angle h, dbg a angle, dbg a angle2, dbg a angle3,
dbg a angled;

wire dbg v _motion, dbg a motion;

wire dbg sw; //switch to toggle between debug mode and automatic mode
debounce dbug switch(reset, clock 65mhz, switch[1], dbg sw);

//debug code to test automatic motion

wire v_finished moving, h finished moving; //output of motion calculator when motor
stops moving

wire v_reset, h reset;

assign v_reset = reset || v_finished moving; //reset the angles whenever the motor has
already moved
assign h reset = reset || h finished moving;

test angle generator tagl (clock 65mhz, v reset, dbg v _angle v);
defparam tagl.INCREMENT = 2;

defparam tagl.START VALUE = 18;

test angle generator tagZ2(clock 65mhz, h reset, dbg v angle h);
defparam tag2.INCREMENT = 1;

Speaker, Wu, Zhu 57

defparam tagZ2.START VALUE = 33;

test angle generator tag3(clock 65mhz, h reset, dbg a angle);
defparam tag3.INCREMENT = 2;

defparam tag3.START VALUE = 9;

test angle generator tag4(clock 65mhz, h reset, dbg a angleZ2);
defparam tag4.INCREMENT = 2;

defparam tag4.START VALUE = 14;

test angle generator tagb(clock 65mhz, h reset, dbg a angle3);
defparam tag5.INCREMENT = 3;

defparam tagb.START VALUE = 0;

test angle generator tagé6(clock 65mhz, h reset, dbg a angled);
defparam tag6.INCREMENT = 1;

defparam tag6.START VALUE = 30;

assign v_angle v[5:0] = dbg sw ? dbg v _angle v[5:0] : rays v _angle v[5:0];
assign v_angle h[5:0] dbg sw ? dbg v _angle h[5:0] : rays v _angle h[5:0];
assign a angle[5:0] dbg sw ? dbg a angle[5:0] : bos a angle[5:0];
assign a anglel[5:0] dbg sw ? dbg a angle[5:0] : bos a anglel[5:0];
assign a angle2[5: = dbg sw ? dbg a angle2[5:0] : bos _a angle2[5:0];
assign a angle3[5:0] dbg sw ? dbg a angle3[5:0] : bos a angle3[5:0];
assign a angle4[5:0] = dbg sw ? dbg a angle4[5:0] : bos a angle4[5:0];

S
=
|
I

assign v_motion = dbg sw ? dbg v motion : rays v _motion;
assign a motion = dbg sw ? dbg a motion : bos a motion;

debounce vm(reset, clock 65mhz, ~button3, dbg v motion);
debounce hm(reset, clock 65mhz, ~button2, dbg a motion);

wire look up, look down, look right, look left; //outputs of motion calculator

wire [7:0] a x center, a y center;
//assign a x center = 8'b00100010;
//assign a y center = 8'b00100101;

wire signed [9:0] a x locat, a y locat;
//assign a y locat = 10'b1100000000; //+512
//assign a_x locat = 10'b0100000000; //-512

DisplayModule displayer (clock 65mhz, reset,
a motion, a anglel[5:0], a angle2[5:0],
a angle3[5:0], a angled4[5:0],
a x center, a y center,
a x locat, a y locat,
v_motion, v _angle v[5:0],v _angle h[5:0],
look up, look down, look right, look left,

hcount,vcount,hsync,vsync,blank,dhsync,dvsync,dblank,pixel) ;

wire [1:0] displayChoice;
debounce dis0O(reset, clock 65mhz, switch[6], displayChoice[0]) ;
debounce disl (reset, clock 65mhz, switch[7], displayChoice[1]);

reg [63:0] hexData = 64'd0;

reg b,hs,vs; //blank, hsync, and vsync vga signals

reg [7:0] red, green, blue; //vga color outputs

wire [63:0] BobbysHexData,; //debugging information used to test motion calculator

wire blanker; //output of motion calculator, no motion is allowed for 2 seconds after
movement has ended

assign BobbysHexData[63:0] = {{3'b0, picture we},{3'b0, blanker},

{2'b00, a angled[5:0]},{2'b00,

a angle3[5:0]},{2'b00, a angle2[5:0]},

{2'b00,a anglel[5:0]},{2'b00,a angle[5:0]},
{2'b00,v_angle h[5:0]},{2'b00,v_angle v[5:0]}};
always @ (posedge clock 65mhz) begin
if (~displayChoice[0] && ~displayChoice[l]) begin //00

hs <= dhsync;
vs <= dvsync;

Speaker, Wu, Zhu

b <= dblank;
hexData[63:0] <= BobbysHexData[63:0];
red <= {8{pixel[2]}};
green <= {8{pixel[1]}};
blue <= {8{pixel[0]}};
end
else if (~displayChoice[0] && displayChoice[l]) begin //10
hs <= Picture hs;
vs <= Picture vs;
b <= Picture b;
hexData[63:0] <= BobbysHexData[63:0];
red <= Picture Pixel;
green <= Picture Pixel;
blue <= Picture Pixel;

end
else begin //11 or 01

hexData[63:0] <= RaysHexData[63:0];
end

end

// VGA Output. In order to meet the setup and hold times of the
// AD7125, we send it ~clock 65mhz.

assign vga out red = displayChoice[0] ? rays red : red;

assign vga out green = displayChoice[0] ? rays green : green;
assign vga out blue = displayChoice[0] ? rays blue : blue;
assign vga out sync b = displayChoice[0] ? rays vga out sync b
assign vga out blank b = displayChoice[0] ? rays b : ~b;

assign vga out pixel clock = displayChoice[0] ? rays pixel clock
assign vga out hsync = displayChoice[0] ? rays hs : hs;

assign vga out vsync = displayChoice[0] ? rays vs : vs;

//input buttons

wire move up, move down, move right, move left;

debounce bup (reset, clock 65mhz, ~button up, move up);

debounce bdown (reset, clock 65mhz, ~button down, move down);
debounce bright (reset, clock 65mhz, ~button right, move right);
debounce bleft (reset, clock 65mhz, ~button left, move left);

1'b1;

~clock 6bmhz;

wire av_priority; //determines whether audio or video motion takes priority

debounce prio(reset, clock 65mhz, switch[5], av priority);

//outputs of the motion calculator

wire vIAp, vIAn, vIBp, vIBn, hIAp, hIAn, hIBp, hIBn;
wire moving;

wire cant move up, cant move down;

MotionCalculator mc(reset, clock 65mhz, manual override,

move up, move down, move right, move left,
v_angle h[5:0], v_angle v[5:0], v_motion,

a angle[5:0], a motion,
av_priority,

cant move up, cant move down, moving,

vIAp, vIAn, vIBp, vIBn,
hIAp, hIAn, hIBp, hIBn,

look up, look down, look right, look left,

v _finished moving, h finished moving, blanker);

//assign beep = a motion || v _motion; //generate audio beep when there is motion

wire v_enbl, v_enb2, h enb; //enable signals sent to motor driver (always high)

assign h enb = 1;
assign v_enbl = 1;
assign v_enb2 = 1;

wire unsyn cant move up, unsyn cant move down; //unsynchronized signals coming

from the limit switches

assign user3[10:6] = {h enb, hIBn, hIBp, hIAn, hIAp};
assign user3[16:11] = {(v_enbl, v_enb2, vIBn, vIBp, vIAn, VvIAp};

assign unsyn cant move down = user2[0];

58

Speaker, Wu, Zhu 59

assign unsyn cant move up = user2[1];

// debounce cant move u(reset, clock 65mhz, unsyn cant move up, cant move up);
//debounce cant move d(reset, clock 65mhz, unsyn cant move down, cant move down) ;
//remove these signals if you the motor can spin 360 degrees in vertical direction
assign cant move up = 0;
assign cant move down = 0;

//assign debugging leds:

assign led = ~{manual override, look right, look left, look up, look down, reset,
cant _move up, cant_move down};

display 1l6hex hexdispl (reset, clock 65mhz, hexData[63:0], disp blank, disp clock,
disp rs, disp ce b, disp reset b, disp data out);

//create a special reset for Bo so that the audio calculations are reset after each
movement
wire bo reset = reset || v finished moving || h finished moving;

//Begin Bo's code

wire reset timerl, reset timer2, reset timer3;
wire expiredl, expired?, expired3;

wire [9:0] valuel;

assign valuel = 960,

wire [9:0] countl;

wire [3:0] valueZl;

assign value2 = 10;

wire [3:0] count2;

wire [9:0] value3;
assign value3 = 912;
wire [9:0] count3;

wire reset timer4;
wire expired4;

wire [10:0] valued;
assign valued = 1200;
wire [10:0] countd;

//AD7871 driver

wire convst barl, cs barl, rd barl;
wire convst bar2, cs bar2, rd bar2;
wire convst bar3, cs bar3, rd bar3;
wire convst bar4, cs bard4, rd bard;

wire ready;

wire int barl, int bar2, int bar3, int bar4;
wire [2:0] state;

wire [2:0] highstate;

wire [13:0] dbl;

wire [13:0] db2;

wire [13:0] db3;

wire [13:0] db4;

wire [1:0] dirl;
wire [1:0] dir2;
wire [9:0] delayl;
wire [9:0] delayZ2;
wire [2:0] d statel;
wire [2:0] d state2;
wire [9:0] d countl;
wire [9:0] d count2;

wire reset possible;
wire [13:0] dividendl;
wire [13:0] dividend2;
wire [9:0] divisorl;

wire [9:0] divisor2;

wire [7:0] d over cl;

wire
wire
wire
wire

wire
wire

wire

[7:
[7:
[7:
[9:

[3:
[3:

0]
0]

d over c2;
slopel;
slope2;
tiz;

posanglel;
posanglel;

boblank;

reg [32:0] boblank count;
always @ (posedge clock 65mhz) begin

if (bo reset) boblank count <= 6500000;

else if (boblank count > 0) boblank count <= boblank count - 1;
else boblank count <= 0;

end

assign boblank = (boblank count

timerl
timer2
timer3
timer4

tl(bo reset, reset timerl,
t2(bo reset, reset timer2,
t3(bo reset, reset timer3,
t4 (bo reset, reset timer4,

Speaker, Wu, Zhu 60

=20);

clock 65mhz, valuel, expiredl, countl);
clock 65mhz, value?, expired2, count2, state);
clock 65mhz, value3, expired3, count3);
clock 65mhz, valued4, expired4, countd);

ad7871 controller adccontrol (bo reset, clock 65mhz, convst barl, convst barZ,
convst bar3, convst bar4,

rd barZ2, rd bar3,

int bar3,

reset timer2, expiredl,

countl, reset possible);

cs barl, cs bar2, cs bar3, cs bar4, rd barl,
rd bar4, int barl, int bar2,
int bar4, ready, state, reset timerl,

expired2, reset timer3, expired3,

differencer diffl (boblank, d countl, bo reset, clock 65mhz, expiredl, dbl, db2, dirl,
delayl, d statel);
differencer diff2(boblank, d count2, bo reset, clock 65mhz, expiredl, db3, db4, dirz,
delay2, d state2);

slopefinder locl (boblank, bo reset, clock 65mhz, delayl, dirl, a x center,
bos a anglel, bos a anglez,

dividendl, divisorl, d over cl, posanglel);

slopefinder locZ2(boblank, bo reset, clock 65mhz, delay2, dir2, a y center,
bos a angle3, bos a angle4,

dividend2, divisor2, d over c2, posangle2);

anglecalc anglecalcl (bo reset, clock 65mhz, posanglel, posangle2, dirl, dir2,
bos a angle, bos a motion);

assign
assign
assign
assign

assign
assign
assign

assign
assign
assign
assign

assign
assign

dbl[5:0] = userl[5:0];
dbl1[9:6] = userl[10:7];

dbl[13:10] = userl[15:12];

int barl = userl[31];

user3[29] = rd barl;
user3[28] = cs_barl;
user3[27] = convst barl;

db2[2:0]

user2[2:0];

db2[5:3] = user2[6:4];
db2[13:6] = user2[15:8];
int bar2 = user2[31];

user3[5]

rd bar2;

user3([4] = cs bar2;

Speaker, Wu, Zhu 61

assign user3[3] = convst bar2;

assign db3[2:0] = user4[2:0];
assign db3[5:3] = user4[6:4];
assign db3[13:6] = user4[15:8];

assign int bar3 = user4[31];
assign user3[2] = rd bar3;
assign user3[1] = cs bar3;
assign user3[0] = convst bar3;

assign db4[5:0] = userl[21:16];
assign db4[13:6] = userl[29:22];

assign int bar4 = userl[30];
assign user3[26] = rd bar4;
assign user3[25] = cs bar4;
assign user3[24] = convst bard;
//End Bo's code

endmodule

//Rays code:

// Ray Wu: last updated 12-11-05

// Fill video RAM from NTSC decoded video grabbed data

module ntsc to ram(reset, clk, fvh, dv, din, vdata, vaddr, vwe,
high contrast, display one frame,
debug output, led outputé, logic output,
skippedFrame) ;

//storage depends on whether we're storing frame A or B

//each frame takes up at most 256x96

//frame A: address => 256x96

//frame B: address => (frame A shift by 256, 96)

input reset;
input clk;

input [2:0] fvh;

input dv;
input [7:0] din;

output vwe;

output [15:0] vaddr;
output [7:0] vdata;

input high contrast;

input display one frame; //for test purposes (store everything only in mem A)
output [63:0] debug output; //ray wu debug

output [5:0] led outputé6;

output [8:0] logic output;,

output skippedFrame; //if 0, then we are NOT recording (and can do processing)
reg [63:0] debug output = 0;

//add state control to control where frame will be stored

reg storeInA = 0;

reg storeInB = 0;

reg [1:0] videoMemState; //0: no frames stored, 1: frame A stored, 2: A, B stored (A
is history)

//3: B, A stored (B is history)
reg skippedFrame = 0; //already skipped a frame...time to record again
//store every OTHER frame, if 1, then okay

to store

reg [15:0] vaddr = 0; //need to pick the address depending on storeMemA and storeMemB

reg [2:0] counter two = 0;

reg just reset = 0; //trigger on during reset, tells fsm to start processing only
when one frame is finished

//new way of storing frames

//storing frames only need to worry about storeInA and storeInB...

//algorithm...control skippedFrame...when sf is 0, no storing, whenever sf becomes 1,
alternate frameStorage

//use skippedFrame, storeInA, and storeInB as before

Speaker, Wu, Zhu

reg [2:0] sf counter = 0; //counts up to 8
reg history store = 1; //if last store was A, h s=I

parameter SKIP FRAME TOTAL = 4;

// parameter MAX ROW = 191;
// parameter MAX COL = 255;

// here put the luminance data from the ntsc decoder into the ram

reg [7:0] col = 0;

reg [7:0] row = 0;

reg [7:0] vdata = 0;
//reg vwe = 0;

//always @ (posedge fvh[l] or posedge reset) //trigger on new frame
always @ (posedge fvh[2] or posedge reset) //trigger on new frame
begin

if (reset) //changed

begin
//memory storage, start with initial state
storeInA <= 0; //start with storing in A
storeInB <= 0;
videoMemState <= 0;
skippedFrame <= 0;
//new
history store <= 0;
sf counter <= 0;
end
else
begin
//on every change in fvh[2] (happens at 60hz)
//if (sf counter == SKIP FRAME TOTAL)
if (sf counter == SKIP FRAME TOTAL)
begin
skippedFrame <= 1;
sf counter <= 0; //reset the counter
//we need to switch storing state
if (history store) //last store was in A
begin
storeInA <= 0;
storeInB <= 1;
history store <= 0; //now the most recent store is in B
end
else //last store was in B
begin
storeInA <= 1;
storeInB <= 0;
history store <= 1; //now the most recent store is in A
end
end
else //we haven't skipped enough frames
begin
skippedFrame <= 0;
storeInA <= 0; //no storage allowed
storeInB <= 0;
sf counter <= sf counter + 1;
end
end

end

reg old dv;
reg [2:0] counter use pix; //used to obtain every 4th pix
reg use line = 1; //used to obtain every other line

wire vwe = dv && !fvh[2] && ~old dv; // if data valid, write it

always @ (posedge clk)
begin
if (reset)
begin
counter use pix <= 0;

62

Speaker, Wu, Zhu 63

use line <= 1;

end
else
begin
old dv <= dv;
if (!fvh[2])
begin
if (fvh[O0])
use line <= ~use line;
if (((counter use pix == 0) | fvh[1] | fvh[0]) & use line)
begin
col <= fvh[0] ? 8'h0O
(lfvh[2] && !fvh[1] && dv && (col < 255)) ? (col + 1)
col;
row <= fvh[1] ? 8'h00O
(!fvh[2] && fvh[0] && (row < 95)) ? (row + 1) : row;
if (high contrast)
vdata <= (dv && !fvh([2]) ? ((din > 120) ? 8'd255
0) : vdata;
Vs
vdata <= (dv && !fvh([2]) ? ((din > 200) ? 8'd255
((din > 130) ? 8'd225
((din > 80) ? 8'd40
((din > 30) ? 8'd20 : 8'd0)))) : vdata,
*/
else
vdata <= (dv && !fvh[2]) ? din vdata,
counter use pix <= 1;
end
else 1f (counter use pix == 3)
counter use pix <= 0;
else
counter use pix <= counter use pix + 1;
end
end
end

always @ (posedge clk)

begin
if (!display one frame)
begin
if (storeInA) vaddr <= {row, col};
else if (storeInB) vaddr <= {row+96, col};
else vaddr <= 16'b0; //default setting
end
else
vaddr <= {row, col};
end

//test signal for fvh[1]
reg vsync = 0;
always @ (posedge fvh[1])
begin

vsync <= ~vsync;
end

//debug

assign led output6[5] 0;

assign led output6[4] = ~skippedFrame;

assign led output6[3] = ~storelnA;

assign led outputé6[2] = ~storelnB;

assign led outputé6[1:0] = ~videoMemState[1:0];
//logic analyzer

assign logic output[8] = reset;

assign logic output[7:6] = videoMemState[1:0];
assign logic output[5] = dv;

assign logic output[4:3] = fvh[2:1];

Speaker, Wu, Zhu 64

assign logic output[2] = storelnA;
assign logic output[1] = storelnB;
assign logic output[0] = skippedFrame;
endmodule
//end Rays code

Speaker, Wu, Zhu

//debounces a signal using a 65 mhz clock
module debounce (reset, clock 65mhz, noisy, clean);
input reset, clock 65mhz, noisy;
output clean;
parameter DELAY = 648000; //~0.01 seconds on a 65mhz clock
reg [20:0] count;
reg new, clean;

always @ (posedge clock 65mhz)
if (reset) begin new <= noisy,; clean <= noisy,; count <= 0; end
else 1f (noisy != new) begin new <= noisy,; count <= 0; end
else if (count == 648000) clean <= new;
else count <= count+l;

endmodule

//synchronizes a signal with the clk
module synchronize(clk,in,out);
parameter NSYNC = 2; // number of sync flops. must be >= 2
input clk;
input in;
output out;

reg [NSYNC-2:0] sync;
reg out;

always @ (posedge clk)
begin
{out,sync} <= {sync[NSYNC-2:0],in};
end
endmodule

65

Speaker, Wu, Zhu

LSS S S S SSS S SSS S
//

// 6.111 FPGA Labkit -- Hex display driver

//

//

// File: display 1l6hex.v

// Date: 24-Sep-05

//

// Created: April 27, 2004

// Author: Nathan Ickes

//

// This module drives the labkit hex displays and shows the value of

// 8 bytes (16 hex digits) on the displays.

//

// 24-Sep-05 Ike: updated to use new reset-once state machine, remove clear
// 02-Nov-05 Ike: updated to make it completely synchronous

// 04-Nov-05 Robert Speaker: made clk speed parameterized

//

// Inputs:

//

// reset - active high

// clk - the synchronous clock

// data - 64 bits; each 4 bits gives a hex digit
//

// Outputs:

//

// disp * - display lines used in the 6.111 labkit (rev 003 & 004)
//

// Parameter:

// CLK SPEED - frequency of input clk

//

S A N S I AN I A a4

module display 1l6hex (reset, clk, data in,
disp blank, disp clock, disp rs, disp ce b,
disp reset b, disp data out);

input reset, clk; // clock and reset (active high reset)
input [63:0] data in; // 16 hex nibbles to display

parameter CLK SPEED = 65;

output disp blank, disp clock, disp data out, disp rs, disp ce b,
disp reset b;

reg disp data out, disp rs, disp ce b, disp reset b;

LSS S S S SSS
//

// Display Clock

//

// Generate a 500kHz clock for driving the displays.

