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Abstract

Duck Hunt is a classic first-person shooter game for the Nintendo Entertainment System, in which
the player uses a special light gun to “shoot” images of either one or two ducks or clay pigeons, depending
on the game mode. Our Duckhunter project focused on the third mode of this game: clay shooting. In
this mode, two clay pigeons are launched from the bottom of the screen into the distance, and the player
is given three shots to hit them both before they are too far away.

In an attempt to beat this game, we have built a servomechanism to automatically track and shoot
down the clay pigeons. The labkit’s FPGA was programmed to “look” at the video output of the Nintendo
System by receiving its video outputs, find the moving targets, and calculate the angle at which to aim
the light gun. It outputs the appropriate signals to two servomechanisms to control up-down and left-
right aiming, and fire the light gun. In addition, Duckhunter has a calibration mode to improve the
accuracy of aim.
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1 Overview

Duck Huntis a classic first-person shooter originally released in 1984 for the Nintendo Entertainment System
(NES). The game has three modes: one duck, two ducks, and skeet. In the single and dual duck modes, the
player aims at sprites of one or two ducks as they fly through the air. In the third mode, the player attempts
to hit two clay discs as they move across the screen. In each mode, points are awarded and levels are passed
based on the number of successful hits in a given 10-target trial.

Because of the computation problem inherent in predicting flight trajectories of high-order polynomials
in real-time, Duckhunter focuses on the third mode of play. The project itself is divided into two subsystems:
the disc tracking system and the mechanical system. The tracking system, at its most basic, takes in an
NTSC signal generated by the NES and outputs appropriate time-based coordinates. The mechanical system
receives these coordinates as well as a “fire” signal from the central FSM, and positions and triggers the gun
at the appropriate time.

The tracking system is composed of several modules and sub-FSMs used to convert the NTSC signal
and track the disc. An incoming NTSC signal is first passed to the NTSC-VGA conversion system which
handles the logic necessary to display a 256x240 NTSC signal on a 1024x768 computer monitor. From the
conversion block, individual pixels are passed to the tracking engine which converts a stream of pixels into
trajectories for each disc. Once the trajectories are discovered, two points, (z1,y1) and (z2,y2) for each disc
are passed to the interpolation component, which predicts a linear-approximation to the flight path at which
to aim the gun.

The mechanical system performs two major duties. The first, calibration, is necessary due to the non-
stationary nature of the gun. Since the labkit, TV and gun mechanism may be repositioned from demo-
to-demo or session-to-session, a calibration routine is necessary to keep the gun aimed properly. Since a
small deviation in aiming caused by movement of the labkit or gun could cause the system to fail, proper
aiming is crucial to the success of the system. Once calibration is performed, the gun is ready to accept
coordinates from the tracking system. Coordinates are passed as a function of time, < x(t),y(t) >, and the
gun mechanism converts these cartesian coordinates into a pair of angles, (6,¢) which correspond to the
horizontal and vertical orientation of the two servo motors in the system. Once the gun is aimed properly,
the the fire signal is asserted from the FSM into the NES.

2 Description of Duckhunter

2.1 Input System and Disc Tracking DSP

The input system is the primary interface between the game itself and the “player” created by Duckhunter.
The labkit receives an analog NTSC signal from the Nintendo corresponding to the Duck Hunt gameplay.
The first part of the system digitizes this signal and stores it in a dual-port RAM. Since the NTSC signal
and the VGA signal are clocked differently, the RAM is used to allow these two separate clocks to act on
the same set of data. The data in the RAM is then read on the other end by the vga_with_ram module.
Individual pixels are pulled out of the RAM by this module and passed to the trajectory module where
they are converted into a 4-point path. The paths is then returned to the vga_with_ram module where it is
used to perform a fixed interpolation to predict the new position, (z + %, Y+ %).

2.1.1 detection_toplevel

The detection_toplevel module is an abstraction layer that allows for the easy integration of the two
separate parts of the project: the gun system and the tracking system. By “hiding” the code for the tracking
system behind detection_toplevel, it encapsulates the individual control signals used to drive the various
modules involved in the tracking system and allows implementation with a smaller number of necessary
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Figure 1: Input System Block Diagram

The input system block diagram. Inputs and outputs are routed to the toplevel file.
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signals. detection_toplevel handles all the subprocedure calls, interprets the data and hides the private
registers and wires. Essentially, it provides a “black box” to the labkit.v file, and allows changnes to be
made to the internal workings without any changes to the overarching project, provided that there are no
abstraction violations or inteface changes. By using this module, we greatly simplied integration, allowed
for efficient incremental improvement, and maintained code usability and maintainability.

