
Perfect Pitch Sheet Music Maker 
6.111 Final Project Proposal 

Adam McCaughan (amcc@mit.edu) and John O’Brien (jweob@mit.edu) 
 

 
A description of the project in words, stating what your system is 
     going to do and how you plan to implement it. 
   * A block diagram. 
   * A set of specifications that define in detail what your system 
     does (in terms of inputs and outputs) and what tests will be used 
     to prove that it functions properly. 
   * A statement of how the project work is to be divided among the 
     partners. The block diagram should be referenced. 
 
The project should be partitioned into separately testable subsystems, each subsystem 
is to be the responsibility of a single partner. 
 
The proposal should be typewritten. Typically it should be two to five pages in length, 
single-spaced, plus the block diagram and any figures you may need. 
 
The Proposal Conference: 
 
Each project proposal must also be discussed with your TA so that everyone 
understands what it is you are attempting and whether your basic design approach is 
sound. Each project group should sign up for a 30 minute meeting -- your TA will be 
sending you some email to set up a time.  Be sure to bring extra copies of your 
Proposal with you to the presentation so that the mentor can follow your talk without 
your having to draw your block diagram on the board. 
 

mailto:amcc@mit.edu
mailto:jweob@mit.edu


Abstract 
This project will allow music to be transcribed automatically. It will consist of a 
microphone, input switches and a video display. The device will analyze music played 
into the microphone and update the notes that have been played in real time on the 
display. The display will show the notes in standard sheet music format. The switches 
will be used to input settings such as the key or timing of the music. 
Initially the device will be made to deal with a sequence of individual notes from an 
instrument that will give a pure tone (such as a synthesizer).  
 
Other optional features that could then be added include: 
§ Ability to recognize richer notes – for example wind instruments. 
§ Ability to recognize chords. 
§ Synthesized playback of recorded scores 
§ The option to input notes directly from a keyboard or midi cable 
§ A graphical mouse driven interface to replace the input switches 
§ The option to write a midi file containing the score to a flash memory card. 

 

Block Diagram 

 

Specification 

System Specification and Evaluation 
The system will analyze music played into the microphone and display the equivalent 
musical score on a monitor. The music must consist of single notes only and the tones 
must be pure and free from noise. The score for the music must be known beforehand 
so that it can be compared with the device’s output. The beats per minute value must 
be known. To fulfill these criteria a recording of music synthesized from a software 
program such as Sibellius will be used to demonstrate the system’s functionality. The 
system will be judged to function correctly it can accurately represent the score of the 
recording on the monitor. 



Digital Fourier Transform 
The digital fourier transform receives PCM frames from the ac97 and fourier 
transforms them in order to output the frame in the frequency domain. 

Tone Converter 
The tone converter module’s primary function is to take a frame of Fourier-
transformed data, analyze it, and determine what (if any) tone it corresponds to.  In 
the initial stages of testing, this input data coming from the digital fourier transform 
will be a pure, single-frequency tone.  In this case, the tone converter will simply find 
the frequency of the maximum amplitude and then proceed to determine whether or 
not the intensity of the sound is great enough to justify labeling it as a note.  If it is in 
fact loud enough, char_freq will change from its value of zero to the characteristic 
frequency.  Once able to identify the characteristic frequency of a pure tone reliably, 
the tone converter module will be outfitted with a host of logic to be able to determine 
the characteristic frequencies of complex instruments (which have many harmonics), 
such as the piano or saxophone. 

Tone LUT 
The tone lookup table has a very simple purpose.  It receives the characteristic 
frequency from the tone converter and outputs the corresponding note, A-G#, and the 
corresponding octave the note is being played in.  It does this by rounding imperfect 
frequencies to the nearest relevant frequency, then inputting that matched frequency 
into a ROM which matches the frequencies for each note in each octave.  

Score Converter 
Score converter’s function is to denote the time at which a note and octave is first 
received from the tone LUT, and then keep track of how long the note lasts for.  Then, 
based on the user-tempo input bpm, it determines precisely what length note (in terms 
of 1/32nds of a beat) occurred.  It then outputs the start frame, note, octave, and length 
to VGA alongside a ready signal. 