//

SIS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

reg [7:0] count;
reg [9:0] reset count;

// reg old clock;
wire dreset;
wire clock = (count<CLK SPEED) ? 0 : 1;

always @ (posedge clk)

begin
count <= reset ? 0 : (count==(2*CLK SPEED - 1) ? 0 : count+1);
reset count <= reset ? 100 : ((reset count==0) ? 0 : reset count-1);
// old clock <= clock;
end
assign dreset = (reset count != 0);
assign disp clock = ~clock;

wire clock tick = ((count==CLK SPEED) ? 1 : 0);

66

Speaker, Wu, Zhu

// wire clock tick = clock & ~old clock;

SIS LSS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSS S
//

// Display State Machine

//

SSSLLSS LSS LSS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSS S

reg [7:0] state; // FSM state

reg [9:0] dot index; // index to current dot being clocked out
reg [31:0] control; // control register

reg [3:0] char index; // index of current character

reg [39:0] dots; // dots for a single digit

reg [3:0] nibble; // hex nibble of current character

reg [63:0] data;
assign disp blank = 1'b0; // low <= not blanked

always @ (posedge clk)
if (clock tick)
begin
if (dreset)
begin
state <= 0;
dot index <= 0;
control <= 32'h7F7F7F7F;
end
else
casex (state)
8'h00:
begin
// Reset displays
disp data out <= 1'b0;
disp rs <= 1'b0; // dot register
disp ce b <= 1'bl;
disp reset b <= 1'b0;
dot index <= 0;
state <= state+l;
end

8'h01:
begin
// End reset
disp reset b <= 1'bl;
state <= state+l;
end

8'h02:
begin
// Initialize dot register (set all dots to zero)
disp ce b <= 1'b0;
disp data out <= 1'b0; // dot_index[0];

if (dot _index == 639)
state <= state+l;
else
dot index <= dot index+1;
end
8'h03:
begin

// Latch dot data
disp ce b <= 1'bl;

dot index <= 31; // re-purpose to init ctrl reg
state <= state+l;
end
8'h04:
begin

// Setup the control register
disp rs <= 1'bl; // Select the control register
disp ce b <= 1'b0;

67

Speaker, Wu, Zhu

disp data out <= control[31];
control <= {control[30:0], 1'b0}; // shift left

if (dot index == 0)
state <= state+l;
else
dot index <= dot index-1;
end
8'h05:
begin

// Latch the control register data / dot data
disp ce b <= 1'bl;

dot_index <= 39; // init for single char
char index <= 15; // start with MS char
data <= data in;

state <= state+l;

end

8'h06:
begin

end

// Load the user's dot data into the dot reg, char by char
disp rs <= 1'b0; // Select the dot register
disp ce b <= 1'b0;

disp data out <= dots[dot index]; // dot data from msb

if (dot index == 0)

if (char index == 0)
state <= 5, // all done, latch data
else
begin
char index <= char index - 1; // goto next char

data <= data in;
dot index <= 39;
end
else
dot index <= dot index-1; // else loop thru all dots

endcase // casex(state)

end

always @ (data or char index)
case (char index)

4'hO:
4'hl:
4'h2:
4'h3:
4'h4:
4'h5:
4'hé6:
4'h7:
4'h8:
4'h9:
4'"hA:
4'hB:
4'hC:
4'hD:
4'hE:
4'hF':
endcase

nibble <= data[3:0];

nibble <= data[7:4];

nibble <= data[l1:8];
nibble <= data[l5:12];
nibble <= data[l9:16];
nibble <= data[23:20];
nibble <= data[27:24];
nibble <= data[31:28];
nibble <= data[35:32];
nibble <= data[39:36];
nibble <= data[43:40];
nibble <= data[47:44];
nibble <= data[51:48];
nibble <= data[55:52];
nibble <= data[59:56];
nibble <= data[63:60];

always @ (nibble)

case (nibble)

4'hO:
4'hl:
4'h2:
4'h3:
4'h4:
4'h5:
4'hé:
4'h7:
4'h8:

dots
dots
dots
dots
dots
dots
dots
dots
dots

<= 40'b00111110 01010001 01001001 01000101 00111110,
<= 40'b00000000_01000010 01111111 01000000 _00000000;
<= 40'b01100010_01010001_01001001 01001001 _01000110;
<= 40'b00100010 01000001 01001001 01001001 00110110,
<= 40'b00011000_ 00010100 00010010 01111111 00010000,
<= 40'b00100111 01000101 01000101 01000101 00111001,
<= 40'b00111100 01001010 01001001 01001001 _00110000;
<= 40'b00000001 01110001 00001001 00000101 00000011,
<= 40'b00110110 01001001 01001001 01001001 00110110,

68

4'h9:
4'hA:
4'hB:
4'hC:
4'hD:
4'hE:
4'hF':
endcase

endmodule

dots
dots
dots
dots
dots
dots
dots

Speaker, Wu, Zhu

40'b00000110 01001001 01001001 00101001 _00011110;
40'b01111110 00001001 00001001 00001001 _01111110;
40'b01111111 01001001 01001001 01001001 _00110110;
40'b00111110 01000001 01000001 01000001 _00100010;
40'b01111111 01000001 01000001 01000001 _00111110;
40'b01111111 01001001 01001001 _01001001_01000001;

= 40'b01111111_00001001_00001001_00001001_00000001;

69

Speaker, Wu, Zhu 70

//6.111 Final Project
//Module written by: Robert Speaker
//A display module used for debugging purposes

module DisplayModule (vclock, reset,
a motion, a angle,
a angle2, a angle3, a angled4,
a x center, a y center,
a x locat, a y locat,
v _motion, v_angle v, v _angle h,
up, down, right, left,
hcount,vcount,hsync,vsync,blank,
dhsync,dvsync,dblank,

pixel);
input vclock; // 65MHz clock
input reset; // 1 to initialize module

input a motion, v_motion; //signals indicating audio or v_motion was detected

input [5:0] a angle, v _angle v, v _angle h; //the angles to display on the motion
compasses

input [5:0] a angle2, a angle3, a angle4; //all possible locations of the sound

input [7:0] a x center; //center of audio angle from 0-256

input [7:0] a y center;

input signed [9:0] a x locat, a y locat; //10 bit location of audio sound

input up, down, left, right; //displays current motion of motor

input [10:0] hcount; // horizontal index of current pixel (0..1023)
input [9:0] vcount; // vertical index of current pixel (0..767)

input hsync; // XVGA horizontal sync signal (active low)
input vsync; // XVGA vertical sync signal (active low)
input blank; // XVGA blanking (1 means output black pixel)
output dhsync; // output horizontal sync

output dvsync; // output vertical sync

output dblank; // output blanking

output [2:0] pixel; // current pixel rgb

parameter screen size x = 1024;
parameter screen size y = 768;

assign dhsync = hsync;
assign dvsync = vsync;
assign dblank = blank;

//draw vertical and horizontal separators to split the screen into quadrants

parameter separator width = 4;

wire [2:0] horiz sep pixel, vert sep pixel, separator pixels;

rectangle h separator(11'd0, (screen size y - separator width)/2,hcount,vcount,
horiz sep pixel);

rectangle v _separator((screen size x - separator width)/2,10'd0,hcount,vcount,
vert sep pixel);

defparam h_separator.WIDTH = screen size x; //full length of screen

defparam h separator.HEIGHT = separator width;

defparam h separator.COLOR = 3'b110; //yellow

defparam v_separator.WIDTH = separator width;

defparam v_separator.HEIGHT = screen size y; //full height of screen

defparam v_separator.COLOR = 3'b110; //yellow

assign separator pixels = horiz sep pixel + vert sep pixel;

//upper left Quadrant

//draw debugging module for audio (2 microphones and the possible locations of motion)
wire [10:0] real a x center;

assign real a x center = {3'b000, a x center + screen size x / 8};

wire [2:0] micl pixel, mic2 pixel, center pixel, linel pixel, lineZ pixel;

rectangle micl (screen size x / 8, screen size y/4, hcount, vcount, micl pixel);
defparam micl.WIDTH = 20;

defparam micl.HEIGHT = 20;

defparam micl.COLOR = 3'b101;

Speaker, Wu, Zhu 71

rectangle mic2(screen size x * 3/8, screen size y/4, hcount, vcount, mic2 pixel);
defparam mic2.WIDTH = 20;

defparam mic2.HEIGHT = 20;

defparam mic2.COLOR = 3'b101;

rectangle center(real a x center, screen size y/4 + 5, hcount, vcount, center pixel);
defparam center.WIDTH = 10;

defparam center.HEIGHT = 10;

defparam center.COLOR = 3'b101;

wire [10:0] end x1 1, end x1 2, end x1 3, end x2 1, end x2 2, end x2 3;

wire [9:0] end yl1 1, end yl1 2, end yl1 3, end y2 1, end y2 2, end y2 3;

wire [2:0] linel 1 pix, linel 2 pix, linel 3 pix, line2Z 1 pix, line2 2 pix,
line2 3 pix;

//draw the lines by calculating the end pt of of each line with various increasing
radii

calc end pt linerl 1(a angle[5:0], real a x center, screen size y/4+5, 32, end x1 1,
end y1 1);

calc end pt linerl 2(a angle[5:0], real a x center, screen size y/4+5, 64, end x1 2,
end yl1 2);

calc end pt linerl 3(a angle[5:0], real a x center, screen size y/4+5, 96, end x1 3,
end y1 3);

calc end pt liner2 1(a angle2[5:0], real a x center, screen size y/4+5, 32, end x2 1,
end y2 1);

calc end pt liner2 2(a angle2[5:0], real a x center, screen size y/4+5, 64, end x2 2,
end y2 2);

calc end pt liner2 3(a angle2[5:0], real a x center, screen size y/4+5, 96, end x2 3,
end y2 3);

//draw rectangles along the line

rectangle linel 1(end x1 1, end yl 1, hcount, vcount, linel 1 pix);
defparam linel 1.WIDTH = 10;

defparam linel 1.HEIGHT = 10;

rectangle linel 2(end x1 2, end yl 2, hcount, vcount, linel 2 pix);
defparam linel 2.WIDTH = 10;

defparam linel 2.HEIGHT= 10;

rectangle linel 3(end x1 3, end yl 3, hcount, vcount, linel 3 pix);
defparam linel 3.WIDTH = 10;

defparam linel 3.HEIGHT = 10;

rectangle line2 1(end x2 1, end y2 1, hcount, vcount, line2 1 pix);
defparam line2 1.WIDTH = 10;

defparam line2 1.HEIGHT= 10;

rectangle line2 2(end x2 2, end y2 2, hcount, vcount, line2 2 pix);
defparam line2 2.WIDTH = 10;

defparam line2 2.HEIGHT = 10;

rectangle line2 3(end x2 3, end y2 3, hcount, vcount, line2 3 pix);
defparam line2 3.WIDTH = 10;

defparam line2 3.HEIGHT= 10;

assign linel pixel linel 1 pix + linel 2 pix + linel 3 pix;
assign line2 pixel = line2 1 pix + lineZ 2 pix + line2 3 pix;

wire [10:0] real a y center;

assign real a y center[10:0] = a y center + screen size y / 8;
wire [2:0] mic3 pixel, mic4 pixel, center y pixel, line3 pixel, line4 pixel;
rectangle mic3(screen size x/4, screen size y/8, hcount, vcount, mic3 pixel);
defparam mic3.WIDTH = 20;
defparam mic3.HEIGHT = 20;
defparam mic3.COLOR = 3'b101;
rectangle mic4 (screen_size_x/4, screen size y * 3/8, hcount, vcount, mic4 pixel);
defparam mic4.WIDTH = 20;
defparam mic4.HEIGHT = 20;
defparam mic4.COLOR = 3'b101;
rectangle center y(screen size x/4 + 5, real a y center, hcount, vcount,

center y pixel);
defparam center y.WIDTH = 10;
defparam center y.HEIGHT = 10;
defparam center y.COLOR = 3'b101;

wire [10:0] end x3 1, end x3 2, end x3 3, end x4 1, end x4 2, end x4 3;

wire [9:0] end y3 1, end y3 2, end y3 3, end y4 1, end y4 2, end y4 3;

Speaker, Wu, Zhu 72

wire [2:0] 1line3 1 pix, line3 2 pix, line3 3 pix, line4 1 pix, line4 2 pix,
lined 3 pix;

//rotate vertical angles by 90 degrees (mod 36)

wire [5:0] rotated a3, rotated a4;

assign rotated a3[5:0] = (a_angle3[5:0] > 26) ? (9 - (35 - a angle3[5:0]))
(a_angle3[5:0] + 9);

assign rotated a4([5:0] = (a _angle4[5:0] > 26) ? (9 - (35 - a angle4[5:0]))
(a_angled4[5:0] + 9);

//draw the lines by calculating the end pt of of each line with various increasing
radii

/*calc end pt liner3 1(a angle3[5:0], screen size x/4 + 5, real a y center, 32,
end x3 1, end y3 1);

calc end pt liner3 2(a angle3[5:0], screen size x/4 + 5, real a y center, 64,
end x3 2, end y3 2);

calc end pt liner3 3(a angle3[5:0], screen size x/4 + 5, real a y center, 96,
end x3 3, end y3 3);

calc end pt linerd 1(a angle4[5:0], screen size x/4 + 5, real a y center, 32,
end x4 1, end y4 1);

calc end pt liner4 2(a angle4[5:0], screen size x/4 + 5, real a y center, 64,
end x4 2, end y4 2);

calc end pt linerd 3(a angled4[5:0], screen size x/4 + 5, real a y center, 96,
end x4 3, end y4 3);*/

calc end pt liner3 1 (rotated a3[5:0], screen size x/4 + 5, real a y center, 32,
end x3 1, end y3 1);

calc end pt liner3 2(rotated a3[5:0], screen size x/4 + 5, real a y center, 64,
end x3 2, end y3 2);

calc end pt liner3 3(rotated a3[5:0], screen size x/4 + 5, real a y center, 96,
end x3 3, end y3 3);

calc end pt linerd 1 (rotated a4[5:0], screen size x/4 + 5, real a y center, 32,
end x4 1, end y4 1);

calc end pt liner4 2(rotated a4[5:0], screen size x/4 + 5, real a y center, 64,
end x4 2, end y4 2);

calc end pt linerd 3(rotated a4[5:0], screen size x/4 + 5, real a y center, 96,
end x4 3, end y4 3);

//draw rectangles along the line

rectangle 1ine3 1(end x3 1, end y3 1, hcount, vcount, line3 1 pix);
defparam line3 1.WIDTH = 10;

defparam line3 1.HEIGHT = 10;

rectangle line3 2(end x3 2, end y3 2, hcount, vcount, line3 2 pix);
defparam line3 2.WIDTH = 10;

defparam line3 2.HEIGHT= 10;

rectangle line3 3(end x3 3, end y3 3, hcount, vcount, line3 3 pix);
defparam line3 3.WIDTH = 10;

defparam line3 3.HEIGHT = 10;

rectangle line4 1(end x4 1, end y4 1, hcount, vcount, line4 1 pix);
defparam line4 1.WIDTH = 10;

defparam line4 1.HEIGHT= 10;

rectangle line4 2(end x4 2, end y4 2, hcount, vcount, line4 2 pix);
defparam line4 2.WIDTH = 10;

defparam line4 2.HEIGHT = 10;

rectangle line4 3(end x4 3, end y4 3, hcount, vcount, line4 3 pix);
defparam line4 3.WIDTH = 10;

defparam line4 3.HEIGHT= 10;

//sum up all the pixels

assign line3 pixel = line3 1 pix + line3 2 pix + line3 3 pix;
assign line4 pixel = lined4 1 pix + line4 2 pix + line4 3 pix;

wire [2:0] audio debug pixels;
assign audio debug pixels = micl pixel + mic2 pixel + mic3 pixel + mic4 pixel +
center pixel + center y pixel +
linel pixel + line2 pixel + line3 pixel +
lined pixel;

//upper right quadrant: x-y grid displaying location of sound
//draw quadrant lines
wire [2:0] x axis pixel, y axis pixel;

Speaker, Wu, Zhu 73

rectangle x axis(screen size x * 9/16, (screen size y / 4), hcount, vcount,
x axis pixel);

defparam x axis.WIDTH = 384;

defparam x_axis.HEIGHT = 5;

rectangle y axis(screen size x * 3/4, 0, hcount, vcount, y axis pixel);

defparam y axis.WIDTH = 5;

defparam y axis.HEIGHT = 384;

wire signed [10:0] a x location = (a_x locat * 3/8) + screen size x*9/16 + 192;

wire signed [10:0] a y location = 192 - (a y locat * 3/8);

wire [2:0] a spot pixel;

rectangle a spot(a x location([10:0], a y location[9:0], hcount, vcount, a spot pixel);
defparam a spot.WIDTH = 10;

defparam a spot.HEIGHT = 10;

defparam a spot.COLOR = 3'b101;

wire [10:0] a locat pixels = x axis pixel + y axis pixel + a spot pixel;

//bottom left Quadrant

wire [2:0] motion pixels;

//draw up-down-right-left arrows and a circle around them

wire [2:0] up pixel, up pixel on, down pixel, down pixel on, right pixel,
right pixel on, left pixel, left pixel on, circle pix;

rectangle upArrow(screen size x/4-5, screen size y * 3/4-105, hcount, vcount,
up pixel on);

defparam upArrow.WIDTH = 10;

defparam upArrow.HEIGHT = 100;

defparam upArrow.COLOR = 3'b101,

rectangle downArrow(screen size x/4-5, screen size y * 3/4+5, hcount, vcount,
down pixel on);

defparam downArrow.WIDTH = 10;

defparam downArrow.HEIGHT = 100;

defparam downArrow.COLOR = 3'b101;

rectangle leftArrow(screen size x/4 - 105, screen size y * 3/4 - 5, hcount, vcount,
left pixel on);

defparam leftArrow.WIDTH = 100;

defparam leftArrow.HEIGHT = 10;

defparam leftArrow.COLOR = 3'b101;

rectangle rightArrow(screen size x/4 + 5, screen size y * 3/4 - 5, hcount, vcount,
right pixel on);

defparam rightArrow.WIDTH = 100;

defparam rightArrow.HEIGHT = 10;

defparam rightArrow.COLOR = 3'b101;

compass circ(screen size x/4, screen size y * 3/4, 133, 5, 1'b0, 6'd0, hcount, vcount,
circle pix);

defparam circ.COLOR = 3'b011;

//we only draw the pixels when up, down, left, right is active high

assign up pixel = up ? up pixel on : 3'b000;

assign down pixel = down ? down pixel on : 3'b000;

assign right pixel = right ? right pixel on : 3'b000;

assign left pixel = left ? left pixel on : 3'b000;

assign motion pixels = up pixel + down pixel + left pixel + right pixel + circle pix;

//Bottom Right Quadrant
wire [2:0] compass pixels;
//draw a compass for horizontal audio, horizontal video, and vertical video motion by
drawing two concentric circles of differing color in bottom right quadrant
//uncomment compass declarations if you only want to see the angles when motion is
detected
parameter motion compass radius = 11'b00001000000; //64 pixel compass radius
wire [2:0] h audio compass pixel, h video compass pixel, v _video compass pixel;
wire [2:0] h audio compass pixel2;
// compass h video compass (screen size x * 5/8, screen size y *5/8,
motion compass radius, separator width, v motion, v_angle h[5:0], hcount, vcount,
h video compass pixel);
compass h video compass(screen size x * 5/8, screen size y *5/8,
motion compass radius, separator width, 1'bl, v _angle h[5:0], hcount, vcount,
h video compass pixel);

Speaker, Wu, Zhu

defparam h video compass.COLOR = 3'bl1ll; //white
//compass v_video compass(screen size x * 7/8, screen size y *5/8,
motion compass radius, separator width, v motion, v _angle v[5:0], hcount, vcount,
v _video compass pixel);
compass v_video compass(screen size x * 7/8, screen size y *5/8,
motion compass radius, separator width, 1'bl, v_angle v[5:0], hcount, vcount,
v _video compass pixel);
defparam v_video compass.COLOR = 3'blll; //white
//compass h_audio compass(screen size x * 5/8, screen size y *7/8,
motion compass radius, separator width, a motion, a angle[5:0], hcount, vcount,
h audio compass pixel);
compass h audio compass (screen size x * 5/8, screen size y *7/8,
motion compass radius, separator width, 1'bl, a angle[5:0], hcount, vcount,
h _audio compass pixel);
defparam h audio compass.COLOR = 3'b100; //red

//second "special" audio compass
//compass h_audio compass2(screen size x * 7/8, screen size y *7/8,
motion compass radius, separator width, a motion, a angle2[5:0], hcount, vcount,
h audio compass pixel2);
//compass h_audio compassZ2(screen size x * 7/8, screen size y *7/8,
motion compass radius, separator width, 1'bl, a angle2[5:0], hcount, vcount,
h audio compass pixel2);
//defparam h audio compassZ2.COLOR = 3'b100; //red

//draw labels:

wire [2:0] label pixels;

//draw a V on the screen to label video compasses

wire [2:0] vl pix, v2 pix, v3 pix;

rectangle vl (screen size x*17/32, screen size y * 5/8, hcount, vcount, vl pix);

defparam v1.WIDTH = 5;

defparam v1.HEIGHT = 20;

defparam v1.COLOR = 3'b111; //white

rectangle v2(screen size x*17/32 + 5, screen size y * 5/8 + 15, hcount, vcount,
v2 pix);

defparam v2.WIDTH = 5;

defparam v2.HEIGHT = 5;

defparam v2.COLOR = 3'b111;

rectangle v3(screen size x*17/32 + 10, screen size y * 5/8, hcount, vcount, v3 pix);

defparam v3.WIDTH = 5;
defparam v3.HEIGHT = 20;
defparam v3.COLOR = 3'b111;

//draw an A on the screen to label audio compasses

wire [2:0] al pix, a2 pix, a3 pix, a4 pix;

rectangle al(screen size x*17/32, screen size y * 7/8, hcount, vcount, al pix);
defparam al.WIDTH = 5;

defparam al.HEIGHT = 20;

defparam al.COLOR = 3'b100; //red

rectangle a2(screen size x*17/32 + 5, screen size y * 7/8, hcount, vcount, a2 pix);
defparam a2.WIDTH = 5;

defparam a2.HEIGHT = 5;

defparam a2.COLOR = 3'b100; //red

rectangle a3(screen size x*17/32 + 10, screen size y * 7/8, hcount, vcount, a3 pix);

defparam a3.WIDTH = 5;

defparam a3.HEIGHT = 20;

defparam a3.COLOR = 3'b100; //red

rectangle a4 (screen size x*17/32 + 5, screen size y * 7/8 + 10, hcount, vcount,
a4 pix);

defparam a4.WIDTH = 5;

defparam a4.HEIGHT = 5;

defparam a4.COLOR = 3'b100; //red

//draw an H on the screen to label horizontal compass

wire [2:0] hl pix, h2 pix, h3 pix;

rectangle hl (screen size x*5/8 - 5, screen size y/2 + 10, hcount, vcount, hl pix);
defparam hl.WIDTH = 5;

defparam hl.HEIGHT = 20;

defparam hl.COLOR = 3'b111;

rectangle h2(screen size x*5/8, screen size y/2+17, hcount, vcount, h2 pix);
defparam h2.WIDTH = 5;