The inputs used by detection_toplevel, aside from the standard input and clock, were synchronized
versions of button_up button_down as well as tv_in_ycrcb and tv_in_line_clockl. The first two inputs,
button_up and button_down were used directly in the module to control the position of the detection zones
for the interpolation. The coordinates, once adjusted, were passed to trajectory module for detection
purposes and also up to the labkit module to be displayed. The tv-in data and clock signals were passed
to the NTSC_decoder module to be converted into RGB data and used.

The outputs of the module were the trigger signal, gun coordinates x_coord and y_coord, RGB display
signals, NTSC display signals for passthru, and ledbank to control the LEDs. These were chosen so that as
little output from the trajectory module as possible could be passed up to labkit, to simplify integration.
All of the outputs, with the exceptions of trigger, x_coord and y_coord could be directly “plugged in” to
the labkit interface, thus avoiding many namespace conflicts.

2.1.2 NTSC_decode, adv7185init, i2c

These modules were provided in the collection of “black box” modules for 6.111. The ADV7185 video
decoder, integrated in the labkit, decodes the analog stream into a stream of digital LLC data. Modules
adv7185 and i2c interface with the decoder chip to provide and generate the necessary clock and data signals.
The stream is then passed to the NTSC_decode module, written by Javier Castro. This module generates
pixels encoded in YCrCb format and appropriate hsync, vsync, and field signals. Because the output will
be viewed on a VGA monitor, the interlace field signal is not used for this project.

2.1.3 YCrCb2RGB

Before the output of the NTSC_decode module can be used in the rest of the system, it must be converted
from the tv-friendly luminance/chrominance (YCrCb) values to a more VGA-compatible RGB signal. The
conversion is primarily mathematical in nature, so the details will not be presented here. The YCrCb2RGB
module, provided by Xilinx in their IP Cores library !, acts between the NTSC_decode module and the
NTSC_to_ram module.

2.1.4 NTSC_to_ram

The first stage of the dual-port RAM hand-off scheme is storing the NTSC pixel data in the RAM. The
RAM itself is 18-bit x 8-bit, allowing for 262144 pixels in 8-bit color. The data itself is arranged in a scheme
whereby the first 9-bits in the address correspond to the y-axis row, and the next 9-bits indicate the x-axis
column. Therefore, given an 18-bit address, the RAM will return or store the RGB color in an 8-bit format,
RRRGGGBB.

The NTSC_to_ram module receives RGB data from the YCrCb module. Since the module is set up to allow
for up to 24-bits of RGB color, yet our system only uses 8-bit color, only the high-order bits of the R, G, B
signals are used. The red and green signals contribute 3 high-order bits, while the blue signal contributes 2
high-order bits. The data is then put into the RAM in sync with the NTSC clock.

ISee the IP Cores library at http://www.xilinx.com/ipcenter/. The YCrCb2RGB datasheet and module can be found at
http://direct.xilinx.com/bvdocs/appnotes/xapp637.pdf
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Figure 2: NTSC_to_ram Timing Diagram

The original enable, dv, caused the image to appear stretched across the screen.
The lengthened signal, half _dv, is high every other dv, thus storing every other
pixel and compressing the image horizontally.

Modifications to Module Since the system was originally set up to display a 256x192 pixel signal, it
needed substantial modification to correctly handle the 256x240 signal. The first issue to surface was a
problem with the aspect ratio. When the image appeared immediately after the module was modified, it
was stretched abnormally in the horizontal plane. This was likely due to the module only sampling the first
192 pixels, then displaying them across the entire screen. To correct this, the data valid signal needed to
be modified to be high one ’tick’ out of every four.