VGA  
The VGA module converts information about new notes into a graphical 
representation in the style of conventional sheet music. 
The module receives note data from score converter via the score_element wire. 
Score_element tells VGA the start time, tone, octave and duration of a new note. 
Score converter informs VGA of a new signal on score_element using the ready 
signal.  
When a new note is inputted VGA looks up a note of the required duration and type in 
the sprite memory using the sprite_data and sprite_address signals. It then arranges 
the sprite on a “slice” of musical staff 1/32nd of a beat wide. Where on the staff the 
note is placed depends on its tone.  
To decide which sprite to select for a particular note VGA must look at its tone (high 
notes have tails pointing down, low notes have tails pointing up). Since collections of 
short notes of the same duration are connected with bars (to make reading them 
easier) VGA must also look at the values of the notes directly before and after the 
current one. Since the VGA unit cannot guess the value of the next note to be played 
it may have to update the last note displayed as well as the current one. 



The pixel coordinates for the slice are arranged to represent the start time of the note. 
Once the pixels and their coordinates have been computed frame buffer is updated to 
represent the new note. The output is buffered and is only asserted when the busy 
signal is low. This is to prevent VGA from contending for the bus while frame buffer 
is reading from its ZBT SRAM. Once a note has been displayed its information is 
saved in the score memory with the score_address and score_data signals. 

Sprite Memory 
The sprite memory is a ROM containing pixel values for all the types of note required 
by VGA to display sheet music. Each sprite consists of a 2D array of pixel values. 
The pixels can take one of three values – white, black or transparent. For the sprites to 
be correctly arranged on the musical staff by VGA they must have a common 
reference point (i.e. each type of note stored in the sprite memory must have their 
centre at the same pixel coordinate). 

Score Memory 
Score memory keeps track of all the notes that have been played so far. Although it is 
not envisioned that this information will need to be accessed in normal operation 
(VGA should only need to know about the last two notes) it may be needed for 
debugging the display module and in special cases where the whole screen needs to be 
refreshed (for example to take in to account a change in time signature). It will also 
greatly simplify the addition of optional modules such as playback and write to flash.  

Frame Buffer 
The frame buffer stores the current display image in a ZBT SRAM. This avoids the 
need to recalculate all the pixel values every new frame – only pixels whose values 
change need to be changed. The frame buffer must read information from the ZBT at 
a fast enough rate to supply the 65Mhz pixel signal to the display. Between reads it 
must accept pixel update information from VGA on pixel, pixelx and pixely. 

Resources 

Audio 
The ac97 chip included on the labkit has a sampling frequency of 48kHz with an 18bit 
resolution. The highest note that can be played on a piano keyboard (the range of 
which we expect to be able to represent) is 4.4kHz, giving a Nyquist frequency of 
8.8kHz. Therefore we should not experience aliasing problems. The sampling 
frequency and resolution of the ac97 actually exceeds that encoded in CD audio 
(44kHz with 16bit resolution).  
A high quality microphone will be required to ensure that minimal distortion and 
noise enters the signal. 

Memory 
The labkit provides 4MB of ZBT SRAM and 2.6Mbit of BRAM (144x18kbit). The 
main memory requirement of the project will be the frame buffer. To provide a 
resolution of 1024x768 pixels with 3 bits per pixel it will need a capacity of 2.4Mbit. 
This can easily be accommodated in a ZBT SRAM. If the refresh rate is 60Hz then the 
ZBT will need to provide a new 3 bit pixel value at the rising edge of the 65 Mhz 



pixel clock. The ZBT can output 36 bits every clock cycle, and can be clocked at up to 
167 Mhz so it should be able to meet these demands. 
The other memory demands of the project have been calculated to not exceed 200kbit 
(estimate 50 kbit for sprite memory, 64kbit for note memory and less than 5kbit for 
tone lookup table). This will not place a strain on the BRAM available. 

Organization 
Adam McCaughan will be responsible for the digital fourier transform, tone 
converter, score converter and tone lookup modules. John O’Brien will be responsible 
for the VGA, score memory, sprite memory and frame buffer modules. This splits the 
project into an audio analysis subsystem and a video display subsystem, both of which 
can be tested independently. It is important that the timing specifications and format 
of the data passed to the video system on score_element and ready are carefully 
defined to ensure smooth integration of the two sub_systems. 
 