74

Speaker, Wu, Zhu 75

defparam h2.HEIGHT = 5;

defparam h2.COLOR = 3'b111;

rectangle h3(screen size x*5/8+5, screen size y/2 + 10, hcount, vcount, h3 pix);
defparam h3.WIDTH = 5;

defparam h3.HEIGHT = 20;

defparam h3.COLOR = 3'b111;

//draw a V on the screen to label vertical compass

wire [2:0] vvl pix, vvZ pix, vv3 pix;

rectangle vvl(screen size x*7/8 - 5, screen size y/2 + 10, hcount, vcount, vvl pix);
defparam vvl.WIDTH = 5;

defparam vvl.HEIGHT = 20;

defparam vvl.COLOR = 3'b111; //white

rectangle vv2(screen size x*7/8, screen size y/2 + 25, hcount, vcount, vv2 pix);
defparam vv2.WIDTH = 5;

defparam vv2.HEIGHT = 5;

defparam vv2.COLOR = 3'bl11;

rectangle vv3(screen size x*7/8 + 5, screen size y/2 + 10, hcount, vcount, vv3 pix);
defparam vv3.WIDTH = 5;

defparam vv3.HEIGHT = 20;

defparam vv3.COLOR = 3'bl111;

assign label pixels = vl pix + v2 pix + v3 pix +
al pix + a2 pix + a3 pix + a4 pix +
hl pix + h2 pix + h3 pix +
vvl pix + vvZ2 pix + vv3 pix;

assign compass pixels = h audio compass pixel + //h audio compass pixel2 +
h video compass pixel + v _video compass pixel +
label pixels;

//sum up all the pixels of each individual quadrant
assign pixel = separator pixels +
motion pixels +
compass pixels +
audio debug pixels +
a locat pixels;
endmodule

module rectangle (x,y,hcount,vcount, pixel);

//a module that will assign pixel to COLOR if the coordinate pair (hcount,vcount)
is within the square

//that starts at (x,y) with width WIDTH and height HEIGHT

parameter WIDTH = 64; //64 pixels wide
parameter HEIGHT = 64; //64 pixels tall
parameter COLOR = 3'bll11l; //white

input [10:0] x,hcount;
input [9:0] y,vcount;
output [2:0] pixel;

reg [2:0] pixel;
always @ (x or y or hcount or vcount) begin
if((hcount >= x && hcount < (x+WIDTH)) 6&&
(vcount >= 'y && vcount < (y+HEIGHT))) begin
pixel = COLOR;
end
else pixel = 0;
end //end always
endmodule

module circle(x,y,r,hcount,vcount,pixel) ;

//a module that will assign pixel to COLOR if the coordinate pair (hcount, vcount)
is within the circle

//centered at (x,y) with radius r

//to avoid noise this module could be rewritten to draw a sprite from ROM but
since this is just a debugging module
//it may not be worth the effort

parameter COLOR = 3'bl11l; //white

input

[10:0] x,

coord of the xvga signal
input [9:0] y,vcount; //y-coordinate of center of the circle, and the current y-
coord of the xvga signal
input [10:0] r; //radius of the circle
output [2:0] pixel; //output pixel

reg [2:0] pixel;

hcount; //x-coordinate of center of the circle,

Speaker, Wu, Zhu

always @(x or y or r or hcount or vcount) begin

//check to see if

X724+ yh2 <= r*2,

surrounding the circle
if (hcount > (x-r) && hcount < (x+r) && vcount > (y-r) && vcount < (y+r))

begin

- vcount) <=

(vcount - y)

- vcount) <=

(vcount - y)

end
endmodule

if (x > hcount) begin

if (y > vcount) begin
if ((x - hcount) *
r*r) begin

end
end
else if((x - hc
<= r*r) begin

pixel
end
else pixel = 0;
end

pixel

ount)

if it is then we are inside the circle
//to speed things up and avoid noise first check to see if its inside the box

(x - hcount) + (y - vcount)

COLOR;

* (x - hcount) + (vcount - y) *

COLOR;

else 1if (y > vcount) begin

if ((hcount

r*r) begin

end
end
else 1if((hcount
<= r*r) begin

pixel
end
else pixel

0;
end
else pixel

0;

pixel

- x)

- x) *

(hcount - x) + (y - vcount)

COLOR;

* (hcount - x) + (vcount - y) *

COLOR;

module compass(x,y,r,w,valid angle,angle,hcount,vcount,pixel) ;
[10:0] x; //x coordinate of the center of the compass
[9:0] y; //y coordinate of the center of the compass

input
input
input
input

input
input

input
input

[10:0] r; //radius of compass

[2:0] w; //width of outer compass display

[5:0] angle; //angle of compass needle
valid angle; //determines whether angle is valid

[10:0] hcount;
[9:0] vcount;

output [2:0] pixel;

parameter COLOR

wire

3'b111; //white

[2:0] pixel out, pixel in;

//make two concentric circles with varying colors to display the outer ring
circle outer circle(x, y, r, hcount, vcount, pixel out);

defparam outer circle.COLOR

circle inner circle(x, y, r

COLOR; //3'bl111; //white

- w, hcount, vcount, pixel in);

*

76

and the current x-

(y

(y

Speaker, Wu, Zhu 77

defparam inner circle.COLOR = 8 - COLOR; //3'b001; //when added to the outer color
circle this will be black

wire [2:0] needle pixel;
wire [10:0] end pt x;
wire [9:0] end pt y;

//compute start and end points of the needle

//note that this is computed where 0 degrees at the positive y axis, otherwise
sin/cos would be flopped

//end pt x = x + r*sin(l0*angle)

//end pt y =y + r*cos(l0*angle)

calc end pt calker (angle[5:0], x, y, r-2*w, end pt x, end pt y);

wire [2:0] invalid needle pixel;

rectangle needle(end pt x,end pt y, hcount, vcount, invalid needle pixel);
defparam needle.WIDTH = 16;

defparam needle.HEIGHT = 16;

defparam needle.COLOR = 3'b001; //blue

assign needle pixel = valid angle ? invalid needle pixel : 3'b000;
assign pixel = pixel out + pixel in + needle pixel;
endmodule

module calc end pt(angle, x, y, r, end pt x, end pt y);
input [5:0] angle;
input [10:0] x;
input [9:0] y;
input [10:0] r;
output [10:0] end pt x;
output [9:0] end pt y;

//a better implementation would use coregen's trig function but this is just a
quick dumb module for gui display
//note that the angles come in increments of 10 degrees from 0-35

reg [10:0] end pt x = 0;
reg [9:0] end pt y = 0;

always @ (x or y or angle or r) begin
case (angle[5:0])

6'd0: begin
end pt x = x;
end pt y =y - r;

end

6'dl: begin
end pt x = x + (r * 6/32);
end pt y = 31/32) ;

|
<

|
3

«

end

6'd2: begin
end pt x = x + (r * 11/32);
end pt y = 30/32) ;

|
<

|
5

«

end
6'd3: begin
end pt x = x + r/2;
end pt y =y - (r * 28/32);

end
6'd4: begin
end pt x = x + (r * 21/32);
end pt y =y - (r * 25/32);
end
6'd5: begin
end pt x = x + (r * 25/32);
end pt y =y - (r * 21/32);
end
6'd6: begin
end pt x = x + (r * 28/32);
end pt y =y - r/2;
end

6'd7: begin

6'd8:

6'd10:

6'dll:

6'dl2:

6'dl3:

6'dl4:

6'dl5:

6'dl6:

6'dl7:

6'd18:

6'd19:

6'd20:

6'd21:

6'd22:

6'd23:

6'd24:

end
begin

end

: begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end
begin

end

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

end pt x
end pt y

Speaker, Wu, Zhu

x + (r * 30/32);
y - (r * 11/32);

=x + (r * 31/32);
y - (r * 6/32);

x + (r * 31/32);
y + (r * 6/32);

x + (r * 30/32);
vy + (r * 11/32);

x + (r * 28/32);
vy + r/2;

x + (r * 25/32);
y + (r * 21/32);

x + (r * 21/32);
y + (r * 25/32);

x + r/2;
y + (r * 28/32);

x + (r * 11/32);
y + (r * 30/32);

x + (r * 6/32);
y + (r * 31/32);

x - (r * 6/32);
y + (r * 31/32);

x - (r * 11/32);
y + (r * 30/32);

x - r/2;
y + (r * 28/32);

x - (r * 21/32);
y + (r * 25/32);

x - (r * 25/32);
y + (r * 21/32);

end pt x = x - (r * 28/32);

end pt y

y + r/2;

78

endcase

end
endmodule

6'd25:

6'd26:

6'd27:

6'd28:

6'd29:

6'd30:

6'd31:

6'd32:

6'd33:

6'd34:

6'd35:

default: begin

end

begin
end pt x
end pt y
end
begin
end pt x
end pt y =
end
begin
end pt x =
end pt y
end
begin
end pt x =
end pt y =
end
begin
end pt x
end pt y =
end
begin
end pt x =
end pt y
end
begin
end pt x
end pt y
end
begin
end pt x
end pt y =
end
begin
end pt x =
end pt y
end
begin
end pt x
end pt y
end
begin
end pt x
end pt y
end
end pt x = x;
end pt vy =y - r;

+

—

bt
*

+

—

bt
*

(r *
(r *

_(r*

_ (r *
- r/2;

_(r*
_(r*

_(r*

- r/2;
— (r *

_(r*
_(r*

Speaker, Wu, Zhu 79

30/32) ;
11/32) ;

31/32) ;
6/32) ;

31/32) ;
6/32) ;

30/32) ;
11/32) ;

28/32) ;

25/32) ;
21/32) ;

21/32) ;
25/32) ;

28/32) ;

11/32) ;
30/32) ;

6/32) ;
31/32) ;

Speaker, Wu, Zhu 80

//6.111 Final Project

//Module written by: Robert Speaker

//A module that given angles from the audio and video processing units will
//control the motor to move the camera to point in the specified direction

//if Manual Override is high the module will be controlled by the
m move up/down/left/right signals
//otherwise it will run on its own based on the input angles

//1if priority is low, the video angle will take priorty over audio and vice versa when
priority is high

//the expired signals signify when the motor is finished moving

module MotionCalculator (reset, clk,
Manual Override, m move up, m move down,
m_move right, m move left,
v_angle h, v_angle v, v _motion,
a angle, a motion,
priority,
cant move up, cant move down, moving,
vIAp, vIAn, vIBp, vIBn,
hIAp, hIAn, hIBp, hIBn,
look up, look down, look right, look left,
v _expired, h expired, blank);

// parameter motor clk speed = 100; //frequency of steps
// parameter motor speed = 10; //degrees per second

parameter MOTOR SPEED FACTOR = 2; //this multiplies the angle to determine how
long to hold the motor drive signals high

parameter BLANK DELAY = 130000000; //2 seconds on 65mhz clock

input reset, clk;

input Manual Override; //controls whether running in manual or automatic mode

input m move up, m move down, m move right, m move left; //manual move signals

input [5:0] v_angle h, v _angle v, a angle; //automatic move signals

//note that the angles here use 0 degrees as the positive y axis and have 10
degree increments

//i.e. 90 degrees is represented by 9, 270 by 27, etc.

input v_motion, a motion; //validates angles

input cant move up, cant move down; //overrides signals and prevents movement

input priority; //toggles what takes priority (high) audio or (low) video

output vIAp, vIAn, vIBp, vIBn; //signals sent to the vertical motor

output hIAp, hIAn, hIBp, hIBn; //signals sent to the horizontal motor

output look up, look down, look right, look left; //foward reverse signals sent to
motor control

output moving; //high when motor is moving, low otherwise
// output v finished moving, h finished moving; //finished moving signals

output v _expired, h expired;

output blank;

reg look up, look down, look left, look right; //foward and reverse signals sent
to motor control

//create motor control modules that handle the transition of stepper states when
given fwd/active signals

motorcontrol vertMotor (reset, clk, look up, look down, vIAp, vIAn, vIBp, vIBn);

motorcontrol horizMotor (reset, clk, look left, look right, hIAp, hIAn, hIBp,
hIBn);

//generate a one hz signal clk used to time how long to keep the motor signals
active

wire four hz enable;

clock divider div(clk, reset, four hz enable);

defparam div.clk cycle = 27'd16200000; //4 times per second on a 65Mhz clock

reg v_start = 0, h _start = 0;
reg v_can start = 1, h can start = 1;
reg [9:0] h interval = 2, v _interval = 2;

Speaker, Wu, Zhu 81

//create timers that start whenever automatic motion is detected and will expire
after "interval" pulses of the one hz signal

timer v timer (clk, reset, v interval[9:0], v start, four hz enable, v expired);

timer h timer (clk, reset, h interval[9:0], h start, four hz enable, h expired);

//prevent motion on reset or motor expiration
reg [32:0] blank count = BLANK DELAY;
always @ (posedge clk) begin
if (h expired || reset) blank count <= BLANK DELAY; //put v _expired back
if vertical motion is readded
else if (blank count > 0) blank count <= blank count - 1;
else blank count <= 0;
end
assign blank = (blank count != 0);

always @ (posedge clk) begin
// finished moving <= 0; //assume we have not finished moving and verify
assumption when timers expire
v_start <= 0; //dont start counting unless told to do so
h start <= 0;

if (v _expired) begin
v_can start <= 1; //when we finish moving then signal that we can
start again
//stop motion:
look up <= 0;
look down <= 0;
end
if (h _expired) begin
h can start <= 1; //when we finish moving then signal that we can
start again
//stop motion:
look right <= 0;
look left <= 0;
end

if (reset) begin
//stop motion:
look up <= 0;
look down <= 0;
look right <= 0;
look left <= 0;

//we can start moving again:

v_start <= 0;

v_can _start <= 1;

v_interval <= 2; //2 was chosen arbitrarily, could really be
anything > 0

h start <= 0;
h can start <= 1;
h_interval <= 2;
end
else if (Manual Override) begin
//Manual Motion
//assume no buttons are being pressed until determined
otherwise:
look up <= 0;
look _down <= 0;
look right <= 0;
look left <= 0;
v_interval <= 2;
h interval <= 2;

if (m_move up) begin //user wants to move up
if (~cant move up) begin //make sure motor can move
up
look up <=1;

Speaker, Wu, Zhu

end
end
else if (m move down) begin //user wants to move down
if (~cant _move down) begin //make sure motor can
move down
look down <= 1;
end
end

if (m_move right) begin //user wants to move clockwise
look right <= 1;

end

else if (m_move left) begin //user wants to move ccw
look left <= 1;

end

end //end if (manual override)
//Automatic Motion

82

//note that the angles here use 0 degrees as the positive y axis and have

10 degree increments
else if(~blank) begin //if we're not in a blanking period (delay period
after moving)
if (~priority) begin //video motion takes priorty
if (v_motion) begin //video motion detected,
move camera horizontally and vertically
if (v_angle v <= 18) begin
//hold look up high
if (v_can start) begin
look up <= 1;
v_can_start <= 0;
v_interval <= v_angle v *
MOTOR_SPEED FACTOR;
v _start <= 1;
end
end
else begin
//hold look down high
if (v_can start) begin
look down <= 1;
v_can start <= 0;
//since the angle 1is given
from 0-36 to the left is in the range 18-36
v _interval <= (36 -
v_angle v) * MOTOR SPEED FACTOR;
v_start <= 1;

end
end

if (v_angle h <= 18) begin
//hold look right high
if(h _can start) begin
look right <= 1;
h can start <= 0;
h interval <= v_angle h *
MOTOR_SPEED FACTOR;
h start <= 1;
end
end
else begin
//hold look left high
if(h _can start) begin
look left <= 1;
h _can start <= 0;
h _interval <= (36 -
v_angle h) * MOTOR SPEED FACTOR;
h start <= 1;
end
end
end //end if(v_motion)
else if (a_motion) begin //audio motion detected
no video motion

and

Speaker, Wu, Zhu 83

if (a_angle <= 18) begin
//hold look right high
if(h can start) begin
look right <= 1;
h can start <= 0;
h interval <= a_angle
* MOTOR SPEED FACTOR;
h start <= 1;
end
end
else begin
//hold look left high
if(h _can start) begin
look left <= 1;
h _can start <= 0;
h interval <= (36 -
a_angle) * MOTOR _SPEED FACTOR;

h start <= 1;

end
end
end //end if(a motion)
/* else begin //if there is no new audio or video

motion

look up <= v _expired || ~v_can start ? 0
look up;

look down <= v_expired || ~v_can start ? 0
:look down;

look left <= h expired || ~h can start ? 0
look_left;

look right <= h expired || ~h can start ? 0

look right;
v _start <= 0;
h start <= 0;
end*/
end //end if (~priority)
else begin //audio motion takes priority
if (a motion) begin
if (a_angle <= 18) begin
//hold look right high
if(h can start) begin
look right <= 1;
h _can start <= 0;
h interval <= a angle
* MOTOR _SPEED FACTOR;
h start <= 1;
end
end
else begin
//hold look left high
if(h _can start) begin
look left <= 1;
h _can start <= 0;
h interval <= (36 -
a angle) * MOTOR SPEED FACTOR;
h start <= 1;

end
end
end //end if(a _motion)
else if (v_motion) begin //video motion

detected, move camera horizontally and vertically
if (v_angle v <= 18) begin
//hold look up high
if (v_can start) begin
look up <= 1;
v_can _start <= 0;
v _interval <=
v_angle v * MOTOR SPEED FACTOR;
v_start <= 1;
end
end
else begin

Speaker, Wu, Zhu 84

//hold look down high
if (v_can start) begin
look down <= 1;
v_can_start <= 0;
v_interval <= (36 -
v_angle v) * MOTOR SPEED FACTOR;
v _start <= 1;

end
end
if (v_angle h <= 18) begin
//hold look right high
if(h _can start) begin
look right <= 1;
h _can start <= 0;
h interval <=
v_angle h * MOTOR SPEED FACTOR;
h start <= 1;
end
end
else begin
//hold look left high
if(h can start) begin
look left <= 1;
h _can start <= 0;
h interval <= (36 -
v_angle h) * MOTOR SPEED FACTOR;
h start <= 1;

end
end
end //end if(v_motion)
/*else begin //if there is no new audio or video
motion
look up <= v _expired || ~v_can start ? 0
look up;
look down <= v_expired || ~v_can start ? 0
:1look down;
look left <= h expired || ~h can start ? 0
look left;
look right <= h expired || ~h can start ? 0

look right;
v _start <= 0;
h start <= 0;
end */
end //end priority
end
else begin//if (blank)
//stop motion for a brief interval after we have just moved to
allow
//video and audio processing units to gather new data
look up <= 0;
look _down <= 0;
look left <= 0;
look right <= 0;
end

end //always

assign moving = look up || look down || look left || look right;
endmodule

Speaker, Wu, Zhu 85

//6.111 Final Project

// Motor control module written by: Robert Speaker

// Given fwd and rev signals this state machine will produce the signals

// necessary to drive a stepper motor in the clockwise and counter-clockwise
//directions

module motorcontrol (reset, clk, fwd, rev, IAp, IAn, IBp, IBn);

parameter CLK SPEED = 65000000; //65MHz clock

input reset, clk, fwd, rev;
output IAp, IAn, IBp, IBn; //outputs to the stepper motor coils (IA+, IA-, IB+,
IB-)

reg [2:0] state = 0; //FSM w/ 8 states corresponding to the 8 different half-steps
the motor can take

parameter wait state = 5; //the state that the motor will stay in when neither fwd
nor rev 1is asserted

//create a 5Hz clock to drive the motor
reg clk2 = 0;
reg [26:0] clock count;
always @ (posedge clk) begin
if (reset) begin
clock count <= 0;

clk2 <= 0;
end
else if (clock count == CLK SPEED/10) begin //alternate clk2 every 10th of
a second, i.e. 5Hz
//else if(clock count == 0) begin //used when running test bench, clk =
2*%clk2
clock count <= 0;
clk2 <= ~clk2;
end
else clock count <= clock count + 1;
end
always @ (posedge clk) begin
if (reset) begin
state <= 0;
// wait state <= 1;
end
else if (clk2) begin
if (fwd) begin
state <= state + 1;
end
else if (rev) begin
state <= state - 1;
end
else
//state <= state; //don't change state if no signal is
given

state <= wait state;
end
end

//half step states:
//State IA+ IA- IB+ IB-
//s0 On Off On Off
//s1 On Off Off Off
//s2 On Off Off On
//s3 Off Off Off On
//s4 Off On Off On
//s5 Off On Off Off
//s6 Off On On Off
//s7 Off Off On Off

assign IAp = (state == 0) || (state == 1) || (state == 2);
assign IAn = (state == 4) || (state == 5) || (state == 6);
assign IBp = (state == 0) || (state == 6) || (state == 7);

J*

assign IBn = (state == 2)

//Full step states:
//State IA+ IA- IB+ IB-
//s0 On Off On Off
//s1 On Off Off On
//s2 Off On Off On
//s3 Off On On Off

assign IAp = (state == 0)
assign IAn = (state == 2)
assign Ibp = (state == 0)
assign Ibn = (state == 1)

endmodule

(state == 3) ||
(state == 1),
(state == 3);
(state == 3);
(state == 2);*/

(state == 4),;

Speaker, Wu, Zhu

86

Speaker, Wu, Zhu

//written by: Robert Speaker
//debugging module that sets angle to various positions to be used for debugging
module test angle generator(clk, reset, angle);

input clk, reset;

output [5:0] angle;

parameter CLK SPEED = 65000000;

parameter INTERVAL = 20; //amount of time before increasing angle
parameter MAX VALUE = 35; //the maximum angle can be
parameter START VALUE = 0;

parameter INCREMENT = 1; //how much to increase the angle each interval

reg [25:0] clk count = 0;
reg [5:0] second count = 0;
reg [5:0] angle = START VALUE;

always @ (posedge clk) begin
if(reset) begin
angle <= START VALUE;
clk count <= 0;
second count <= 0;

end
else if (second count == INTERVAL) begin
if (angle + INCREMENT >= MAX VALUE) angle <= 0;
else angle <= angle + INCREMENT;
second count <= 0;
end
if (clk count == CLK SPEED) second count <= second count + 1;

clk count <= clk count + 1;
end
endmodule

Speaker, Wu, Zhu

/*Robert Speaker 6.111

takes in an interval and a start signal and counts for interval enables
after which expired is raised for one clock cycle

*/

module timer (clk, reset, value, start timer, hz enable, expired);
input clk, reset, start timer, hz enable;
input [9:0] value,;
output expired;

reg [9:0] count = 0;

reg active = 0;

always @ (posedge clk) begin
if (reset) begin

count <= 0;
active <= 0;

end

else 1if (count > value || expired) begin
active <= 0;
count <= 0;

end

else if (start timer) begin
count <= 0;
active <= 1;

end

if (active && hz enable) begin
count <= count + 1;
end
end

assign expired = active && (count == value);,;
endmodule

88

Speaker, Wu, Zhu 89

/*Robert Speaker 6.111
turns a 65 mhz clock into a one hz clock.