To create this signal, as shown in Figure 2, first a temporary signal, temp_dv is used to divide the
frequency of dv in half. Then, the original dv and temp_dv are put through an AND gate to obtain the final
half_dv signal which is asserted every fourth clock transition. Since this new signal is high half the time
of the original, this causes the RAM to receive only every other pixel, which compresses the image in the
horizontal plane. Although the image is still distorted somewhat (240px has been compressed to 120px),
since the entire image is now stored in RAM, the final calculations can compensate for the distortion. This
compensation was not possible earlier, since only the first 192 pixels were ever stored.

2.1.5 vga_to_ram

Once the pixels have been successfully stored in the RAM, they must then be read and sent to the processing
unit. The vga_to_ram module handles the retrieval of pixel data and dispatches the processing unit. To do
this, the module first generates a pixel_clock signal at 78.780MHz, which is used throughout the module
to process data at an appropriate rate for a 1024x768 VGA display. The data itself is retrieved by a pair of
incrementing counts, xpos and ypos, which correspond to the horizontal and vertical position of the current
pixel. As previously mentioned, the pixel data is saved in memory at an address formed from the first 9-bits
of the ypos signal followed by the first 9-bits of the xpos signal, in a {yyyyyyyyyxxxxxxxxx} scheme. The
counts increment every cycle of pixel_clock so that a new pixel is retrieved on each positive edge.

The vga_to_ram ensures that the xpos and ypos signals are within the appropriate specification for the
resolution. Parameters are defined for the horizontal and vertical front porch, back porch, sync, active, and
total which control the incrementing of the xpos and ypos signals. This portion of the module was provided
courtesy of Javier Castro, so little modification was necessary.

Modifications to Module The majority of the modifications to this module involved the dispatch and
handling of the data received from the memory. Since only one pixel was sent for a given clock cycle,
a collection of FSMs was needed to correctly handle the pixel given the current state of the detection
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subsystem. Details about the specific calculations are given below in the trajectory module section. The
vga_to_ram acted as the controlling module, choosing how to send data to and interpret data from the
trajectory module. The submission portion is very straightforward — data coming out of the ram is passed
into two instances of the trajectory module, corresponding to the two discs.

Along with the pixel data, the module also passes an offset, a count, xpos,ypos, and detection zones.
The specific function of each of these signals in determining a trajectory will be outlined below. The offset
and count are used to separate the first disc from the second. A counter is incremented in vga_with_ram as
soon as the first region becomes active on the first disc. After the specified offset, the trajectory module
begins to look for the second disc in the first region. The offset delay is necessary because it gives the first
disc time to clear the first zone before the system begins looking in that zone for another sequence of white
pixels. If no offset were used, the first disc would trigger the second zone as it moved out.

After each of the trajectory instances finishes computing the path of their respective disc, the disc_detect
signal is asserted to indicate that the values are ready for processing. When vga_with_ram receives this
signal, it performs a fixed interpolation according to the following equations:

Tinterp = Tzone4 + (xzoneél - xzone3)

Yinterp = Yzoned + (yzone4 - yzone3)

The zone values correspond to different regions at different y-values on the screen. The distance between
the zones can be adjusted in realtime (calculated in detection_toplevel and passed down), thus adjusting
the distance used for the interpolation. At first, a more complicated interpolation model involving calculated
slopes with multiplication and division IPCores; however, tests with this method proved to be equally
accurate at the expense of some flexibility. Since multiplication and division of sets of 10-bit numbers is very
computationally expensive and difficult in a real-time system such as this, sacrificing flexibility for simplicity
is a very desirable tradeoff. This proved to be a good decision — the fixed interpolation works very well, and
the system is much easier to maintain since the timing issue are lessened.

The final role played by vga_with_ram is displaying the region bars, zone indictors and interpolation
indicators on the VGA screen. Since Duckhunter uses a TV for the actual gameplay, the VGA monitor is
free for diagnostics. Five colored bars, repositionable via the 'up’ and ’down’ buttons on the labkit, indicate
the regions where the points of trajectory will be calculated. Immediately after coordinates are registered in
each of the four zones, colored boxes are displayed to indicate the trajectory determined for the disc. After
a brief delay controlled by the trajectory module, a different-colored box appears to coincide with the disc
passing through the region covered by that box. The delay ’waits’ for the disc to move from the edge of
region 4 to the area that the interpolation predicts. When the delay has been satified, the delay_interp
signal is asserted, causing the vga_with_ram module to display the interpolation box and the gun assembly
to pull the trigger.