*/

module clock divider(clk 65, reset, one hz enable);
input clk 65, reset;
output one hz enable;
parameter clk cycle = 27'd65000000;

//parameter clk cycle = 3; //used for testing only

reg [26:0] count = 27'b000000000000000000000000000; //2°26 >> 65,000,000

always @ (posedge clk 65)

begin

if (reset) begin
count <= 0;

end

//resets the count after enable is sent, set to one because one cycle has

progressed

else if(one hz enable) count <= 1;

else begin //otherwise increment count and enable is low
count <= count + 1;

end

end

assign one hz enable = (count ==clk cycle);
endmodule

Speaker, Wu, Zhu

N N A N A I N I N N N VI I VN a4

//AD7871 dri

ver

A N S NV I a4

module ad7871 controller (reset, clock 65mhz, convst barl, convst barZ2,
convst bar3, convst bar4,
cs barl, cs bar2, cs bar3, cs bar4,
rd barl, rd bar2, rd bar3, rd bar4, int barl, int bar2, int bar3,
int bar4, ready, state, reset timerl,
reset timer2, expiredl, expired2, reset timer3, expired3, countl,
reset possible);

input reset;

input clock 65mhz;

input int barl, int bar2, int bar3, int bar4;
input expiredl, expired?, expired3;

input [9:0] countl;

output convst barl, convst bar2, convst bar3, convst bar4;
output cs barl, cs bar2, cs bar3, cs bar4;

output rd barl, rd bar2, rd bar3, rd bar4;

output ready;

output [2:0] state;

output reset timerl, reset timer2, reset timer3;

output reset possible;

reg convst barl, convst bar2, convst bar3, convst bar4;
reg cs barl, cs bar2, cs bar3, cs bar4;
reg rd barl, rd bar2, rd bar3, rd bar4;

reg ready;

reg [2:0] state;
reg [2:0] highstate;

reg reset timerl;
reg reset timer2;
reg reset timer3;

reg reset possible = 0;

always @ (posedge clock 65mhz)
begin
if ((countl >= 10) && (countl <= 100)) reset possible <= 1;
else reset possible <= 0;
if (reset)
begin
reset timerl <= 0;
reset timer2 <= 0;
reset _timer3 <= 0;
state <= 0;
highstate <= 0;
end
else
begin
//if (reset timerl) reset timerl <= 0;
//if (reset timer2) reset timer2 <= 0;
if (state > highstate) highstate <= state;
case (state)

3'b000: //start convert pulse, wait for 2 clock cycles
begin
reset timerl <= 0;
reset timer2 <= expired2;
reset timer3 <= expired2;
if (expired?) state <= 3'b001;

end
3'pb001: //end convert pulse, wait for ~int bar
begin

90

Speaker, Wu, Zhu

reset timerl <= 0;

reset timer2 <= expired3;

reset timer3 <= expired3;

if (expired3/*~int bar*/) state <= 3'b010;
end

3'pb010: //start rd,cs pulse, wait for 2 clock cycles

begin

reset timerl <= 0;

reset timer2 <= expired2;
reset timer3 <= 0;

if (expired?) state <= 3'b011;
end

3'b011: //DATA READY!, wait for 2 clock cycles

begin

reset timerl <= 0;

reset timer2 <= expired2;
reset timer3 <= 0;

if (expired?) state <= 3'b100;

end
3'b100: //END PULSE, wait until convcount 300
begin
reset timerl <= expiredl;
reset timer2 <= (expiredl); // | ~int barl | ~int bar2 |~int bar3);

reset timer3 <= expiredl;

if (expiredl) state <= 3'b000;

//if (~int barl | ~int bar2 | ~int bar3) state <= 3'b101;
end

3'b101: //reset int bar, reset

begin

reset timerl <= expired2;
reset timer2 <= expired2;
reset timer3 <= 0;

if (expired?) state <= 3'b000;

end

default:
begin
if (expired2) state <= 3'b000;
end

endcase

end
end

always @ (state)

begin

case (state)

3'b000:

begin
convst barl = 0;

cs barl = 1;
rd barl = 1;

convst bar2 = 0;
cs bar2 = 1;
rd bar2 = 1;
convst bar3 = 0;
cs bar3 = 1;

rd bar3 = 1;

convst bar4 =

I
(=)
~.

cs bar4d = 1;
rd bar4 = 1;

ready = 0;
end
3'b001:
begin

convst barl =1;

91

Speaker, Wu, Zhu 92

cs barl = 1;
rd barl = 1;
convst bar2 =1;
cs bar2 = 1;
rd bar2 = 1;
convst bar3 =1;
cs bar3 = 1;
rd bar3 = 1;
convst bar4 =1;
cs bar4d = 1;
rd bar4d = 1;

ready = 0;
end
3'b010:
begin

convst barl =1;
cs _barl = 0;
rd barl = 0;
convst bar2 =1;
cs bar2 = 0;
rd bar2 = 0;
convst bar3 =1;
cs bar3 = 0;
rd bar3 = 0;
convst bar4 =1;
cs bar4d = 0;
rd bar4 = 0;
ready = 0;
end
3'b011:
begin

convst barl =1;

cs barl = 0;

rd barl = 0;
convst bar2 =1;
cs bar2 = 0;

rd bar2 = 0;
convst bar3 =1;
cs bar3 = 0;

rd bar3 = 0;
convst bar4 =1;
cs bar4d = 0;

rd bar4 = 0;
ready = 1;

end
3'b100:
begin

convst barl =1;
cs barl = 1;
rd barl = 1;
convst bar2 =1;
cs bar2 = 1;
rd bar2 = 1;
convst bar3 =1;
cs bar3 = 1;
rd bar3 = 1;
convst bar4 =1;
cs bar4d = 1;
rd bar4 = 1;

ready = 0;
end
3'pb101:
begin

convst barl =1;

Speaker, Wu, Zhu 93

cs barl = 0;

rd barl = 0;
convst bar2 =1;
cs bar2 = 0;

rd bar2 = 0;
convst bar3 =1;
cs bar3 = 0;

rd bar3 = 0;
convst bar4 =1;
cs _bar4d = 0;

rd bar4 = 0;
ready = 0;

end

default:
begin

convst barl =0;
cs barl = 1;
1;

rd barl =
convst bar2 =0;
cs bar2 = 1;

rd bar2 = 1;
convst bar3 =0;
cs bar3 = 1;

rd bar3 = 1;
convst bar4 =0;
cs bar4d = 1;

rd bar4 = 1;
ready = 0;

end
endcase
end

endmodule

//Bo Zhu

Speaker, Wu, Zhu

module anglecalc (reset, clock 65mhz, posanglel, posangle2, dirl, dir2, trueangle,

a motion) ;

input reset;
input clock 65mhz;
input [3:0] posanglel;
input [3:0] posangleZ;
input [1:0] dirl;
input [1:0] dir2;

output [5:0] trueangle;
output a motion;

reg [5:0] trueangle;
reg [3:0] avgangle;

reg a mo

tion;

always @ (posedge clock 65mhz)

begin
if (
begi

end
else
begi

reset)
n

trueangle <= 0;
avgangle <= 0;
a motion <= 0;

n

avgangle <=
if (dirl

begin

(posanglel + posangle2) >> 1;
== 1 && dir2 == 1)

a motion <=
case (avgangle)

0: trueangle
1: trueangle
2: trueangle
3: trueangle
4: trueangle
5: trueangle
6: trueangle
7: trueangle
8: trueangle
9: trueangle
de
endcase

end

if (dirl

begin

a motion <= 1;

case (avgangle)

0: trueangle <= 27;
1: trueangle <= 26;
2: trueangle <= 25;
3: trueangle <= 24;
4: trueangle <= 23;
5: trueangle <= 22;
6: trueangle <= 21;
7: trueangle <= 20;
8: trueangle <= 19;
9: trueangle <= 18;
default: trueangle <= 18;
endcase

end

if (dirl == 2 && dir2 == 1)

begin

a motion <=

case (avgangle)
0: trueangle <= 9;
1: trueangle <= 8;
2: trueangle <= 7;
3: trueangle <= 6;

= 27;
= 28;
29;
30;
31;
32;
33,
34;
35,
= 0,
ault: trueangle <= 0;

== 1 && dir2 == 2)

1;

94

Speaker, Wu, Zhu 95

trueangle <=

trueangle <=

trueangle <=
trueangle <=

trueangle <= 1;

: trueangle <= 0;
default: trueangle <= 0;
endcase

end

if (dirl == 2 && dir2 == 2)

begin

7
7
7

7

O ®® 3oy G
=N W O,

a motion <= 1;
case (avgangle)

0: trueangle <= 9;
1: trueangle <= 10;
2: trueangle <= 11;
3: trueangle <= 12;
4: trueangle <= 13;
5: trueangle <= 14;
6: trueangle <= 15;
7: trueangle <= 16,
8: trueangle <= 17;
9: trueangle <= 18;
default: trueangle <= 18;
endcase
end
end
end

endmodule

Speaker, Wu, Zhu

LSS LSS LSS S
//Bo Zhu

//timer modules

//timer 1 for conv_ st

//timer 2 for small timing issues

VA A A A A A A A A A A A N N A N A A A A A A A N A S A A A A A A S A A A A A

module timerl (reset, reset timerl, clock 65mhz, valuel, expiredl, countl);

input reset;

input reset timerl;
input clock 65mhz;
input [9:0] valuel,
output expiredl;
output [9:0] countl;

reg [9:0] countl;

always @ (posedge clock 65mhz)

begin
if (reset || reset timerl || countl >= valuel) countl <= 0;
else countl <= countl + 1;
end
assign expiredl = (countl >= valuel);
endmodule

module timer2(reset, reset timer2, clock 65mhz, value2, expired2, count2,
state) ;

input reset;

input reset timer2;
input clock 65mhz;
input [3:0] valueZ2;
//input int bar;
input [2:0] state;

output expired2;
output [3:0] count2;

reg [3:0] count2;

always @ (posedge clock 65mhz)

begin
if (reset || reset timer2 || count2 >= value2) count2 <= 0;
/*|| (~int bar && (state == 3'b001))*/
else count2 <= count2 + 1;
end
assign expired2 = (count2 >= valueZ2);
endmodule

module timer3(reset, reset timer3, clock 65mhz, value3, expired3, count3);

input reset;

input reset timer3;
input clock 65mhz;
input [9:0] value3;
output expired3;
output [9:0] count3;

reg [9:0] count3;

always @ (posedge clock 65mhz)

begin

if (reset || reset timer3 || count3 >= value3) count3 <= 0;
else count3 <= count3 + 1;

end

assign expired3 = (count3 >= value3);

96

Speaker, Wu, Zhu 97

endmodule
module timer4 (reset, reset timer4, clock 65mhz, value4, expired4, countd);

input reset;

input reset timerd4;
input clock 65mhz;
input [10:0] value4;
output expired4;
output [10:0] count4;

reg [10:0] count4;

always @ (posedge clock 65mhz)

begin
if (reset || reset timer4 || count4 >= valued4) count4d <= 0;
else count4 <= count4d + 1;
end
assign expired4 = (count4 >= valued);

endmodule

Speaker, Wu, Zhu 98

SSLSSSS LSS LSS S S SSS S SSSSSSSSSSSSSS S
//Bo Zhu

//Differencer
SIS S S S S S S

module differencer (blank, count, reset, clock 65mhz, expiredl, dbl, db2,
dirl2, delay, state);

input blank;

input reset;

input clock 65mhz;
input expiredl;
input [13:0] dbl;
input [13:0] db2;

output [1:0] dirl2;
output [9:0] delay;
output [2:0] state;
output [9:0] count;

reg [1:0] dirl2;
reg [9:0] delay;
reg [2:0] state;
reg [9:0] count;

reg [13:0] thresholdl;
reg [13:0] threshold2;

always @ (posedge clock 65mhz)

begin
if (reset)
begin
dirl2 <= 0;
delay <= 10'b0000000000;,
state <= 3'b000;
count <= 0;
//threshold <= 13'h1554;
//thresholdl <= 13'h1554;
//threshold2 <= 13'h1554;
thresholdl <= 14'h1554;
threshold2 <= 14'h1554;
end
else if (~blank)
begin

case (state)
3'b000:
begin
if (dbl >= thresholdl)
begin
state <= 3'b001;
count <= 0;
dirl2 <= 1;

end
else if (db2 >= threshold?2)
begin

state <= 3'b010;

count <= 0;

dirl2 <= 2;

end
else
begin
//dirl2 <= 0;
end

end
3'b001:

begin
if (expiredl)
begin
if (db2 >= threshold?2)
begin
delay <= count;
count <= 0;
dirl2 <= 1;
state <= 3'b011;
end
else 1if (count >= 10'b1111111111)
begin
dirl2 <= 0;
//count <=0;
state <= 3'b000;
end
else
begin
count <= count + 1;
dirl2 <= 1;
end
end
end
3'b010:
begin
if (expiredl)
begin
if (dbl >= thresholdl)
begin
delay <= count;
count <= 0;
dirl2 <= 2;
state <= 3'b011;
end
else 1f (count >= 10'b1111111111)
begin
dirl2 <= 0;
//count <= 0;
state <= 3'b000;
end
else
begin
count <= count + 1;
dirl2 <= 2;
end
end
end
3'b011:
begin
/*1f (expiredl)
begin
if (count >= 10'b1111111111)
begin
count <= 0;
state <= 3'b000;
end

count <= count + 1;

end
*/
end

default:
begin
dirl2 <= 1;
delay <= 0;
count <= 0;
state <= 0;
end

Speaker, Wu, Zhu

99

Speaker, Wu, Zhu 100

endcase
end
end

endmodule

Speaker, Wu, Zhu 101

KKK A A Ak ke ks sk ok ok K K K K Kk ok ks sk ok ok K K K K K S ok ko ks k ok ok Sk K K K K ok o ke k k ok K K K Kk kK

EE I S e T T T T T T T T T e

*

This file is owned and controlled by Xilinx and must be used
solely for design, simulation, implementation and creation of
design files limited to Xilinx devices or technologies. Use

with non-Xilinx devices or technologies is expressly prohibited

and immediately terminates your license.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR

XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION

AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION
OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE

FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR

REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

Xilinx products are not intended for use in life support
appliances, devices, or systems. Use in such applications are
expressly prohibited.

(c) Copyright 1995-2004 Xilinx, Inc.
All rights reserved.

B I T T T T T T T T T T S S S S S S Y

***/

/7
/7
/7

/7
/7
/7
/7

The synopsys directives "translate off/translate on" specified below are
supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis

tools. Ensure they are correct for your synthesis tool(s).

You must compile the wrapper file divider big.v when simulating

the core, divider big. When compiling the wrapper file, be sure to
reference the XilinxCoreLib Verilog simulation library. For detailed

instructions, please refer to the "CORE Generator Guide".

module divider big (

dividend,

divisor,

quot,

remd,

clk,

rfd,

aclr,

sclr,

ce); // synthesis black box

input [13 : 0] dividend;
input [9 : 0] divisor;
output [13 : 0] quot;
output [9 : 0] remd;
input clk;

output rfd;

input aclr;

input sclr;

input ce;

/7

synopsys translate off

SDIVIDER V3 0 #/(

0, // ¢ has aclr

0, // c_has ce

0, // c¢_has sclr

1, // ¢ _sync enable

1, // divelk sel

14, // dividend width
10, // divisor width

0, // fractional b

10, // fractional width

0) // signed b

Speaker, Wu, Zhu 102

inst (
.DIVIDEND (dividend),
.DIVISOR (divisor),
.QUOT (quot) ,
.REMD (remd) ,
.CLK(clk),
.RFD(rfd),
.ACLR (aclr),
.SCLR(sclr),
.CE (ce)) ;

// synopsys translate on

// FPGA Express black box declaration
// synopsys attribute fpga dont touch "true"
// synthesis attribute fpga dont touch of divider big is "true"

// XST black box declaration
// box type "black box"
// synthesis attribute box type of divider big is "black box"

endmodule

Speaker, Wu, Zhu 103

KKK A A Ak ke ks sk ok ok K K K K Kk ok ks sk ok ok K K K K K S ok ko ks k ok ok Sk K K K K ok o ke k k ok K K K Kk kK

This file is owned and controlled by Xilinx and must be used
solely for design, simulation, implementation and creation of
design files limited to Xilinx devices or technologies. Use
with non-Xilinx devices or technologies is expressly prohibited
and immediately terminates your license.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR

XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION
AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION

OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Xilinx products are not intended for use in life support
appliances, devices, or systems. Use in such applications are
expressly prohibited.

EE I S e T T T T T T T T T e

(c) Copyright 1995-2004 Xilinx, Inc.
* All rights reserved.

B I T T T T T T T T T T S S S S S S Y

***/

// The synopsys directives "translate off/translate on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis

// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file divider small.v when simulating

// the core, divider small. When compiling the wrapper file, be sure to
// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Guide".

module divider small (

dividend,

divisor,

quot,

remd,

clk,

rfd,

aclr,

sclr,

ce); // synthesis black box

input [9 : 0] dividend;
input [9 : 0] divisor;
output [9 : 0] quot;
output [9 : 0] remd;
input clk;

output rfd;

input aclr;

input sclr;

input ce;

// synopsys translate off

SDIVIDER V3 0 #/(

0, // ¢ has aclr

0, // c_has ce

0, // c¢_has sclr

1, // ¢ _sync enable

1, // divelk sel

10, // dividend width
10, // divisor width

0, // fractional b

10, // fractional width

0) // signed b

Speaker, Wu, Zhu 104

inst (
.DIVIDEND (dividend),
.DIVISOR (divisor),
.QUOT (quot) ,
.REMD (remd) ,
.CLK(clk),
.RFD(rfd),
.ACLR (aclr),
.SCLR(sclr),
.CE (ce)) ;

// synopsys translate on

// FPGA Express black box declaration
// synopsys attribute fpga dont touch "true"
// synthesis attribute fpga dont touch of divider small is "true"

// XST black box declaration
// box type "black box"
// synthesis attribute box type of divider small is "black box"

endmodule

Speaker, Wu, Zhu 105

SSLSSSS LSS LSS S S SSS S SSSSSSSSSSSSSS S
//Bo Zhu

//locator
SIS S S S S S S

module slopefinder (blank, reset, clock 65mhz, delay, dirl2, x0, angle outl,
angle out2, dividend, divisor, d over c, posangle);

input reset;

input clock 65mhz;

input [9:0] delay;

input [1:0] dirl2;

input blank;

output [5:0] angle outl;
output [5:0] angle out2;
output [13:0] dividend;
output [9:0] divisor;
output [7:0] d over c;
output [7:0] x0;

output [3:0] posangle;

reg [5:0] angle outl;
reg [5:0] angle out2;

reg [13:0] dividend;
reg [9:0] divisor;

reg [7:0] x0;

wire [13:0] quot;
wire [9:0] remd;
reg [3:0] posangle;

wire [7:0] d over c;
assign d over c¢ = quot[7:0];

divider big divl(dividend, divisor, quot, remd, clock 65mhz, rfd);

always @ (posedge clock 65mhz)
begin
if (reset)
begin
angle outl <= 0;
angle out2 <= 0;
dividend <= delay;
divisor <= 12;
x0 <= 128;
end
else
begin
dividend <= delay*10;
divisor <= 12;
if (dirl2 == 1)
begin
x0 <= 128-delay;
if (d over ¢ >= 0 && d over c <= 8)
begin
posangle <= 9;
angle outl <= 0;
angle out2 <= 18;
end
else if (d over ¢ >= 9 && d over c <= 25)
begin
posangle <= 8;
angle outl <= 35;
angle out2 <= 19;
end
else if (d over c >= 26 && d over c <= 42)
begin

Speaker, Wu, Zhu 106

posangle <= 7;
angle outl <= 34;
angle out2 <= 20;
end
else if (d over ¢ >= 43 && d over c <= 57)
begin
posangle <= 6;
angle outl <= 33;
angle out2 <= 21;
end
else if (d over c >= 58 && d over c <= 70)
begin
posangle <= 5;
angle outl <= 32;
angle out2 <= 22;
end
else if (d over ¢ >= 71 && d over c <= 81)
begin
posangle <= 4;
angle outl <= 31;
angle out2 <= 23;
end
else if (d over ¢ >= 82 && d over c <= 90)
begin
posangle <= 3;
angle outl <= 30;
angle out2 <= 24;
end
else if (d over ¢ >= 91 && d over c <= 96)
begin
posangle <= 2;
angle outl <= 29;
angle out2 <= 25;
end
else if (d over ¢ >= 97 && d over c <= 99)
begin
posangle <= 1;
angle outl <= 28;
angle out2 <= 26;
end
else
begin
posangle <= 0;
angle outl <= 27;
angle out2 <= 27;
end

end
else if (dirl2 == 2)
begin
x0 <= 128+delay;

if (d over ¢ >= 0 && d over c <= §8)
begin
posangle <= 9;
angle outl <= 0;
angle out2 <= 18;
end
else if (d over ¢ >= 9 && d over c <= 25)
begin
posangle <= 8;
angle outl <= 1;
angle out2 <= 17;
end
else if (d over c >= 26 && d over c <= 42)
begin
posangle <= 7;
angle outl <= 2;
angle out2 <= 16;
end
else if (d over c >= 43 && d over c <= 57)

begin
posangle <= 6;
angle outl <= 3;
angle out2 <= 15;
end
else if (d over c >= 58 &&
begin
posangle <= 5;
angle outl <= 4;
angle out2 <= 14;
end
else if (d over c >= 71 &&
begin
posangle <= 4;
angle outl <= 5;
angle out2 <= 13;
end
else if (d over c >= 82 &&
begin
posangle <= 3;
angle outl <= 6;
angle out2 <= 12;
end
else if (d over c >= 91 &&
begin
posangle <= 2;
angle outl <= 7;
angle out2 <= 11;
end
else if (d over c >= 97 &&
begin
posangle <= 8;
angle outl <= 10;
angle out2 <= 26;
end
else
begin
posangle <= 0;
angle outl <= 9;
angle out2 <= 9;
end

end

end

end
endmodule

d over c

d over c

d over c

d over c

d over ¢

<= 70)
<= 81)
<= 90)
<= 96)
<= 99)

Speaker, Wu, Zhu

VN N N N N I N VN IV I I N a4

//locator

A A A A S I e

module locator (blank, reset, clock 65mhz, delay, dirl2, x0, angle outl,
angle out2, dividend, divisor, d over c);

input
input
input
input
input

output
output
output
output
output
output

reset;
clock 65mhz;
[9:0] delay;
[1:0] dirl2;
blank,;

[5:0] angle outl;
[5:0] angle out2;
[9:0] dividend;
[9:0] divisor;
[7:0] d over c;
[7:0] x0;

107

reg
reg

reg
reg

reg

[5:0
[5:0

[9:0
[9:0

[7:0

] angle outl;
] angle out2;

] dividend;
] divisor;

] x0;

wire [9:0] quot;
wire [9:0] remd;

wire [7:0] d over c;
assign d over c = quot[7:0];

Speaker, Wu, Zhu 108

divider small divl (dividend, divisor, quot, remd, clock 65mhz, rfd);

always @ (posedge clock 65mhz)

begin

if (reset)

begin

angle outl <= 0;
angle out2 <= 0;
dividend <= delay;
divisor <= 12;

x0 <= 128;

end
else
begin

dividend <= delay;
divisor <= 12;

if (dirl2 == 1)
begin

x0 <= 128-delay;

case (d over c)
0:
begin
angle outl
angle out2
end
1:
begin
angle outl
angle out2
end
2:
begin
angle outl
angle out?2
end
3:
begin
angle outl
angle out2
end
4:
begin
angle outl
angle out2
end
5:
begin
angle outl
angle out2
end
6:
begin
angle outl
angle out2
end

=18,

= 18,

= 35;
=19,

= 34;
= 20;

= 34;
= 20;

= 33;
= 21;

= 32;
= 22;

Speaker, Wu, Zhu 109

7:
begin
angle outl <= 32;
angle out2 <= 22;
end
8:
begin
angle outl <= 31;
angle out2 <= 23;
end
9:
begin
angle outl <= 30;
angle out2 <= 24;
end
default:
begin
angle outl <= 27;
angle out2 <= 27;
end
endcase

end

else if (dirl2 == 2)
begin
x0 <= 128+delay;
case (d over c)

0:
begin
angle outl <= 0;
angle out2 <= 18;
end
1:
begin
angle outl <= 0;
angle outZ2 <= 18;
end
2:
begin
angle outl <= 1;
angle out2 <= 17;
end
3:
begin
angle outl <= 2;
angle out2 <= 16;
end
4:
begin
angle outl <= 2;
angle out2 <= 16;
end
5:
begin
angle outl <= 3;
angle out2 <= 15;
end
6:
begin
angle outl <= 4;
angle outZ2 <= 14;
end
7:
begin

angle outl <= 4;
angle out2 <= 14;
end

Speaker, Wu, Zhu 110

8:
begin
angle outl <= 5;
angle out2 <= 13;
end
9:
begin
angle outl <= 6;
angle out2 <= 12;
end
default:
begin
angle outl <= 9;
angle out2 <= 9;
end
endcase
end

end

end

endmodule

Speaker, Wu, Zhu 111

SSLSSSS LSS LSS S S SSS S SSSSSSSSSSSSSS S
//Bo Zhu
//newlocator

VA A N N S N S N I e

module newlocator (reset, clock 65mhz, delayl, delay2, dirl, dir2, slopel,
slope2, xpos, ypos, finalangle);

input reset;

input clock 65mhz;

input [9:0] delayl;

input [9:0] delayZ2;

input [1:0] dirl;

input [1:0] dir2;

output [9:0] slopel;
output [9:0] slope2;
output [9:0] xpos;
output [9:0] ypos;
output [5:0] finalangle;

wire [9:0] quotl,
wire [9:0] remdl; //useless
wire [9:0] quot2;
wire [9:0] remd2; //useless

reg [9:0] slopel;
reg [9:0] slopeZ2;

wire [7:0] d over cl;
wire [7:0] d over c2;

wire rfdl, rfd2, rfd3;

assign d over cl = quotl[7:0];
assign d over c2 quot2[7:0];

divider small divl (delayl, 10'dl12, quotl, remdl, clock 65mhz, rfdl);
divider small divZ2(delay2, 10'dl12, quot2, remd2, clock 65mhz, rfd2);

wire [7:0] t2;

wire [9:0] quot3;

wire [9:0] remd3; //useless
reg [9:0] t dividend;

reg [9:0] t divisor;

reg signed [9:0] xpos shifted;
reg signed [9:0] ypos shifted;
wire [9:0] xpos;

wire [9:0] ypos;

assign xpos = xpos shifted-128;
assign ypos = ypos shifted;

assign t2 = quot3[7:0];

reg [13:0] invtan dividend;

reg [9:0] invtan divisor;

wire [13:0] quot4;

wire [10:0] remd4;

wire rfd;

wire [10:0] finalslope;

assign finalslope = quot4[10:0];

divider small divt(t dividend, t divisor, quot3, remd3, clock 65mhz, rfd3);

divider big divinvtan(invtan dividend, invtan divisor, quot4, remd4, clock 65mhz,
rfd4) ;

reg [5:0] finalangle;
always @ (posedge clock 65mhz)

begin
if (reset)

Speaker, Wu, Zhu 112

begin
slopel <= 0;
slope2 <= 0;
t dividend <= 0;
t divisor <= 1;
xpos _shifted <= 0;
ypos_shifted <= 0;
invtan dividend <= 0;
invtan divisor <= 1;
finalangle <= 0;

end
else
begin
case (d over cl)
0:
begin
slopel <= 100,
end
1:
begin
slopel <= 10;
end
2:
begin
slopel <= 5;
end
3:
begin
slopel <= 3 + 1/4;
end
4:
begin
slopel <= 2 + 1/4;
end
5:
begin
slopel <=1 + 3/4;
end
6:
begin
slopel <=1 + 1/4;
end
7:
begin
slopel <= 1;
end
8:
begin
slopel <= 3/4;
end
9:
begin
slopel <= 1/2;
end

default:
begin

slopel <= 0;
end

endcase

case (d over c2)
0:
begin

slope2 <= 100;
end
1:

begin

slopeZ

end

begin

slopeZ

end

begin

slopeZ

end

begin

slopeZ2

end

begin

slopeZ2

end

begin

slope2

end

begin

slopeZ2

end

begin

slopeZ2

end

begin

slope2

end

default:
begin

slopeZ

end
endcase

if (dirl
begin

<= 10;

<=3+ 1/4;

<=2 + 1/4;

<=1 + 3/4;

<=1+ 1/4;

<= 1;
<= 3/4;
<=1/2;
<= 0;

== 1 && dir2 ==1)

Speaker, Wu, Zhu 113

t dividend <= slopel*delayl+delay2;
t divisor <= 2*slopel*slope2-2;
xpos shifted <= 60-slope2*t2;
ypos_shifted <= delay2/2+t2;

invtan dividend <= -xpos;

invtan divisor <= ypos*10;

if (finalslope == 0

else
else
else
else
else
else
else
else
else
end

if
if
if
if
if
if
if
if

(finalslope
(finalslope
(finalslope
(finalslope
(finalslope
(finalslope
(finalslope
(finalslope

>=

finalangle <= 0;

else if (dirl == 2 && dir2

begin

finalslope == 1) finalangle <= 27;

2) finalangle <= 28;

3 || finalslope == 4) finalangle <= 29;

5 || finalslope <= 7) finalangle <= 30;

8 || finalslope == 9) finalangle <= 31;

10 || finalslope <= 14) finalangle <= 32;
15 || finalslope <= 21) finalangle <= 33;
22 || finalslope <= 37) finalangle <= 34;
38 || finalslope <= 114) finalangle <= 35;
==1)

t dividend <= slopel*delayl+delay2;
t divisor <= 2*slopel*slope2-2;
xpos_shifted <= 60+slope2*t2;
ypos_shifted <= delay2/2+t2;

invtan dividend <= xpos;

end

end

endmodule

end

else 1f (dirl

Speaker, Wu, Zhu

invtan divisor <= ypos*10;
if (finalslope == 0 ||

else
else
else
else
else
else
else
else
else

begin
t dividend <= slopel*delayl-240-delay2;
t divisor <= 2*slopel*slope2-2;

end

else 1f (dirl

if
if
if
if
if
if

(finalslope
(finalslope ==
(finalslope
(finalslope
(finalslope
(finalslope
if (finalslope
if (finalslope
finalangle <= 0;

1 && dir2

finalslope == 1) finalangle <= 9;

2) finalangle <= 8;

3 || finalslope == 4) finalangle <= 7;

5 || finalslope <= 7) finalangle <= 6;

8 || finalslope == 9) finalangle <= 5;

10 || finalslope <= 14) finalangle <= 4;
15 || finalslope <= 21) finalangle <= 3;
22 || finalslope <= 37) finalangle <= 2;
38 || finalslope <= 114) finalangle <= 1;

==2)

xpos _shifted <= 60-slope2*t2;
ypos_shifted <= 120+delay2/2-t2;
invtan dividend <= -xpos;

invtan divisor <= -ypos*10;

if (finalslope ==

else
else
else
else
else
else
else
else
else

begin
t dividend <= slopel*delayl-240-delay2;
t divisor <= 2*slopel*slope2-2;

xpos shifted <= 60+slope2*t2;
ypos_shifted <= 120+delay2/2-t2;

invtan dividend <= xpos;

invtan divisor <= -ypos*10;

end

if (finalslope == 0

else
else
else
else
else
else
else
else
else

I
if ==
if
if
if
if
if

(finalslope
(finalslope ==
(finalslope
(finalslope
(finalslope
(finalslope
if (finalslope
if (finalslope
finalangle <= 18;

2 && dir2

[
if ==
if
if
if
if
if

(finalslope
(finalslope ==
(finalslope
(finalslope
(finalslope
(finalslope
if (finalslope
if (finalslope
finalangle <= 18;

finalslope == 1) finalangle <= 27;

2) finalangle <= 26;

3 || finalslope == 4) finalangle <= 25;

5 || finalslope <= 7) finalangle <= 24;

8 || finalslope == 9) finalangle <= 23;

10 || finalslope <= 14) finalangle <= 22;
15 || finalslope <= 21) finalangle <= 21;
22 || finalslope <= 37) finalangle <= 20;
38 || finalslope <= 114) finalangle <= 19;

==2)

finalslope == 1) finalangle <= 9;

2) finalangle <= 10;

3 || finalslope == 4) finalangle <= 11;

5 || finalslope <= 7) finalangle <= 12;

8 || finalslope == 9) finalangle <= 13;

10 || finalslope <= 14) finalangle <= 14;
15 || finalslope <= 21) finalangle <= 15;
22 || finalslope <= 37) finalangle <= 16;
38 || finalslope <= 114) finalangle <= 17;

114

Speaker, Wu, Zhu 115

//ray wu: module calc camera angle

//passes v and h angle to mechanical system to move camera

//last updated 12-11-05

//module calc camera angle(reset, clock, calc angle, mb _row, mb _col, v _angle h,
v_angle v, angle calculated);

module calc camera angle(reset, clock, calc angle, motion center, v_angle h, v_angle v,
angle calculated, debug);

input reset;

input clock;

input calc angle; //triggers the calculation
input [8:0] motion center; //motion center macroblock
output [5:0] v_angle h;

output [5:0] v_angle v;

output angle calculated; //ok to move camera

output [63:0] debug;,

reg [5:0] v_angle h;

reg [5:0] v_angle v;

reg angle calculated;

//movement history: if the motion center is always at the same place..probably
noise..don't send signal for movement
reg [8:0] history center mb;

//center mb is at row=6, col=16

//assumptions: camera moves at 10 degree increments. Object is apprx. 1 meter away
from camera.

// row movement: for every 10 degrees, object is apprx. 9 mb's away from
mb_row 16.

always @ (posedge clock)

begin
if (reset)
begin
v_angle h <= 0;
v_angle v <= 0;
angle calculated <= 0;
end
else if (calc angle)
begin
if ((motion center[4:0] != history center mb[4:0]) & //noise

threshold row
(motion center[8:5] != history center mb[8:5])) //noise
threshold col
begin
angle calculated <= 1;
//calculate row difference
if (motion center[8:5] > 8) //leave a margin of error->don't move if
it's within +- 2 mb's
v_angle v <= 6'd34; //move 10 degrees down
else if (motion center[8:5] < 4)
v_angle v <= 6'd2; //move 10 degrees up
else
v_angle v <= 6'd0;

//calculate col difference
if (motion center[4:0] > 24) //leave a margin of error->don't move if it's
within +- 2 mb's
v_angle h <= 6'd4; //move 10 degrees to the right
else if (motion center[4:0] > 17)
v_angle h <= 6'd2; //move 20 degrees to the right

else if (motion center([4:0] < 8) //leave a margin of error->don't move
if it's within +- 2 mb's
v_angle h <= 6'd32; //move 20 degrees to the right

else if (motion center[4:0] < 15)
v_angle h <= 6'd34; //move 10 degrees to the right
else
v_angle h <= 6'd0;
end
else

Speaker, Wu, Zhu 116

begin
angle calculated <= 0;
end
history center mb <= motion center;
end
else
begin
angle calculated <= 0;
end

end

//debug outputs
assign debug = {48'b0, 2'b0, v _angle v, 2'b0, v _angle h};

endmodule

Speaker, Wu, Zhu

//ray wu: module calc mberror

//outputs center of motion

//last updated 12-11-05

module calc mberror (reset, clock, recording, done retrieving data, difference,
difference ready, mb_num,

motion center, center ready, debug,
motion mbl, motion mb2, motion mb3, motion mb4) ;

input reset;

input clock; //v_clock

input recording; //when ntsc_to ram is recording a frame

input done retrieving data; //when high, means video memory retrieval is done
input [7:0] difference; //luma difference for a pixel

input difference ready; //can process

input [8:0] mb_num; //384 mb's total...0 to 383

output [8:0] motion center; //center of the motion {row(4), col(5)}

output center ready; //when center macroblock has been determined

reg center ready = 0;

output [63:0] debug;,

output [8:0] motion mbl;
output [8:0] motion mb2;
output [8:0] motion mb3;
output [8:0] motion mb4;

//for each mb index = {row (4), col (5)} => need 9 bits

//for each mb sad = (up to 512 = 8%*64) => need 9 bits

reg [13:0] mb_sad tot temp;

reg [2:0] lowest sad mb; //chooses between one of the mb high sad's
reg [13:0] lowest sad;

reg [13:0] mb_high sad[3:0]; //store 4 highest mb's

reg [8:0] mb high index[3:0];

reg [6:0] mb pixel counter = 0; //count to 64 (used to be [6:0])
//rely on mb_num to determine current MB

reg [5:0] row total;

reg [6:0] col total;

wire [3:0] average crow = row total[5:2]; //divide by 4
wire [4:0] average ccol = col total[6:2]; //divide by 4
assign motion center = {average crow, average ccol};

//for high contrast (use 1450)
//for continuous spectrum (use 200)
parameter THRESHOLD SAD = 25000; //sum of 4 high sad mb's must be larger than this

noise threshold

//to actually produce a a valid

center

always @ (posedge clock)
begin

if (reset | recording)

begin
//initialize state variables
mb_pixel counter <= 7'd0; //counter to 64 (8x8 pixels per macroblock)
center ready <= 1'd0;
//initialize data variables
lowest sad mb <= 3'd0;
lowest sad <= 14'd0;
mb_sad tot temp <= 14'd0;
mb_high sad[0] <= 14'd0;
mb_high sad[1] <= 14'd0;
mb_high sad[2] <= 14'd0;
mb_high sad[3] <= 14'd0;
mb_high index[0] <= 9'd0;
mb_high index[1] <= 9'dl;
mb _high index[2] <= 9'd2;
mb_high index[3] <= 9'd3;
row_total <= 6'd0;
col total <= 7'd0;

end

else //video processing time

117

Speaker, Wu, Zhu 118

begin

mb_high sad[3])

+

if (done retrieving data) //we've finished processing a frame
begin
if ((mb_high sad[0] + mb_high sad[1l] + mb_high sad[2] +
> THRESHOLD SAD)
begin
//past noise threshold, we have real motion
center ready <= 1;
col total <= mb high index[0][4:0] + mb _high index[1][4:0]

mb _high index[2][4:0] + mb_high index[3][4:0];
row total <= mb high index[0][8:5] + mb high index[0][8:5]

mb_high index[2][8:5] +

mb_high index[3][8:5];

difference

end
else
center ready <= 0;
end
else //not finished retrieving all luma data
begin
if (difference ready) //if calc luma difference calcualtes a
begin
if (mb num == 9'd0)
mb_high sad[0] <= mb_high sad[0] + difference;
else if (mb num == 9'dl)
mb_high sad[l] <= mb_high sad[l] + difference;
else if (mb num == 9'd2)
mb_high sad[2] <= mb_high sad[2] + difference;
else if (mb num == 9'd3)
mb_high sad[3] <= mb_high sad[3] + difference;
else if ((mb num == 9'd4) & (mb pixel counter == 0))
begin

//on first pass after first 4 mb's are entered,

calculate the lowest mb, lowest sad

mb_high sad[2])

mb_high sad[2])

mb_high sad[1])

4)

//lowest sad may eventually be replaced
if ((mb_high sad[0] < mb _high sad[1]) & (mb_high sad[0] <

(mb_high sad[0] < mb_high sad[3]))
begin //mb_sad[0] has lowest SAD
lowest _sad mb <= 0; //mb index 0 has lowest sad
lowest sad <= mb_high sad[0];
end
else if ((mb _high sad[l1] < mb _high sad[0]) & (mb _high sad[1l] <

(mb_high sad[l] < mb_high sad[3]))
begin //mb_sad[l] has lowest SAD
lowest _sad mb <= 1; //mb index 1 has lowest sad
lowest sad <= mb_high sad[1];
end
else if ((mb_high sad[2] < mb_high sad[0]) & (mb _high sad[2] <

(mb_high sad[2] < mb _high sad[3]))
begin //mb_sad[2] has lowest SAD
lowest sad mb <= 2; //mb index 2 has lowest sad
lowest sad <= mb_high sad[2];
end
else
begin //mb_sad[3] has lowest SAD
lowest sad mb <= 3; //mb index 3 has lowest sad
lowest sad <= mb_high sad[3];

end
mb_sad tot temp <= difference;
mb_pixel counter <= 1;
end
else //after initialization of 4 mb _high sad (mb_num >=

begin

Speaker, Wu, Zhu 119

1f (mb_pixel counter == 63) //right after we
finished processing a macroblock
begin
//check 1if newest calculated SAD is bigger
than our lowest highest
if (((mb_sad tot temp + difference) >
lowest sad) &
((mb_num([4:0])*32 < 992)) //don't
look at last column (noisy)
begin
//replace the lowest SAD
mb _high index[lowest sad mb] <=
mb_num;
mb_high sad[lowest sad mb] <=
mb_sad tot temp + difference;
//find the new lowest sad index and
sad
if ((mb_sad tot temp + difference) <
(mb_high sad[(lowest sad mb+1)%4]) &
(mb_sad tot temp + difference) <
(mb_high sad[(lowest sad mb+2)%4]) &
(mb_sad tot temp + difference) <
(mb_high sad[(lowest sad mb+3)%4]))
begin
//the lowest mb replaced is still
the lowest
lowest sad mb <= lowest sad mb;
lowest sad <= (mb_sad tot temp + difference);
end
else 1f (
(mb_high sad[(lowest sad mb+1)%4] < (mb_sad tot temp + difference)) &