Interpolation Issues While the interpolation scheme works perfectly for typically 9 out of every 10 discs,
there are two specific cases that will cause diminished accuracy. The first condition, a disc speed significantly
slower than average, will cause the disc to undershoot the mark. If the speed is only slighly under average,
the tolerance of the gun will still likely consider the shot a ’hit’, even though it was not precisely on target.
However, if the disc is fired significantly below speed, it will not reach the point necessary for the interpolation
to be successful.

The second issue is the opposite: too much speed. A disc traveling significantly faster than average will
be past the target point by the time the gun is aimed and ready to fire. Again, depending on the actual
speed of the disc, a hit may still be registered if the offset is within the tolerance of the gun.

Of these two problems, underspeed is more troublesome because of the linear nature of the interpolation.
When a disc is traveling faster than expected, it will remain very linear up to the point where the interpolation
is made. Therefore, the only concern is the timing issue. On the other hand, a disc moving too slow will
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zone4
(success)

Figure 3: Zones FSM

The zones FSM acts as a filter in determining the path of the disc. Since the
system is only looking at a small zone at a time, it is less susceptible to noise and
can provide more robust coordinates. The final two zones, zone3 and zone4 are used
for the interpolation.

begin to exhibit arc in its path. The deviation from linearity, combined with the timing problems of a slow
disc, make this particular situation very difficult to effectively track.

2.1.6 trajectory

The trajectory module is the engine of the disc-tracking system, taking in only a single pixel and outputting
a set of trajectory coordinates. The system itself works as a series of FSMs (see Figure 4 and Figure 3) which
allow for a robust and accurate solution. The detection of a disc is based on a series of consecutive pixels.
Once a disc is identified, it is matched up with the current “zone” in which it is located, and a coordinate
is asserted based on that zone.

The central FSM to the system is the zones FSM. As Figure 3 indicates, the default 'reset’ state of the
system is hte 'no disc’ state. This occurs when the game is waiting for a disc to be “thrown” across the
screen. As soon as the disc is fired, the trajectory module immediately recognizes the the first white pixel
in the sequence. This causes the FSM to move into the pixel sub-FSM. As Figure 4 shows, the pixel FSM
handles the sorting of random white pixels (often caused by the analog-digital conversion) from the series of
white pixels indicative of an actual disc. As the the pixel FSM figure shows, the trajectory module needs
to “see” three consective white pixels before it will reach the final (success) stage. At any point, if the pixel
that is expected to be white is not white (indicated by the wp’), then the FSM will reset and wait for the
next white pixel to appear.

The pixel FSM was used to ensure that the system was robust enough to guard against random noise in
the signal. Initially, it was designed to use only one pixel to detect a disc; however, a large false-positive rate
inspired the current system. Although no number of pixel “look-ahead” can guarantee that the system will
not have false positives (as there is always a small but nonzero probability of getting n pixels in a row), the
current scheme with 3 pixels brings this risk down to an acceptable level.

Once the pixel FSM registers a success (indicated on Figure 3 by s), the zones FSM will assert the
region signal to correspond to the last region to “hit”. Since this design uses four zones, the region
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(success)

Figure 4: Pixel FSM

The pixel FSM provides noise tolerance in the system. Only 3 consecutive white
pixels (wp) will trigger a success. Otherwise, the system resets and waits for the
next white pixel.

signal is 2-bits. For example, when the system first recognizes a disc, the lowest zone on the screen will
be the first zone to become activated, which will cause a 01 to be placed on the region line. The current
value on this line indicates to the zones FSM which state it is in, thus activating the correct outputs for
the given position of the disc. When the fourth and final region is activated, the region signal is reset,
and the disc_detect signal is asserted. This signal indicates to the parent module, vga_with_ram, that
the trajectory calculations are complete, and the data lines corresponding to the disc positions in each of
the four zones are valid. When the disc_valid signal is received, the vga_with_ram module calculates
the interpolation, adjusts the coordinates to translate the displayed VGA resolution to an appropriate TV
screen resolution, and displays the expected position of the gun with a green box. At the same time the
disc_detect signal goes high, a counter is started. After a delay appropriate to the time needed for a disc
to fly from the edge of the fourth zone to the interpolated box passes, the display_interp signal is asserted.
This indicates to the vga_with_ram module that the trigger should be “fired”. When this action occurs, two
things are done: first, the actual trigger is sent up to the detection_toplevel to go to the gun system,
and secondly, a blue box is put on the VGA screen to indicate that the shot was “fired”. The twofold scheme
allows for more robust and simpler diagnostics, since there are now two ways to check if the coordinates and
signal are correct.