(mb_high sad[(lowest sad mb+1)%4] < mb high sad[(lowest sad mb+2)%4]) &
(mb_high sad[(lowest sad mb+1)%4] <
mb_high sad[(lowest sad mb+3)%4]))
begin
//lowest mb sad is the next mb
from former lowest sad mb
lowest sad mb <= (lowest sad mb+1) %4;
lowest sad <=
mb_high sad[(lowest sad mb+1) %4];
end
else if ((mb_high sad[(lowest sad mb+2) %4]
< (mb_sad tot temp + difference)) &
(mb_high sad[(lowest sad mb+2)%4]
< mb _high sad[(lowest sad mb+1)%4]) &
(mb_high sad[(lowest sad mb+2)%4] <
mb_high sad[(lowest sad mb+3)%4]))
begin
//lowest mb sad is the 2 down mb
from former lowest sad mb
lowest sad mb <= (lowest sad mb+2)%4;
lowest sad <=
mb _high sad[(lowest sad mb+2)%4];
end
else
begin
//lowest mb sad is the 3 down mb
from former lowest sad mb
lowest sad mb <= (lowest sad mb+3)%4;
lowest sad <=
mb_high sad[(lowest sad mb+3) %4];
end
end
mb_pixel counter <= 0;
mb sad tot temp <= 0;
end
else //we're not at the end of a macroblock yet
begin
mb_sad tot temp <= mb_sad tot temp +
difference; //add the difference to the macroblock

Speaker, Wu, Zhu 120

mb_pixel counter <= mb pixel counter + 1;

end
end //mb != 0, 1,

end //difference ready

end //done_retrieving data

end //reset
end //always

assign motion mbl

assign motion mb2 =
assign motion mb3 =
assign motion mb4 =

//debug outputs

= mb_high index[0];

mb _high index[1];
mb _high index[2];
mb_high index[3];

2/

3

assign debug = {2'd0, mb high sad[3], 2'd0, mb high sad[2], 2'd0, mb high sad[l],

2'd0, mb_high sad[0]};

endmodule

Speaker, Wu, Zhu 121

module vga with ram (reset, clock 27mhz, clock 65mhz,
vga out red, vga out green,
vga out blue, vga out sync b, vga out blank b,
vga out pixel clock,
vga out hsync, vga out vsync, vram addr, vram data 1in,
vram data out, vram clk, vram we,
recording, center ready, motion center,
v_angle h, v _angle v, angle calculated, debug, mb output);
//ray wu: vga 1is for testing purposes, but add code in this module to calculate angle
from stored memory
//last updated 11-28-05

input reset; // Active high reset, synchronous with 27MHz clock

input clock 27mhz; // 27MHz input clock

//input v _proc clock; // tv clock used in video processing (use the same clock)
input clock 65mhz;

output [7:0] vga out red, vga out green, vga out blue; // Outputs to DAC
output vga out sync b, vga out blank b; // Composite sync/blank outputs to DAC
output vga_out pixel clock; // Pixel clock for DAC

output vga out hsync, vga out vsync; // Sync outputs to VGA connector

input [15:0] vram addr; // video ram address
input [7:0] vram data in; // video ram data input
input vram clk, vram we; // video ram clock and write enable

output [7:0] vram data out; // video ram data output
//ray wu
input recording; //when ntsc_to ram is recording a frame (use clock cycles for

calculation when not record)
output center ready; //triggers calculation of angle
output [8:0] motion center;
output [5:0] v_angle h; //horizontal angle change
output [5:0] v_angle v; //vertical angle change
output angle calculated;//output from angle module ready
output [63:0] debug; //to led/user3's for debugging
output [8:0] mb output;

LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S
//

// Timing values

//

LSS LSS S S S S S S S S S S SS S

// 1024 X 768 @ 75Hz with a 78.750MHz pixel clock

/*‘define H ACTIVE 1024 // pixels

‘define H FRONT PORCH 16 // pixels

‘define H SYNCH 96 // pixels
‘define H BACK PORCH 176 // pixels

‘define H TOTAL 1312 // pixels
‘define V_ACTIVE 768 // lines

‘define V_FRONT PORCH 1 // lines

‘define V_SYNCH 3 // lines
‘define V_BACK PORCH 28 // lines

‘define V_TOTAL 800 // lines */

//Changed by Bobby 12/12

//we only need a 65Mhz clock because the LCD's we are using don't care about the faster
frame rate

// 1024 X 768 @ 60Hz with a 65MHz pixel clock

‘define H ACTIVE 1024 // pixels
‘define H FRONT PORCH 16 // pixels
‘define H SYNCH 96 // pixels
‘define H BACK PORCH 160 // pixels
‘define H TOTAL 1296 // pixels
‘define V_ACTIVE 768 // lines
‘define V_FRONT PORCH 3 // lines
‘define V _SYNCH 6 // lines

‘define V_BACK PORCH 29 // lines

Speaker, Wu, Zhu 122

‘define V_TOTAL 806 // lines

LSS LSS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSS S
//

// Internal signals

//

VN A A A A A A A A A A A N N A A A A A A A A A

wire pixel clock;
reg prst, pixel reset; // Active high reset, synchronous with pixel clock

reg [7:0] vga out red, vga out blue, vga out green;
wire vga out sync b, vga out blank b;
reg hsyncl, hsync2, vga out hsync, vsyncl, vsync2, vga out vsync;

reg [10:0] pixel count; // Counts pixels in each line
reg [10:0] line count; // Counts lines in each frame

reg [9:0] xpos; // horizontal image pixel count
reg [9:0] ypos; // vertical image pixel count

LIS S S
//

// Generate the pixel clock (78.750MHz)

//
SIS S S

// synthesis attribute period of clock 27mhz is 37ns;

/*DCM vga dcm (.CLKIN(clock 27mhz),

.RST(1'b0),

.CLKFX (pixel clock)) ;
// synthesis attribute DLL FREQUENCY MODE of vga dcm is "LOW"
// synthesis attribute DUTY CYCLE CORRECTION of vga dcm is "TRUE"
// synthesis attribute STARTUP WAIT of vga dcm is "TRUE"
// synthesis attribute DFS FREQUENCY MODE of vga dcm is "LOW"
// synthesis attribute CLKFX DIVIDE of vga dcm is 9
// synthesis attribute CLKFX MULTIPLY of vga dcm is 26
// synthesis attribute CLK FEEDBACK of vga dcm is "NONE"
// synthesis attribute CLKOUT PHASE SHIFT of vga dcm is "NONE"
// synthesis attribute PHASE SHIFT of vga dcm is 0
// synthesis attribute clkin period of vga dem is 37*/
assign pixel clock = clock 65mhz;

assign vga out pixel clock = ~pixel clock;

always @ (posedge pixel clock)
begin
prst <= reset;
pixel reset <= prst;
end

LSS LSS S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S
//

// Pixel and Line Counters

//

LSS S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S

always @ (posedge pixel clock)
if (pixel reset)
begin
pixel count <= 0;
line count <= 0;

end
else if (pixel count == ('H TOTAL-1)) // last pixel in the line
begin
pixel count <= 0;
if (line count == ('V_TOTAL-1)) // last line of the frame

line count <= 0;
else

Speaker, Wu, Zhu

line count <= line count + 1;
end
else
pixel count <= pixel count +1;

always @ (pixel reset or pixel count or line count)
if (pixel reset)

begin
xpos <= 0;
ypos <= 0;
end

else begin
if (pixel count > 'H FRONT PORCH)

xpos <= pixel count - "H FRONT PORCH;
if (line count > "V _FRONT PORCH)
ypos <= line count - "V_FRONT PORCH;

end

VA N A N A A A A A N A A A A A N A A A A A A A A a4
//

// Sync and Blank Signals

//

VA N A N N N N N N S N I N NV I VI IV a

always @ (posedge pixel clock)

begin
if (pixel reset)
begin
hsyncl <= 1;
hsync2 <= 1;
vga out hsync <= 1;
vsyncl <= 1;
vsync2 <= 1;
vga out vsync <= 1;
end
else
begin
// Horizontal sync
if (pixel count == ('H ACTIVE+ H FRONT PORCH))
hsyncl <= 0; // start of h sync
else if (pixel count == ('H ACTIVE+'H FRONT PORCH+'H SYNCH))
hsyncl <= 1; // end of h sync
// Vertical sync
if (pixel count == ('H TOTAL-1))
begin
if (line count == ('V_ACTIVE+'V FRONT PORCH))
vsyncl <= 0; // start of v _sync
else if (line count == ('V_ACTIVE+'V_FRONT PORCH+'V_SYNCH))
vsyncl <= 1; // end of v_sync
end
end

// Delay hsync and vsync by two cycles to compensate for 2 cycles of
// pipeline delay in the DAC.

hsync2 <= hsyncl;

vga out hsync <= hsync2;

vsync2 <= vsyncl;

vga_ out vsync <= vsyncZ2;

end

// Blanking
assign vga out blank b = ((pixel count<'H ACTIVE) & (line count<'V ACTIVE)) ;

// Composite sync
assign vga out sync b = hsyncl * vsyncl;

VA S S N N S N A VI Va4

123

Speaker, Wu, Zhu 124

//

// Display a 256x192 pixel image from dual-port RAM

//

LSS LSS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSS S

reg [7:0] pixdata; // for the memory read pipeline
reg [15:0] memaddr; // for memory read address
wire [7:0] memdata,; // for memory output data 8 bits: BBGGGRRR

// read data from memory at pixel clock, with one pipeline stage

always @ (posedge pixel clock)

begin

memaddr <= xpos[9:2] + ypos[9:2]*256; // oversample
pixdata <= memdata; // latch in last value
end

SIS LSS LSS LSS S S S S S SSSSSSSSSSSSSSSSSSSSSS
SIS

//ray wu

//new RAM can store 2 frames: frame A => (cols=256, rows=96), frameB => (256, 96) but row
shifted down 96

SILLSSS LSS LSS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS
SIS S

//storage for luma values extracted from vram
reg [7:0] lumaA = 0; //luma value from frameA
//reg [7:0] lumaB = 0; //luma value from frameB

//used for the video block, but in same way as memaddr (change vram's memaddr to
v_memaddr)
reg [15:0] v _memaddr = 0;

//each macroblock is 8x8: total 384, 0 is upper left, 383 is lower right block

//32 blocks wide and 12 blocks tall

reg [8:0] macroblock = 0; //macroblock number (goes left to right, up to down) (512
capacity)

reg [6:0] pixelsFed = 0; //count to 64 for each macroblock (128 capacity)

reg getLumadA = 1;

reg [7:0] difference luma = 0;

reg difference ready = 0;

reg done retrieving data;

wire [7:0] nextFrame row shift = {1'b0, macroblock[8:5], pixelsFed[5:3]} + 8'd96;
//note: we don't care in video processing about displaying the pixels (so timing in

sync with vga is not needed)
always @ (posedge pixel clock) //drive at65MHz

begin
if (difference ready) difference ready <= 0; //reset the trigger if it's high
if (reset | recording)
begin
//reset all variables
macroblock <= 0;
pixelsFed <= 0;
getLumaA <= 1; //start with retrieving info from frameA
done retrieving data <= 0;
difference ready <= 0;
difference luma <= 0;
end
else
begin

//memaddr = {row,col}
//procedure: first get luma from frame A, then from frame B => calc
difference of lumas, and out to calc mberror
// repeat for each mb (8x8px/mb, 32x12 mb's/frame
if (!done retrieving data)
begin
if (macroblock == 384) //if we finished processing every macroblock

Speaker, Wu, Zhu 125

begin
done retrieving data <= 1; //turn off any more data
collection
end
else //more macroblocks to process
begin
if (pixelsFed == 64) //move to next macroblock
begin
getLumaA <= 1; //start new mb calc by getting luma
from A
pixelsFed <= 0;
macroblock <= macroblock + 1;
end
else //get more pixels from frameA and frameB
begin
if (getLumad) //get luma from frame A {row(4),
col(5)}
begin
//note: memaddr (row, col) refers to pixels,
not macroblocks, so need to convert
v_memaddr <= { 1'b0, macroblock[8:5],
pixelsFed[5:3],
macroblock[4:0],
pixelsFed[2:0] };
lumaA <= memdata; //record in register
getLumaA <= 1'b0; //now get luma from B
end

else //get luma from frame B {row(4), col(5)}
begin //note: row shifted by 96 for memory of frame

v_memaddr <= { nextFrame row shift,
macroblock[4:0],
pixelsFed[2:0] };
//lumaB <= memdata; just compute |lumaA -
lumaB|
if (lumaA > memdata)

difference luma <= lumaA - memdata;
else
difference luma <= memdata - lumaA;
difference ready <= 1; //okay to process
lumaA and lumaB...high for 1 cycle
getLumaA <= 1'bl; //next step get luma from

A
//get next pixel in coordinate (after getting luma from
A, and B)
pixelsFed <= pixelsFed + 1;
end
end //not pixelsFed = 64

end //macroblock
end //done_retrieving data
end //reset | recording
end //pixel clock

//note: SAD is calculated in real time...per macroblock

//if difference is calculated...difference ready triggers high...so calc mberror takes
the difference into the SAD

//the above block outputs go calc luma, lumaA, and lumaB to the NEXT module
(calc mberror)

//send difference values to calculation of macroblock error
//calcualte error per macroblock and output the motion center block

//test

wire [8:0] motion mbl;

wire [8:0] motion mb2;

wire [8:0] motion mb3;

wire [8:0] motion mb4;
//wire [8:0] motion center;
wire [63:0] debug mberror;

Speaker, Wu, Zhu 126

calc mberror calc mberrorl(.reset (reset), .clock(pixel clock), .recording(recording),

.done retrieving data(done retrieving data),

.difference(difference luma),
.difference ready (difference ready), .mb num(macroblock),

.motion center (motion center),
.center ready (center ready),

.debug (debug mberror), .motion mbl (motion mbl),
.motion mb2(motion mb2), .motion mb3(motion mb3), .motion mb4 (motion mb4)) ;

//to bobby's master control module

wire [63:0] debug camera angle;

calc camera angle calc camera anglel (.reset (reset), .clock(pixel clock),
.calc angle (center ready),

.motion center (motion center),
.v_angle h(v_angle h),
.v_angle v(v_angle v),

.angle calculated(angle calculated),

.debug (debug camera angle)) ;

//when calc mberror has a valid output (motion center macroblock)...center ready goes
high...
//data in center mb row, center mb col

reg [15:0] memaddr select;
reg write select;

always @ (posedge pixel clock)

begin
if (reset)
begin
memaddr select <= memaddr;
write select <= vram we;
end
else
begin
//select the right memory address and write enable
if (recording | done retrieving data)
begin
//go to default state
memaddr select <= memaddr;
write select <= vram we; //go
end
else
begin
memaddr select <= v_memaddr;
write select <= 0; //no writing to memory...only reading
end
end
end
//assign vram addr wire = memaddr select;
//assign vram write wire = write select;

videoram vram(.addra (memaddr select), .addrb(vram addr), .clka(pixel clock),
.clkb(vram clk), .dinb(vram data in),
.douta (memdata), .doutb(vram data out), .web(write select));

// RAM with a 256 x 192 b&w image, 8-bits per pixel
// the vga output is 1024x768, so we skip 2 bits of xpos and ypos, each

// feed pixel values to VGA machine

always @ (posedge pixel clock)
begin
if (!recording) //if we're done computing (then next frame...draw the center
motion block)
begin
//draw the macroblock

Speaker, Wu, Zhu 127

if (done retrieving data)
begin
//if (center ready & (xpos >=
8% (motion mbl[4:0]+motion mb2[4:0]+motion mb3[4:0]+motion mb4[4:0])) &
// (xpos <
8* (motion mbl[4:0]+motion mb2[4:0]+motion mb3[4:0]+motion mb4[4:0]) + 32) &
// (ypos >=
8% (motion mbl[8:5]+motion mb2[8:5]+motion mb3[8:5]+motion mb4[8:5])) &
// (ypos <
8* (motion mbl[8:5]+motion mb2[8:5]+motion mb3[8:5]+motion mb4[8:5]) + 32))
if (xpos >= 992)

begin
vga out red <= 128; // weird color block
vga out green <= 128;
vga out blue <= 128;

end

else if (center ready & (xpos >= 32*(motion center[4:0])) & (xpos <
(32* (motion center([4:0])+32)) &
(ypos >= 32* (motion center([8:5])) &
(ypos < (32*(motion center[8:5])+32)))
//if (center ready & (xpos >=
8* (motion mbl[4:0]+motion mb2[4:0]+motion mb3[4:0]+motion mb4[4:0])) &

// (xpos <

8% (motion mbl[4:0]+motion mb2[4:0]+motion mb3[4:0]+motion mb4[4:0]) + 32) &
// (ypos >=

8% (motion mbl[8:5]+motion mb2[8:5]+motion mb3[8:5]+motion mb4[8:5])) &
// (ypos <

8% (motion mbl[8:5]+motion mb2[8:5]+motion mb3[8:5]+motion mb4[8:5]) + 32))
begin

//center block
vga out red <= 255; // yellow block
vga out green <= 255;
vga out blue <= 0;
end
else if (center ready & (xpos >= 32* (motion mbl[4:0])) & (xpos <
(32* (motion mb1[4:0])+32)) &
(ypos >= 32* (motion mbl[8:5])) &
(ypos < (32*(motion mbl[8:5])+32)))

begin
//draw motion mb 1
vga out red <= 255; // red motion block
vga out green <= 0;
vga out blue <= 0;
end

else 1f (center ready & (xpos >= 32*(motion mb2[4:0])) & (xpos <
(32* (motion mb2[4:0])+32)) &
(ypos >= 32* (motion mb2[8:5])) &
(ypos < (32*(motion mb2[8:5])+32)))

begin
//draw motion mb 2
vga out red <= 0; // green motion block
vga_out green <= 255;
vga out blue <= 0;
end

else if (center ready & (xpos >= 32* (motion mb3[4:0])) & (xpos <
(32* (motion mb3[4:0])+32)) &
(ypos >= 32* (motion mb3[8:5])) &
(ypos < (32*(motion mb3[8:5])+32)))

begin

//draw motion mb 3

vga out red <= 0;

vga out green <= 0;

vga_out _blue <= 255; // blue motion block
end

else if (center ready & (xpos >= 32*(motion mb4[4:0])) & (xpos <
(32* (motion mb4[4:0])+32)) &
(ypos >= 32* (motion mb4[8:5])) & (ypos <
(32* (motion mb4[8:5])+32)))
begin
//draw motion mb 4
vga out red <= 0;

Speaker, Wu, Zhu 128

vga_out_green <= 128; // teal motion block
vga out blue <= 126;

end
else
begin
vga out red <= pixdata; //pass data
vga out green <= pixdata;
vga out blue <= pixdata;
end
end
else
begin
vga out red <= 255; //show white
vga_out green <= 255;
vga out blue <= 255;
end
end
else
begin
vga out red <= pixdata; // for black and white display -->

test purposes, make it green
vga out green <= pixdata;
vga out blue <= pixdata;
end
end

//debug
//assign debug = {56'b0, difference luma};
assign debug = debug camera angle;

endmodule

/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7

Speaker, Wu, Zhu

File: video decoder.v
Date: 31-Oct-05
Author: J. Castro (MIT 6.111, fall 2005)

This file contains the ntsc decode and adv7185init modules

These modules are used to grab input NTSC video data from the RCA
phono jack on the right hand side of the 6.111 labkit (connect
the camera to the LOWER jack).

A A S A N S N N S Ve

/7
/7
/7
/7
/7
/7

/7

NTSC decode - 16-bit CCIR656 decoder

By Javier Castro

This module takes a stream of LLC data from the adv7185
NTSC/PAL video decoder and generates the corresponding pixels,
that are encoded within the stream, in YCrCb format.

Make sure that the adv7185 is set to run in 16-bit LLC2 mode.

module ntsc decode(clk, reset, tv in ycrcb, ycrcb, f, v, h, data valid);

// clk - line-locked clock (in this case, LLCI1 which runs at 27Mhz)
// reset - system reset

// tv_in ycrcb - 10-bit input from chip. should map to pins [19:10]
// ycrcb - 24 bit luminance and chrominance (8 bits each)

// £ - field: 1 indicates an even field, 0 an odd field

// v - vertical sync: 1 means vertical sync

// h - horizontal sync: 1 means horizontal sync

input clk;

input reset;

input [9:0] tv _in ycrcb; // modified for 10 bit input - should be P[19:10]
output [29:0] ycrcbh;

output £;
output v;
output h;
output data valid;

// output [4:0] state;

parameter SYNC 1 = 0;
parameter SYNC 2 = 1;
parameter SYNC 3 = 2;
parameter SAV_f1 cb0 = 3;
parameter SAV f1 y0 = 4;
parameter SAV f1 crl = 5;
parameter SAV f1 yl1 = 6;
parameter EAV f1 = 7;
parameter SAV VBI f1 8;
parameter EAV_VBI f1 = 9;
parameter SAV f2 cb0 = 10;
parameter SAV_f2 y0 = 11;
parameter SAV f2 crl = 12;
parameter SAV f2 y1 = 13;
parameter EAV f2 = 14;
parameter SAV_VBI f2 = 15;
parameter EAV VBI f2 = 16;

// In the start state, the module doesn't know where
// in the sequence of pixels, it is looking.

// Once we determine where to start, the FSM goes through a normal
// sequence of SAV process YCrCb EAV... repeat

// The data stream looks as follows

129

Speaker, Wu, Zhu 130

// SAV FF | SAV 00 | SAV 00 | SAV XY | CbO | YO | Crl | Y1 | Cb2 | Y2 | ... | EAV
sequence

// There are two things we need to do:

// 1. Find the two SAV blocks (stands for Start Active Video perhaps?)

// 2. Decode the subsequent data

reg [4:0] current state = 5'h00;

reg [9:0] y = 10'h000; // luminance

reg [9:0] cr = 10'h000; // chrominance

reg [9:0] cb = 10'h000; // more chrominance

assign state = current state;

always @ (posedge clk)

begin
if (reset)
begin
end
else
begin
// these states don't do much except allow us to know where we are in the
stream.
// whenever the synchronization code is seen, go back to the sync state
before
// transitioning to the new state
case (current state)
SYNC 1: current state <= (tv_in ycrcb == 10'h000) ? SYNC 2 : SYNC 1;
SYNC 2: current state <= (tv_in ycrcb == 10'h000) ? SYNC 3 : SYNC 1;
SYNC 3: current state <= (tv_in ycrcb == 10'h200) ? SAV f1 cb0
(tv_in ycrcb == 10'h274) ? EAV f1l
(tv_in ycrcb == 10'h2ac) ? SAV _VBI fl
(tv_in ycrcb == 10'h2d8) ? EAV VBI fI
(tv_in ycrcb == 10'h31c) ? SAV f2 cb0
(tv_in ycrcb == 10'h368) ? EAV f2
(tv_in ycrcb == 10'h3b0) ? SAV VBI f2 :
(tv_in ycrcb == 10'h3c4) ? EAV VBI f2 : SYNC 1;
SAV f1 cb0: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV f1 y0;
SAV _f1 y0: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV fl crl;
SAV_f1 crl: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV f1 yl;
SAV_f1 yl: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV fl cb0;
SAV _f2 cb0: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV f2 y0;
SAV _f2 y0: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV f2 crl;
SAV_f2 crl: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV f2 yl;
SAV f2 yl: current state <= (tv_in ycrcb == 10'h3ff) ? SYNC 1 : SAV f2 cb0;
// These states are here in the event that we want to cover these signals
// in the future. For now, they just send the state machine back to SYNC 1
EAV _f1: current state <= SYNC 1;
SAV _VBI fl: current state <= SYNC 1;
EAV_VBI fl: current state <= SYNC 1;
EAV _f2: current state <= SYNC 1;
SAV VBI f2: current state <= SYNC 1;
EAV_VBI f2: current state <= SYNC 1;
endcase
end

end // always @ (posedge clk)
// implement our decoding mechanism

wire y enable;
wire cr enable;
wire cb enable;

// if y is coming in, enable the register

// likewise for cr and cb

assign y enable = (current state == SAV f1 y0) ||
(current state == SAV f1 y1) ||

Speaker, Wu, Zhu

(current state == SAV f2 y0) ||
(current state == SAV f2 yl1);
assign cr enable = (current state == SAV fl crl) ||
(current state == SAV f2 crl);
assign cb _enable = (current state == SAV fl1 cb0) |
(current state == SAV_f2 cb0);

// £, v, and h only go high when active
assign {v,h} = (current state == SYNC 3) ? tv in ycrcb[7:6] : 2'b00;

// data is valid when we have all three values: y, cr, cb
assign data valid = y enable;
assign ycrcb = {y,cr,cb},;

reg £ =0;

always @ (posedge clk)

begin
y <= y enable ? tv_in ycrcb : y;
cr <= cr enable ? tv in ycrcb : cr;
cb <= cb_enable ? tv in ycrcb : cb;
f <= (current state == SYNC 3) ? tv in ycrcb[8] : f;
end
endmodule

LSS LSS LSS S S S S S S S SSSSSSSSS S
//

// 6.111 FPGA Labkit -- ADV7185 Video Decoder Configuration Init

//

// Created:

// Author: Nathan Ickes

//

LSS S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS S S S S S S S S S S S S S

SIS S S S S S SSS S
// Register 0

A N A N N N I N I VI IV a4

‘define INPUT SELECT 4'h0

// 0: CVBS on AIN1 (composite video in)

// 7: Y on AIN2, C on AIN5 (s-video in)

// (These are the only configurations supported by the 6.111 labkit hardware)
‘define INPUT MODE 4'hO

// 0: Autodetect: NTSC or PAL (BGHID), w/o pedestal

/7
/7

: PAL combination N w/pedestal
F: [Not valid]

// 1: Autodetect: NTSC or PAL (BGHID), w/pedestal
// 2: Autodetect: NTSC or PAL (N), w/o pedestal
// 3: Autodetect: NTSC or PAL (N), w/pedestal
// 4: NTSC w/o pedestal
// 5: NTSC w/pedestal
// 6: NTSC 4.43 w/o pedestal
// 7: NTSC 4.43 w/pedestal
// 8: PAL BGHID w/o pedestal
// 9: PAL N w/pedestal
// A: PAL M w/o pedestal
// B: PAL M w/pedestal
// C: PAL combination N
D
E_

‘define ADV7185 REGISTER 0 { INPUT MODE, 'INPUT SELECT}

SIS LSS S S S S S S S S S S S S S
// Register 1

VA A S N I

‘define VIDEO_QUALITY 2'h0
// 0: Broadcast quality
// 1: TV quality

131

Speaker, Wu, Zhu

// 2: VCR quality
// 3: Surveillance quality

‘define SQUARE PIXEL IN MODE 1'p0
// 0: Normal mode
// 1: Square pixel mode

‘define DIFFERENTIAL INPUT 1'bh0
// 0: Single-ended inputs
// 1: Differential inputs

‘define FOUR_TIMES SAMPLING 1'b0
// 0: Standard sampling rate
// 1: 4x sampling rate (NTSC only)

‘define BETACAM 1'b0
// 0: Standard video input
// 1: Betacam video input

‘define AUTOMATIC STARTUP ENABLE 1'b1
// 0: Change of input triggers reacquire
// 1: Change of input does not trigger reacquire

‘define ADV7185 REGISTER 1 { AUTOMATIC STARTUP ENABLE, 1'b0O, 'BETACAM,
"FOUR TIMES SAMPLING, 'DIFFERENTIAL INPUT, "“SQUARE PIXEL IN MODE, ‘VIDEO QUALITY}

SIS S S S S
// Register 2
SIS S S

‘define Y_PEAKING_FILTER 3'h4
// 0: Composite = 4.5dB, s-video = 9.25dB
// 1: Composite = 4.5dB, s-video = 9.25dB
// 2: Composite = 4.5dB, s-video = 5.75dB
// 3: Composite = 1.25dB, s-video = 3.3dB
// 4: Composite = 0.0dB, s-video = 0.0dB
// 5: Composite = -1.25dB, s-video = -3.0dB
// 6: Composite = -1.75dB, s-video = -8.0dB
// 7: Composite = -3.0dB, s-video = -8.0dB

‘define CORING 2'h0
// 0: No coring
// 1: Truncate if Y < black+8
// 2: Truncate if Y < black+16
// 3: Truncate if Y < black+32

‘define ADV7185 REGISTER 2 {3'b000, "CORING, 'Y PEAKING FILTER}

SIS S S S
// Register 3
SIS S

‘define INTERFACE SELECT 2'h0
// 0: Philips-compatible
// 1: Broktree API A-compatible
// 2: Broktree API B-compatible
// 3: [Not valid]
‘define OUTPUT FORMAT 4'ho0

// 0: 10-bit @ LLC, 4:2:2 CCIR656
// 1: 20-bit @ LLC, 4:2:2 CCIR656
// 2: 16-bit @ LLC, 4:2:2 CCIR656
// 3: 8-bit @ LLC, 4:2:2 CCIR656

// 4: 12-bit @ LLC, 4:1:1
// 5-F: [Not valid]
// (Note that the 6.111 labkit hardware provides only a 10-bit interface to
// the ADV7185.)
‘define TRISTATE OUTPUT DRIVERS 1'b0
// 0: Drivers tristated when ~OE is high
// 1: Drivers always tristated
‘define VBI_ENABLE 1'b0
// 0: Decode lines during vertical blanking interval
// 1: Decode only active video regions

‘define ADV7185 REGISTER 3 { VBI ENABLE, 'TRISTATE OUTPUT DRIVERS, 'OUTPUT FORMAT,
"INTERFACE SELECT}

VA A S N e

132

Speaker, Wu, Zhu

// Register 4
LIS S S

‘define OUTPUT DATA RANGE 1'h0
// 0: Output values restricted to CCIR-compliant range
// 1: Use full output range
‘define BT656 TYPE 1'b0
// 0: BT656-3-compatible
// 1: BT656-4-compatible

‘define ADV7185 REGISTER 4 { BT656 TYPE, 3'b000, 3'bl110, 'OUTPUT DATA RANGE}

SIS S S S S S S S SSSS S
// Register 5
SIS S S

‘define GENERAL PURPOSE OUTPUTS 4'b0000
‘define GPO 0 1 ENABLE 1'p0
// 0: General purpose outputs 0 and 1 tristated
// 1: General purpose outputs 0 and 1 enabled
‘define GPO 2 3 ENABLE 1'h0
// 0: General purpose outputs 2 and 3 tristated
// 1: General purpose outputs 2 and 3 enabled
‘define BLANK CHROMA IN VBI 1'b1
// 0: Chroma decoded and output during vertical blanking
// 1: Chroma blanked during vertical blanking
‘define HLOCK ENABLE 1'bh0
// 0: GPO 0 is a general purpose output
// 1: GPO 0 shows HLOCK status

‘define ADV7185 REGISTER 5 { HLOCK ENABLE, 'BLANK CHROMA IN VBI, ‘GPO 2 3 ENABLE,
‘GPO 0 1 ENABLE, ‘GENERAL PURPOSE OUTPUTS}

SIS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S
// Register 7
SIS LSS LSS S S S S S S S S S S S S S S

‘define FIFO FLAG_MARGIN 5'h10
// Sets the locations where FIFO almost-full and almost-empty flags are set
‘define FIFO RESET 1'b0

// 0: Normal operation

// 1: Reset FIFO. This bit is automatically cleared
‘define AUTOMATIC FIFO RESET 1'bh0

// 0: No automatic reset

// 1: FIFO is autmatically reset at the end of each video field
‘define FIFO FLAG SELF TIME 1'bl

// 0: FIFO flags are synchronized to CLKIN

// 1: FIFO flags are synchronized to internal 27MHz clock

‘define ADV7185 REGISTER 7 {'FIFO FLAG SELF TIME, 'AUTOMATIC FIFO RESET, 'FIFO RESET,
‘FIFO FLAG MARGIN}

//////{//
ﬁﬁ/iigji;ii/i//
‘define INPUT CONTRAST ADJUST 8'h80

‘define ADV7185 REGISTER 8 { INPUT CONTRAST ADJUST}
e
;;/iigjiiii/i//
‘define INPUT SATURATION ADJUST 8'h8C

‘define ADV7185 REGISTER 9 { INPUT SATURATION ADJUST}

LIS S S
// Register A

133

Speaker, Wu, Zhu

A A A A A S e
‘define INPUT BRIGHTNESS ADJUST 8'h00
‘define ADV7185 REGISTER A { INPUT BRIGHTNESS ADJUST}

SIS S
// Register B
SIS S S S S SSSSSSSSSSSSSSSSSSS S

‘define INPUT HUE ADJUST 8'h00
‘define ADV7185 REGISTER B { INPUT HUE ADJUST}

LSS S S SSS S
// Register C
LSS LSS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S

‘define DEFAULT VALUE ENABLE 1'b0
// 0: Use programmed Y, Cr, and Cb values
// 1: Use default values

‘define DEFAULT VALUE AUTOMATIC ENABLE 1'b0
// 0: Use programmed Y, Cr, and Cb values
// 1: Use default values if lock is lost

‘define DEFAULT Y VALUE 6'h0oC
// Default Y value

‘define ADV7185 REGISTER C { DEFAULT Y VALUE, 'DEFAULT VALUE AUTOMATIC ENABLE,
‘DEFAULT VALUE ENABLE}

SIS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSS S
// Register D
LSS LSS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSS S

‘define DEFAULT CR VALUE 4'h8
// Most-significant four bits of default Cr value
‘define DEFAULT CB VALUE 4'h8

// Most-significant four bits of default Cb value
‘define ADV7185 REGISTER D { DEFAULT CB VALUE, 'DEFAULT CR VALUE}

LSS LSS S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSS S
// Register E
VA A N A A A A A N A N A N A A A A A A A A A A A A A A A A A

‘define TEMPORAL DECIMATION ENABLE 1'bh0
// 0: Disable
// 1: Enable

‘define TEMPORAL DECIMATION CONTROL 2'h0
// 0: Supress frames, start with even field
// 1: Supress frames, start with odd field
// 2: Supress even fields only
// 3: Supress odd fields only

‘define TEMPORAL DECIMATION RATE 4'h0
// 0-F: Number of fields/frames to skip

‘define ADV7185 REGISTER E {1'b0, 'TEMPORAL DECIMATION RATE,
' TEMPORAL DECIMATION CONTROL, ‘TEMPORAL DECIMATION ENABLE}

SIS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S
// Register F
SIS LSS LSS S S S S S S S S S S S S S S S

‘define POWER SAVE_CONTROL 2'ho
// 0: Full operation
// 1: CVBS only
// 2: Digital only
// 3: Power save mode

‘define POWER_DOWN_SOURCE_PRIORITY 1'b0
// 0: Power-down pin has priority
// 1: Power-down control bit has priority

134

‘define
// 0:
// 1z

‘define
// 0:
// 1:

‘define
// 0:
// 1:

‘define
// 0:
// 1:

‘define
// 0:
// 1:

‘define ADV7185 REGISTER F { RESET CHIP,
' POWER DOWN LLC GENERATOR,

POWER _DOWN REFERENCE

Reference is functional

Reference is powered

down

POWER DOWN LLC GENERATOR

LLC generator is fun
LLC generator 1s pow
POWER DOWN CHIP

Chip is functional
Input pads disabled
TIMING REACQUIRE
Normal operation

Reacquire video signal (bit will automatically reset)

RESET CHIP
Normal operation

ctional
ered down

and clocks stopped

1'b0

1'b0

1'b0

1'b0

1'b0

Speaker, Wu, Zhu

Reset digital core and I2C interface (bit will automatically reset)

' POWER_SAVE_CONTROL}

"TIMING REACQUIRE,
" POWER _DOWN REFERENCE,

‘' POWER_DOWN CHIP,
' POWER _DOWN SOURCE PRIORITY,

VA S N S N N I a

// Regis

ter 33

S N N N N I N I N I VI I N a4

‘define
// 0:
// 1:

PEAK WHITE UPDATE
Update gain once per
Update gain once per

line
field

‘define AVERAGE BIRIGHTNESS LINES

// 0:
// 1:
‘define
//
//
//
//
//
//

N WNh RO

// 6-7:

‘define
// 0:
// 1:

‘define

Use lines 33 to 310
Use lines 33 to 270
MAXIMUM IRE

PAL: 133, NTSC: 122
PAL: 125, NTSC: 115
PAL: 120, NTSC: 110
PAL: 115, NTSC: 105
PAL: 110, NTSC: 100
PAL: 105, NTSC: 100
PAL: 100, NTSC: 10
COLOR_KILL

Disable color kill
Enable color kill

ADV7185 REGISTER 33

"AVERAGE BIRIGHTNESS LINES,

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

ADV7185 REGISTER 10
ADV7185 REGISTER 11
ADV7185 REGISTER 12
ADV7185 REGISTER 13
ADV7185 REGISTER 14
ADV7185 REGISTER 15
ADV7185 REGISTER 16
ADV7185 REGISTER 17
ADV7185 REGISTER 18
ADV7185 REGISTER 19
ADV7185 REGISTER 1A
ADV7185 REGISTER 1B
ADV7185 REGISTER 1C
ADV7185 REGISTER 1D
ADV7185 REGISTER 1E
ADV7185 REGISTER 1F
ADV7185 REGISTER 20
ADV7185 REGISTER 21
ADV7185 REGISTER 22
ADV7185 REGISTER 23
ADV7185 REGISTER 24
ADV7185 REGISTER 25
ADV7185 REGISTER 26
ADV7185 REGISTER 27
ADV7185 REGISTER 28
ADV7185 REGISTER 29

0

{1'b1, “COLOR KILL, 1'bl,

"PEAK WHITE UPDATE}

8'h00
8'h00
8'h00
8'h45
8'h1l8
8'h60
8'h00
8'h01
8'h00
8'h10
8'h10
8'hFO0
8'hl6
8'h01
8'h00
8'h3D
8'hDO
8'h09
8'h8C
8'hE2
8'hlF
8'h07
8'hC2
8'h58
8'h3C
8'h00

1'b1

1'bl

3'h0

1'b1

"MAXIMUM IRE,

135

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

‘define
‘define

‘define
‘define

module adv7185init (reset, clock 27mhz, source,

ADV7185 REGISTER 2A
ADV7185 REGISTER 2B
ADV7185 REGISTER 2C
ADV7185 REGISTER 2D
ADV7185 REGISTER 2E
ADV7185 REGISTER 2F
ADV7185 REGISTER 30
ADV7185 REGISTER 31
ADV7185 REGISTER 32
ADV7185 REGISTER 34
ADV7185 REGISTER 35
ADV7185 REGISTER 36
ADV7185 REGISTER 37
ADV7185 REGISTER 38
ADV7185 REGISTER 39
ADV7185 REGISTER 3A
ADV7185 REGISTER 3B

ADV7185 REGISTER 44
ADV7185 REGISTER 45

ADV7185 REGISTER F1
ADV7185 REGISTER F2

8'h00
8'hA0
8'hCE
8'hF0
8'h00
8'hF0
8'h00
8'h70
8'h00
8'hOF
8'h01
8'h00
8'h00
8'h00
8'h00
8'h00
8'h00

8'h41
8'hBB

8 'hEF
8'h80

tv_in i2c clock, tv_in i2c data);

input reset;

input clock 27mhz;
output tv_in reset b; // Reset signal to ADV7185
output tv_in i2c clock; // I2C clock output to ADV7185
output tv_in i2c data; // I2C data line to ADV7185
input source; // 0: composite, 1:

initial begin
Sdisplay ("ADV7185 Initialization values:");

Sdisplay (" Register 0:
Sdisplay (" Register 1:
Sdisplay (" Register 2
Sdisplay (" Register 3
Sdisplay (" Register 4
Sdisplay (" Register 5
Sdisplay (" Register 7
Sdisplay (" Register 8
Sdisplay (" Register 9:
Sdisplay (" Register A:
Sdisplay (" Register B
Sdisplay (" Register C
Sdisplay (" Register D
Sdisplay (" Register E
Sdisplay (" Register F
Sdisplay (" Register 3
end

/7

0xgx",
0x%x",
0x8Xx",
0x%x",
0xs%xX",
0x%xX",
0x8Xx",
0x%x",
0xg%xX",
0x%x",
0x8Xx",
0x%x",
0xg%X",
0x%x",
0x8Xx",

3: 0xs%x",

s-video

‘ADV7185 REGISTER 0);
‘ADV7185 REGISTER 1);
‘ADV7185 REGISTER 2);
‘ADV7185 REGISTER 3);
‘ADV7185 REGISTER 4);
‘ADV7185 REGISTER 5);
‘ADV7185 REGISTER 7);
‘ADV7185 REGISTER 8);
‘ADV7185 REGISTER 9);
‘ADV7185 REGISTER A);
‘ADV7185 REGISTER B) ;
‘ADV7185 REGISTER C);
‘ADV7185 REGISTER D) ;
‘ADV7185 REGISTER E);
‘ADV7185 REGISTER F);
‘ADV7185 REGISTER 33);

tv_in reset b,

Speaker, Wu, Zhu 136

// Generate a IMHz for the I2C driver (resulting I2C clock rate is 250kHz)

/7

reg [7:0] clk div count, reset count;
reg clock slow;

wire

reset slow;

initial
begin
clk _div_count <= 8'h00;

// synthesis attribute init of clk div_count is

clock _slow <= 1'b0;

// synthesis attribute init of clock slow is

end

"o,

"o,

always @ (posedge clock 27mhz)
if (clk div count == 26)
begin
clock slow <= ~clock slow;
clk div _count <= 0;
end
else
clk _div_count <= clk div_count+l;

always @ (posedge clock 27mhz)
if (reset)
reset_count <= 100;
else
reset count <= (reset count==0) ? 0 reset count-1;

assign reset slow = reset count != 0;

//
// I2C driver
//

reg load;
reg [7:0] data;
wire ack, idle;

i2c i2c(.reset (reset slow), .clockd4x(clock slow), .data(data),
.ack(ack), .idle(idle), .scl(tv_in i2c clock),
.sda(tv_in i2c data));

//
// State machine
//

reg [7:0] state;
reg tv_in reset b;
reg old source;

always @ (posedge clock slow)
if (reset slow)

begin
state <= 0;
load <= 0;

tv_in reset b <=
old source <= 0;
end
else
case (state)
8'h00:
begin
// Assert reset
load <= 1'b0;
tv_in reset b <= 1'b0;
if (lack)
state <= state+l;
end
8'h01:
state <= state+l;
8'h02:
begin
// Release reset
tv_in reset b <= 1'bl;
state <= state+l;
end
8'h03:
begin
// Send
data <=
load <=
if (ack)
state <= state+l;
end