Since the trajectory component is modular and pertains to only one disc, it is logical to attempt to
generalize it so that two disc functionality can be implemented with little more than another instance of
the module. To allow this, two additional signals are present in the module which are set differently for the
two-disc case than for the one-disc case. The count and offset inputs, each 26-bits wide, allows for a timed
offset to be specified before “looking” for the second disc. When the two trajectory instances are generated
in the vga_with_ram module, the first one is specified with a null count and a zero offset, meaning that the
first disc is detected immediately. The instance for the second disc, however, includes a count signal and an
experimentally-determined offset. The count is detemined and incremented in the calling module. Within
trajectory, the offset causes the system to wait for a specified number of clock ticks after the first disc is
detected in zone 1 before registering a “hit” in the first zone for the second disc. The is necessary because
without the offset, the first disc would trigger the first zone for the second disc on its way out of the first
zone. The offset period allows the first disc to move out of the zone before once again looking for the white
pixels in that zone, thus preventing a false trigger. In theory, this scheme should work as planned; however,
since most of the design and time was spent ensuring that the trajectory for the first disc was correct and
robust, the second disc system is not fully implemented in this version of the code.
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The final consideration in the trajectory module is the zones themselves. In designing a noise-resistant
system, it is desirable to block out all potential sources of noise that aren’t absolutely needed. In Duckhunter
, the zone scheme allows the trajectory module to focus on a small part of the screen at a time. Without
zones, the module would be looking at the entire screen when only the lowest part was needed, hence
dramatically increasing the probability of picking up an errant set of white pixels and causing a false positive.
The zones are set up with both horizontal (designated by vertical bars outside of which the signal is not read)
and vertical (designated by stacked horizontal bars) cutoffs. The horizontal cutoffs are fixed, since there is
a certain point on each side of the screen from which discs are never fired; therefore, it is safe to ignore past
these points. The value for this point was determined experimentally and hard-coded as a parameter in the
system.

The vertical zone scheme, on the other hand, is more complex. Since it is advantageous in testing and
implementation to have an adjustable “squelch” in the system, each of the 4 vertically-stacked zones can be
adjusted. The actual adjustment is done in the detection_toplevel parent module, and signals for each
of the 5 bars are passed down to trajectory. The adjustment itself is done by setting the switches[3:1]
to values of 1 through 5 corresponding to the desired bar, and operating the up and down buttons. To
make adjustment even faster, the speed of the adjustment can be changed to one of 4 speeds by adjusting
switches[7:6].

Different placement of the zones causes different tradeoffs. Since the interpolation is calculated based
on the register disc position on the last two zones, these cause the biggest difference in the system when
adjusted. To obtain the largest possible time between the edge of zone 4 and the trigger signal (for instance,
when it is desirable for the gun to have as much time to “lock on” the new coordinates as possible), the 3rd
and 4th zone should be as wide as possible. This causes the interpolation region to be the farthest from the
edge of zone 4. However, since the discs follow an arched trajectory, taking coordinates early in the run will
result in diminished accuracy. Consequently, if accuracy is the primary concern and the gun can track very
rapidly, a higher “hit” yield can be reached by positioning zones 3 and 4 close together near the peak of the
disc arc. Just before the arc bends is the area in which the path is most linear, so this method will be more
accurate at the expense of prediction time.

2.2 Calibration

The block diagram for the calibration part of Duckhunter is shown in Figure 2.2.

In calibration mode, Duckhunter outputs its own video signal to the television. This signal is handled
by the video module, which has enable and mode (vertical bar, horizontal bar, both, or colorbars) inputs,
and outputs a NTSC video signal and the various clocks and signals required to drive the ADV7194 video
encoder.