ADV7185 address
8'h8A;
1'bl;

Speaker, Wu, Zhu 137

.load(load),

Speaker, Wu,

8'h04:
begin
// Send subaddress of first register
data <= 8'h00;
if (ack)
state <= state+l;
end
8'h05:
begin
// Write to register 0
data <= "ADV7185 REGISTER 0 | {5'h00, {3{source}}};
if (ack)
state <= state+l;
end
8'h06:
begin
// Write to register 1
data <= ‘ADV7185 REGISTER 1;
if (ack)
state <= state+l;
end
8'h07:
begin
// Write to register 2
data <= ‘ADV7185 REGISTER 2;
if (ack)
state <= state+l;
end
8'h08:
begin
// Write to register 3
data <= ‘ADV7185 REGISTER 3;
if (ack)
state <= state+l;
end
8'h09:
begin
// Write to register 4
data <= ‘ADV7185 REGISTER 4;
1if (ack)
state <= state+l;
end
8'hOA:
begin
// Write to register 5
data <= ‘ADV7185 REGISTER 5;
if (ack)
state <= state+l;
end
8'h0OB:
begin
// Write to register 6
data <= 8'h00; // Reserved register, write all zeros
if (ack)
state <= state+l;
end
8'hoC:
begin
// Write to register 7
data <= ‘ADV7185 REGISTER 7;
if (ack)
state <= state+l;
end
8'h0D:
begin
// Write to register 8
data <= ‘ADV7185 REGISTER 8;
if (ack)
state <= state+l;
end
8'hOE:

Zhu 138

begin
// Write to register 9

data <= ‘ADV7185 REGISTER 9;

if (ack)
state <= state+l1;
end
8'hOF: begin
// Write to register A
data <= ‘ADV7185 REGISTER A;
if (ack)
state <= state+l;
end
8'h10:
begin
// Write to register B

data <= ‘ADV7185 REGISTER B;

if (ack)
state <= state+l1;
end
8'hll:
begin
// Write to register C

data <= 'ADV7185 REGISTER C;

if (ack)
state <= state+l;
end
8'hl2:
begin
// Write to register D

data <= ‘ADV7185 REGISTER D;

if (ack)
state <= state+l;
end
8'hl3:
begin
// Write to register E

data <= ‘ADV7185 REGISTER E;

if (ack)
state <= state+l1;
end
8'hl4:
begin
// Write to register F

data <= 'ADV7185 REGISTER F;

if (ack)
state <= state+1;
end
8'hl5:
begin

// Wait for I2C transmitter to finish

load <= 1'bO0;
if (idle)
state <= state+l;
end
8'hl6:
begin
// Write address
data <= 8'h8A;
load <= 1'bl;
if (ack)
state <= state+l;
end
8'h1l7:
begin
data <= 8'h33;
if (ack)
state <= state+l;
end
8'h18:
begin

data <= ‘ADV7185 REGISTER 33;

Speaker, Wu, Zhu 139

if (ack)
state <= state+l;
end
8'hl19:
begin
load <= 1'b0;
if (idle)

state <= state+l;

end

8'hlA: begin
data <= 8'h8A;
load <= 1'bl;
if (ack)
state <= state+l;

if (old source != source) state <= state+l;

end
8'hlB:
begin
data <= 8'h33;
if (ack)
state <= state+l;
end
8'hlcC:
begin
load <= 1'b0;
if (idle)
state <= state+l;
end
8'hlD:
begin
load <= 1'bl;
data <= 8'h8B;
if (ack)
state <= state+l;
end
8'hlE:
begin
data <= 8'hFF;
if (ack)
state <= state+l;
end
8'hlF:
begin
load <= 1'b0;
if (idle)
state <= state+l;
end
8'h20:
begin
// Idle
old source <= source;
end

8'h21: begin

// Send ADV7185 address

data <= 8'h8A;
load <= 1'bl;

if (ack) state <= state+1;

end
8'h22: begin

// Send subaddress of register 0

data <= 8'h00;,

if (ack) state <= state+1;

end
8'h23: begin

// Write to register 0
data <= ‘ADV7185 REGISTER 0
if (ack) state <= state+l;

end
8'h24: begin

// Wait for I2C transmitter

{3{source}}};

Speaker, Wu, Zhu 140

Speaker, Wu, Zhu 141

load <= 1'b0;
1f (idle) state <= 8'h20;
end
endcase

endmodule
// 1i2c module for use with the ADV7185
module i2c (reset, clock4x, data, load, idle, ack, scl, sda);

input reset;
input clockdx;
input [7:0] data;
input load;
output ack;
output idle;
output scl;
output sda;

reg [7:0] ldata;
reg ack, idle;
reg scl;

reg sdai;

reg [7:0] state;
assign sda = sdai ? 1'bZ : 1'b0;

always @ (posedge clock4x)
1if (reset)
begin
state <= 0;
ack <= 0;
end
else
case (state)
8'h00: // idle
begin
scl <= 1'bl;
sdai <= 1'bl;,;
ack <= 1'b0;
idle <= 1'bl;
1if (load)
begin
ldata <= datas
ack <= 1'bl;
state <= state+l;
end
end
8'h01: // Start
begin
ack <= 1'b0;
idle <= 1'b0;
sdai <= 1'b0;
state <= state+l;
end
8'h02:
begin
scl <= 1'b0;
state <= state+l;
end
8'h03: // Send bit 7
begin
ack <= 1'b0;
sdai <= ldatal[7];
state <= state+l1;
end
8'h04:
begin
scl <= 1'bl;

state <= state+l;
end
8'h05:
begin
state <= state+l;
end
8'h06:
begin
scl <= 1'b0;
state <= state+l;
end
8'h07:
begin
sdali <= ldatal[6];
state <= state+l;
end
8'h08:
begin
scl <= 1'bl;
state <= state+l;
end
8'h09:
begin
state <= state+l;
end
8'hOA:
begin
scl <= 1'b0;
state <= state+l;
end
8'hOB:
begin
sdai <= ldatal[5];
state <= state+l;
end
8'hoC:
begin
scl <= 1'bl;
state <= state+l;
end
8'h0D:
begin
state <= state+l;
end
8'hOE:
begin
scl <= 1'b0;
state <= state+l;
end
8'hOF:
begin
sdai <= ldata[4];
state <= state+l;
end
8'h10:
begin
scl <= 1'bl,;
state <= state+l;
end
8'hll:
begin
state <= state+l;
end
8'hl2:
begin
scl <= 1'b0;
state <= state+l1;
end
8'hl3:
begin
sdai <= ldatal[3];

Speaker, Wu, Zhu 142

state <= state+l;
end
8'hl4:
begin
scl <= 1'bl;
state <= state+l;
end
8'hl5:
begin
state <= state+l;
end
8'hlé6:
begin
scl <= 1'b0;
state <= state+l;
end
8'hl7:
begin
sdai <= ldatal[Z2];
state <= state+l;
end
8'h18:
begin
scl <= 1'bl;
state <= state+l;
end
8'hl19:
begin
state <= state+l;
end
8'hlA:
begin
scl <= 1'b0;
state <= state+l;
end
8'hlB:
begin
sdai <= ldatal[l];
state <= state+l;
end
8'hlcC:
begin
scl <= 1'bl;
state <= state+l;
end
8'hlD:
begin
state <= state+l;
end
8'hlE:
begin
scl <= 1'b0;
state <= state+l;
end
8'hlF:
begin
sdai <= ldata[O0];
state <= state+l;
end
8'h20:
begin
scl <= 1'bl;
state <= state+l;
end
8'h21:
begin
state <= state+l1;
end
8'h22:
begin
scl <= 1'b0;

Speaker, Wu, Zhu 143

Speaker, Wu, Zhu 144

state <= state+l;
end
8'h23: // Acknowledge bit
begin
state <= state+l;
end
8'h24:
begin
scl <= 1'bl;
state <= state+l;

end
8'h25:
begin
state <= state+l;
end
8'h26:
begin
scl <= 1'b0;
if (load)
begin
ldata <= data;
ack <= 1'bl,;
state <= 3;
end
else
state <= state+l;
end
8'h27:
begin

sdai <= 1'b0;
state <= state+l;
end
8'h28:
begin
scl <= 1'bl;
state <= state+l;
end
8'h29:
begin
sdai <= 1'bl;
state <= 0;
end
endcase

endmodule

Speaker, Wu, Zhu 145

KKK A A Ak ke ks sk ok ok K K K K Kk ok ks sk ok ok K K K K K S ok ko ks k ok ok Sk K K K K ok o ke k k ok K K K Kk kK

This file is owned and controlled by Xilinx and must be used
solely for design, simulation, implementation and creation of
design files limited to Xilinx devices or technologies. Use
with non-Xilinx devices or technologies is expressly prohibited
and immediately terminates your license.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
SOLELY FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR

XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION
AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION

OR STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS
IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,

AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Xilinx products are not intended for use in life support
appliances, devices, or systems. Use in such applications are
expressly prohibited.

EE I S e T T T T T T T T T e

(c) Copyright 1995-2004 Xilinx, Inc.

* All rights reserved.
***/

B I T T T T T T T T T T S S S S S S Y

// The synopsys directives "translate off/translate on" specified below are
// supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity synthesis
// tools. Ensure they are correct for your synthesis tool(s).

// You must compile the wrapper file videoram.v when simulating

// the core, videoram. When compiling the wrapper file, be sure to

// reference the XilinxCoreLib Verilog simulation library. For detailed
// instructions, please refer to the "CORE Generator Help".

‘timescale 1ns/lps

module videoram/(
addra,
addrb,
clka,
clkb,
dinb,
douta,
douth,
web) ;

input [15 : 0] addra;
input [15 : 0] addrb;
input clka;

input clkb;

input [7 : 0] dinb;
output [7 : 0] douta;
output [7 : 0] doutbh;
input web;

// synopsys translate off

BLKMEMDP V6 1 #/(
16, // c¢_addra width
16, // c_addrb_width
"o, // ¢ default data
49152, // c depth a
49152, // c_depth b

o, // c_enable rlocs

1, // ¢ has default data
0, // ¢ has dina

1, // ¢ _has dinb

"mif file 16 1",

1, //
1, //
0, //
0, //
0, //
0, //
0, //
0, //
0, //
0, //
0, //
0, //
0, //
0, //
1, //
18, //
0, //
0, //
0, //
0, //
"0", //
"0", //
8, //
8, //
0, //
0, //
"0", //
1, //
1, //
1, //
1, //
"hierarchyl",
0, //
"16kx1",
1, //
1, //
"1024", //
0, //
1, //
1, //
1) //

inst (

c_has douta

c_has doutb

c has ena

c _has enb

c has limit data pitch
c_has nda

c _has ndb

c _has rdya

¢ _has rdyb

c _has rfda

c has rfdb

c has sinita

c has sinitb

c _has wea

c _has web

c limit data pitch

Cc pipe stages a
c pipe stages b
c reg inputsa
c reg inputsb
c sinita value
c sinitb value
c width a
c width b
c write modea
c write modeb
c ybottom addr
c yclka is rising
c yclkb is rising
c yena 1is high
c yenb 1is high
// ¢ _yhierarchy
c_ymake bmm
// ¢ _yprimitive type
c ysinita is high
c ysinitb is high
c ytop addr
c yuse single primitive
c ywea 1s high
c yweb is high
c yydisable warnings

.ADDRA (addra) ,
.ADDRB (addrb) ,
.CLKA (clka),
.CLKB(clkb),
.DINB(dinb),
.DOUTA (douta) ,
.DOUTB (doutb) ,

.WEB (web) ,

.DINA(),
.ENA(),
.ENB(),
.NDA(),
.NDB(),
.RFDA(),
.RFDB(),
.RDYA(),
.RDYB(),

.SINITA(),
.SINITB(),

-WEA());

synopsys translate on

FPGA Express black box declaration
synopsys attribute fpga dont touch "true"
synthesis attribute fpga dont touch of videoram 1is

// c_mem init file

"true"

Speaker, Wu, Zhu 146

Speaker, Wu, Zhu 147

// XST black box declaration
// box type "black box"
// synthesis attribute box type of videoram is "black box"

endmodule

Speaker, Wu, Zhu

LSS S SSSSSSSSSSSSSSSSSSSSS S S S S S S S S S S S S S
// generate display pixels from reading the ZBT ram

// note that the ZBT ram has 2 cycles of read (and write) latency

//

// We take care of that by latching the data at an appropriate time.

//

// Note that the ZBT stores 36 bits per word; we use only 32 bits here,

// decoded into four bytes of pixel data.

module vram display(reset,clk,hcount,vcount,vr pixel,
vram addr,vram read data);

input reset, clk;

input [10:0] hcount;

input [9:0] vcount;
output [7:0] vr pixel;

output [18:0] vram addr;
input [35:0] vram read data;

wire [18:0] vram _addr = {1'b0, vcount, hcount[9:2]};

wire [1:0] hc4 = hcount[1:0];
reg [7:0] vr pixel;

reg [35:0] vr data latched;
reg [35:0] last _vr data;

always @ (posedge clk)
last vr data <= (hc4==2'd3) ? vr data latched : last vr data;

always @ (posedge clk)
vr data latched <= (hc4==2'dl) ? vram read data : vr data latched;

always @(*) // each 36-bit word from RAM is decoded to 4 bytes
case (hc4)
2'd3: vr pixel = last vr data[7:0];
2'd2: vr pixel = last vr data[7+8:0+8];
2'dl: vr pixel = last vr data[7+16:0+16];
2'd0: vr pixel = last vr data[7+24:0+24];
endcase

endmodule // vram display

148

Speaker, Wu, Zhu 149

LSS LSS S S S S S
// xvga: Generate XVGA display signals (1024 x 768 @ 60Hz)
LSS LSS S S S S S S SSSSSSSSSSSS
module xvga (vclock,hcount,vcount,hsync,vsync,blank) ;

input vclock;

output [10:0] hcount;
output [9:0] vcount;

output vsync;
output hsync;
output blank;

reg hsync,vsync,hblank,vblank,blank;
reg [10:0] hcount; // pixel number on current line
reg [9:0] vcount; // line number

// horizontal: 1344 pixels total
// display 1024 pixels per line

wire hsyncon,hsyncoff,hreset,hblankon;
assign hblankon = (hcount == 1023);
assign hsyncon = (hcount == 1047);
assign hsyncoff = (hcount == 1183);
assign hreset = (hcount == 1343);

// vertical: 806 lines total
// display 768 lines

wire vsyncon,vsyncoff,vreset,vblankon;
assign vblankon = hreset & (vcount == 767);
assign vsyncon = hreset & (vcount == 776);
assign vsyncoff = hreset & (vcount == 782);
assign vreset = hreset & (vcount == 805);

// sync and blanking
wire next hblank,next vblank;
assign next hblank = hreset ? 0 : hblankon ? 1 : hblank;
assign next vblank = vreset ? 0 : vblankon ? 1 : vblank;
always @ (posedge vclock) begin

hcount <= hreset ? 0 : hcount + 1;

hblank <= next hblank;

hsync <= hsyncon ? 0 : hsyncoff ? 1 : hsync; // active low

vcount <= hreset ? (vreset ? 0 : vcount + 1) : vcount;
vblank <= next vblank;
vsync <= vsyncon ? 0 : vsyncoff ? 1 : vsync; // active low

blank <= next vblank | (next hblank & ~hreset);
end
endmodule

Speaker, Wu, Zhu

//

// File: zbt 6111.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

//

// Simple ZBT driver for the MIT 6.111 labkit, which does not hide the

// pipeline delays of the ZBT from the user. The ZBT memories have

// two cycle latencies on read and write, and also need extra-long data hold
// times around the clock positive edge to work reliably.

/7

LSS LSS S S S S SSSSSSSSSSSSSSSSSSS S
// Ike's simple ZBT RAM driver for the MIT 6.111 labkit

//

// Data for writes can be presented and clocked in immediately; the actual

// writing to RAM will happen two cycles later.

//

// Read requests are processed immediately, but the read data is not available
// until two cycles after the intial request.

//

// A clock enable signal is provided; it enables the RAM clock when high.

module zbt 6111(clk, cen, we, addr, write data, read data,
ram clk, ram we b, ram address, ram data, ram cen b);

input clk; // system clock

input cen; // clock enable for gating ZBT cycles
input we; // write enable (active HIGH)

input [18:0] addr; // memory address

input [35:0] write data; // data to write
output [35:0] read data; // data read from memory

output ram clk; // physical line to ram clock

output ram we b; // physical line to ram we b

output [18:0] ram address; // physical line to ram address
inout [35:0] ram data; // physical line to ram data

output ram cen b; // physical line to ram clock enable

// clock enable (should be synchronous and one cycle high at a time)
wire ram cen b = ~cen;

// create delayed ram we signal: note the delay is by two cycles!
// ie we present the data to be written two cycles after we is raised
// this means the bus is tri-stated two cycles after we is raised.

reg [1:0] we delay;

always @ (posedge clk)
we delay <= cen ? {we delay[0],we} : we delay;

// create two-stage pipeline for write data

reg [35:0] write data oldl;
reg [35:0] write data old2;
always @ (posedge clk)
if (cen)
{write data old2, write data oldl} <= {(write data oldl, write data};

// wire to ZBT RAM signals

assign ram we b = ~we;

assign ram clk = ~clk; // RAM is not happy with our data hold
// times if its clk edges equal FPGA's
// so we clock it on the falling edges
// and thus let data stabilize longer

assign ram_address = addr;

assign ram data = we delay[1] ? write data old2 : {36{1'bZ}};

assign read data = ram data;

endmodule // zbt 6111

150

Speaker, Wu, Zhu 151

A A A A A N N N I e

// parameterized delay line
module delayN(clk,in,out);
input clk;
input in;
output out;

parameter NDELAY = 3;

reg [NDELAY-1:0] shiftreg;
wire out = shiftreg[NDELAY-1];

always @ (posedge clk)
shiftreg <= {shiftreg[NDELAY-2:0],in};

endmodule // delayN

Speaker, Wu, Zhu

//

// File: ntsc2zbt.v

// Date: 27-Nov-05

// Author: I. Chuang <ichuang@mit.edu>

//

// Example for MIT 6.111 labkit showing how to prepare NTSC data
// (from Javier's decoder) to be loaded into the ZBT RAM for video
// display.

//

// The ZBT memory is 36 bits wide; we only use 32 bits of this, to
// store 4 bytes of black-and-white intensity data from the NTSC
// video input.

LSS S S S S S SSSSSSSSSSSSSSSSSS S
// Prepare data and address values to fill ZBT memory with NTSC data

module ntsc to zbt(clk, vclk, fvh, dv, din, ntsc addr, ntsc data, ntsc we, sw);

input clk; // system clock

input velk; // video clock from camera
input [2:0] fvh;

input dv;

input [7:0] din;

output [18:0] ntsc _addr;
output [35:0] ntsc data;

output ntsc_we; // write enable for NTSC data

input sw; // switch which determines mode (for debugging)
parameter COL START = 10'd30;

parameter ROW_START = 10'd30;

// here put the luminance data from the ntsc decoder into the ram
// this is for 1024 x 768 XGA display

reg [9:0] col = 0;

reg [9:0] row = 0;

reg [7:0] vdata = 0;

reg vwe;

reg old dv;

reg old frame; // frames are even / odd interlaced
reg even odd; // decode interlaced frame to this wire
wire frame = fvh[2];

wire frame edge = frame & ~old frame;

always @ (posedge vclk) //LLC1 is reference
begin
old dv <= dv;
vwe <= dv && !fvh([2] & ~old dv; // if data valid, write it
old frame <= frame;
even odd = frame edge ? ~even odd : even odd;

if (!fvh[2])
begin
col <= fvh[0] ? COL START
(!'fvh[2] && !fvh[1] && dv && (col < 1024)) ? col + 1 : col;
row <= fvh[1] ? ROW START
(!fvh[2] && fvh[0] && (row < 768)) ? row + 1 : row;
vdata <= (dv && !fvh[2]) ? din : vdata;
end
end

// synchronize with system clock

reg [9:0] x[1:0],y[1:0];
reg [7:0] data[1:0];
reg wel[l:0];

reg eo[l1:0];

always @ (posedge clk)
begin

152

Speaker, Wu, Zhu 153

{x[1],x[0]} <= {x[0],col};

{y[1],y[0]} <= {y[0],row};

{data[l],data[0]} <= {data[0],vdata};

{wel[l],wel[0]} <= {wel[0],vwe};

{eo[1],eo0[0]} <= {eo[0],even odd};
end

// edge detection on write enable signal

reg old we;
wire we edge = we[l] & ~old we;
always @ (posedge clk) old we <= we[l];

// shift each set of four bytes into a large register for the ZBT

reg [31:0] mydata;,
always @ (posedge clk)
if (we edge)
mydata <= { mydata[23:0], datall] };

// compute address to store data in
wire [18:0] myaddr = {1'b0, y[1][8:0], eo[l], x[1][9:2]};

// alternate (256x192) image data and address
wire [31:0] mydataZ = {data[l],data[l],data[l],datal[l]};
wire [18:0] myaddr2 = {1'b0, y[1][8:0], eo[l], x[1][7:0]};

// update the output address and data only when four bytes ready

reg [18:0] ntsc _addr;
reg [35:0] ntsc data;
wire ntsc we = sw ? we edge : (we edge & (x[1][1:0]==2'b00))

always @ (posedge clk)
if (ntsc we)
begin
ntsc_addr <= sw ? myaddr2 : myaddr; // normal and expanded modes
ntsc data <= sw ? {4'b0,mydata2} : {4'b0,mydata};
end

endmodule // ntsc to zbt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