2.2.1 Calibration Video

This module instantiates three submodules: adv7194init, hbar, and vbar. The module adv7194init,
written by Nathan Ickes, initiates the video encoder and generates the necessary clocks. The hbar and vbar
modules generate the YCrCb signal for a horizontal and vertical bar, respectively, at an input coordinate.
These coordinates are selected by the video module, which simply increments the positions by 1 every 27Mhz
clock cycle, returning to zero when the bars reach the far edge of the screen. The bar widths are 64 pixels,
roughly the size of a Duck Hunt target. The video module outputs either one or both of the bars or displays
colorbars, depending on the mode input. In addition, it has the horizontal and vertical positions of the bars
as outputs, which are used by the hit_location module.
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2.2.2 Hit Detection

The hit_detect module is also used by the hit_location module. This module’s inputs are an enable
signal and the optical signal from the light gun. If enabled, when the module detects a positive edge on the
optical signal, it begins counting up from zero for as long as the optical signal remains high. If the count
reaches some (hardwired) threshold value, the hit output signal is brought high for as long as optical is
high.

2.2.3 Hit Location

The hit_location module uses the bar position outputs from video and the hit signal from hit_location
to determine the position of a hit. In addition, it receives the video_mode input used by video as an input.
Based on the video mode, when hit is high this module saves the position of the bar to one of two registers,
which are also the module’s outputs. For example, if video_mode is 1, meaning that the video module is
displaying a horizontally moving vertical bar, and hit is high, then the module stores the bar’s xz-position to
a register. The hit location also has two outputs x_there and y_there that indicate when the x and y
positions have been found.

2.2.4 Calibrator FSM

Finally, the calibrator module combines all of the various outputs from these modules, and controls the
video_mode and enable signals.

Based on 4 aim_point signals, which are set by the user using the lab kit switches, the calibrator
module selects a point of aim and points the gun at that point. It sets the enable signal for hit_detection
high and the video_mode to 1 (vertical bar), and waits until it receives x_there and x_pos signals from
hit_location. As soon as the hit is received, enable is brought low and x_offset is then calculated by
comparing x_aim to x_hit. Upon receiving a state transition signal from the user, the calibrator repeats
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Figure 5: State Transition Diagram for Calibration Module

The calibration module cycles through the states, waiting for user input, until the
user is satisfied with the calibration

this process with y-values. The entire process is iterated until the user is satisfied with the calibration. In
the demo mode (see Section 4.1.9), the point of aim and hit position are displayed on the XVGA monitor,
so that the user can observe the state of the calibration. A state transition diagram describing the operation
of this module is shown in Figure 5

2.3 Aiming the Light Gun

The block diagram for the modules that aim and move the servomechanisms is shown in Figure 6. As is
described in detail below, the coord_conversion module converts from (x,y) coordinates to the signals
required for the servomechanisms, and the rc_motor modules drive the servomechanisms to their final
positions.

2.3.1 Driving the Servomechanisms

The servomechanisms are HS-422 Standard Deluxe Servos made by Hitec. They are pulse-width con-
trolled, with the neutral position set by at pulse width of 1500us. Duckhunter’s servos are driven using
the rc_motor_move module, which in turn uses rc_motor to create the pulses. The input to rc_motor_move
is an 8 bit signal corresponding to the desired motor angle. For these servos, this value should be between
0x38 and 0xF8 to cover the range of 180 degrees. As its output, the module creates a series of 16 pulses
which drives the motor to its final position. The rc_motor_move and rc_motor modules were written by
Issac Chuang.

2.3.2 Coordinate Conversion

The coord_conversion.v module converts cartesian coordinates corresponding to a position on the screen
into angle coordinates that are used to drive the motors. Its inputs are unsigned z and y target coordinates
from Andrew Lisy’s interpolation system, signed z and y offsets from the calibration module, and the
approximate distance of the light gun from the television, indicated by the user using the switches on the
lab kit. Based on these various dimensions, the module derives the appropriate horizontal and vertical angle
coordinates for the servomechanism driver.
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Figure 6: Block Diagram for Aiming and Driving the Servomechanisms

The coord_conversion module converts from cartesian coordinates to angles for the
servomechanisms, and rc_motor drives each motor to this angle.

Ultimately, this module uses a lookup table to determine the necessary motor angles. The lookup table,
generated by the perl script appended in section 6.2, takes as its “inputs” the z or y position and the
distance to the television. That is, the values in the ROM are ordered such that the address corresponds to
{tv_distance, position}. Figure 7 gives an overview of this addressing scheme.

The position value is based on a division of each half-screen into a set of blocks of pixel in order to
control the size of the lookup table. Duckhunter uses a horizontal division of 16 blocks in the horizontal
half-screen. Because of the dimensions of the television, this corresponds to 12 blocks per vertical half-screen
to get square blocks. The coord_conversion modules first adds the target coordinate and offset values
to find the correct x and y coordinates, compares the coordinates to the center of the screen to determine
which half-screens they are in, and then uses modular arithmetic to determine which x and y blocks these
coordinates fall into. The angle values are then read from the two lookup tables (one for each dimension, so
that the z and y conversions can be done simultaneously). Finally, based on which half-planes the original
coordinates were in, these values are either added to or subtracted from the neutral position angle values.

An exemplary sketch is shown in Figure 8. This figure shows two example target points. Cartesian
coordinate values are shown on the left and top sides, and angle coordinates on the right and bottom.

2.3.3 TV Coordinate Conversion

The TV coordinate conversion module is identical to the conversion module described above, except it is
adapted for use with the resolution of the television (720 x 486). Since Verilog does not allow modular
arithmetic with numbers that are not powers of two, the only change in the module is that it uses a series
of if-else statments to determine which block the coordinates lie in.
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Figure 7: Lookup Table Organization

The coordinate conversion lookup table is organanized so that the address is of
the form {tv_distance, position}. There are two of these lookup tables, one for
horizontal and one for vertical coordinates.

3 The Light Gun

The controller used to “shoot” the ducks and clay pigeons in Duck Huntis the Nintendo Zapper light gun.
In order to control the light gun for electric triggering and calibration, it was first necessary to understand
how the gun works.

The most important feature of the light gun is its phototransistor, which creates a current based on the
amount of light striking its surface (the base of the transistor). In the Zapper, there is a circuit that converts
this current into a voltage signal sent to the Nintendo. The circuit is shown in Figure 92. Since there is
no documentation available on the integrated circuit (marked as IR3TO7A), the exact details of this circuit
are unknown, but examination of the circuits outputs led to the conclusion that this IC is a demodulator.
Resistor R1 and C'1 set the frequency of demodulation; since the Zapper is designed to be uesd with a
television, this frequency is set to equal the refresh rate of NTSC video. Essentially, the light gun circuit
looks at the light level coming from the TV at each frame, and outputs a pulse width corresponding to that
light level. Measured values of the pulse width ranged from Oms (black screen) to 1.36ms (white). A lens at
the end of its barrel gives the Zapper a fairly accurate aim.

In order to determine if the shot hit the target, the Nintendo system draws a black screen with a white
square at the target location during the frame after the trigger is pulled. If the light gun outputs a pulse
during this frame — presumably above some threshold pulse width, athough the exact operation of the
Nintendo is unkown — the shot is registered as a hit.

The triggering machanism for the light gun is a spring-loaded switch, indicated in the circuit diagram.
Ordinarily, the trigger signal voltage is high (5V), but is shorted to ground when the trigger is pulled.
Experimentation indicates that the Nintendo is triggered off the rising edge of the trigger voltage. That
is, it registers a shot when the trigger is released.

2http://www.zero-soft.com/HW /USB_ZAPPER/
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Figure 8: Coordinate Conversion Example

The coordinate conversion module uses x and y coordinates to find the required
motor angles. By dividing the screen into two symmetric half-screens and each
half-screen into blocks, the size of the lookup table can be dramatically reduced

3.1 Hacking the Light Gun

In order to trigger the light gun from the lab kit and to use the optical signal for the calibration routine, it
was necessary to take apart the light gun. The optical and trigger signals described above are transmitted
to the Nintendo through a cable with the connector shown in Figure 13. Rather than trying to interface
with this custom connector, it seemed more practical to disassemble the light gun and solder additional wires
to the individual wires where they enter the circuit board. In addition, the trigger was removed and the
two wires previously connected to the trigger switch were extended. All of these wires were then brought
out from the gun through the space that originally held the trigger. These modifications proved to be more
difficult than expected due to the tiny wires used in the Zapper, which broke easily when removed from their
original insulation. However, with some patience, the power, neutral, optical, and trigger signal wires
as well as the trigger wires were extended, and the light gun reassembled.

To properly use these signals, it is important to note that the lab kit and Nintendo use different electrical
plugs to connect to line power, which indicates that they are operating with different voltage references.
The Nintendo system uses a NEMA 1-15 connector — an ungrounded two-pin plug — which indicates that
its voltages are referenced to line neutral rather than earth ground. The lab kit’s plug is a NEMA 5-15
plug — similar to the NEMA 1-15 but with an additional pin to earth ground.®> From the lab kit schematic
(http://www-mtl.mit.edu/Courses/6.111/labkit /labkit_schematic.pdf, page 28), it is clear that the lab kit
voltages are referenced to earth ground rather than to line neutral.

3http://en.wikipedia.org/wiki/Outlet
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Figure 10: Configuration of Light Gun Connector
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Figure 11: Ground Fault Circuit Interruptor

If the neutral and earth ground terminals are connected, current flows through bad
paths and trips the GFCI

Since the two systems have different reference voltages, the signals from the light gun cannot be used
directly as inputs to the lab kit. For example, connecting optical to one of the lab kit user inputs would
not work, because the two voltage references could potentially be very different, making the voltage signal
useless. Furthermore, the two references cannot simply be tied together, because this would draw current
from the power line and, among other things, trip the ground fault circuit interruptor (GFCI).

The GFCI is a safety mechanism present in many buldings (including the 6.111 laboratory) that monitors
current levels in the hot and neutral power lines to determine if there is a fault in the electrical wiring. It
is essentially a toroid through which both the hot and neutral lines pass (Figure 11). By Faraday’s law, the
voltage across the windings on the toroid is proportional to the total flux linked, so that if [;, and I,y are
equal, the net flux and hence V is zero. If, however, there is a fault somewhere in the circuit, some of the
current will be drawn away from the neutral line, and so there will be a net flux linkage in the toroid. The
toroid voltage is monitored by a system that shuts off power to the outlet if this case occurs. The GFCI was
designed primarily in case of a short from the hot line to earth ground, e.g. through a person. However,
since the neutral line voltage is generally somewhat higher than ground (I, R, where R is the resistance of
the (generally long) wire connecting the outlet to ground), if the neutral line is connected directly to ground
before the toroid then the GFCI will also be tripped.

The problem of different reference voltages was circumvented using optical isolators to communicate
signals between the lab kit and Nintendo. These were built using LED and phototransistor (Lite-on LTR-~
301) pairs. The following sections describe the circuits used in greater detail.

3.2 Triggering

Triggering the light gun electrically is a matter of replacing the original mechanical switch with a transistor,
and being able to control this transistor from the lab kit. As described in Section 3.1, this goal is somewhat
complicated because the lab kit must remain electrically isolated from the light gun. Using an opto-isolator,
however, the solution is simple. The circuit is shown in Figure 12. Duckhunter uses one of the connectors on
the user I/O banks to light an LED, with the 1k resistor limiting the current drawn. The light shining on
the base of the phototransistor causes current to flow from its collector to emitter, shorting trigger+ and
trigger- together.
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Figure 12: Light Gun Trigger Circuit

This circuit triggers the light gun electrically from the lab kit while keeping the lab
kit electrically isolated from the NES.

3.3 Optical Sensor Output

As described in Section 3.1, the light gun outputs a pulse train signal based on the brightness of the
part of the television it is aimed at. When converting this signal to a useable input for the lab kit, it is
especially important to avoid loading the light gun at all, since doing so would alter the signal received by
the Nintendo and thus the operation of the game. The optical signal is therefore used as the inverting
input to an operational amplifier, since ideally an opamp has an infinite input impedance so there is no
difference between it and an open circuit. The opamp is connected as a comparator with hysteresis to keep
the signal as close to a square wave as possible. It is run off of the power and neutral voltages from the light
gun (5 volts). Similarly, the corresponding signal is passed through another comparator on the lab kit input
side. Since each comparator inverts the signal, the voltage going into the labkit corresponds directly with
the signal received by the Nintendo. The complete circuit is shown in Figure 13, and a typical waveform is
shown in Figure 3.3. This figure shows the signal at the input to the lab kit when the light gun is pointed
at an intermediate brightness.

NES__+5
from light ~
gun °_L\M3> to labkit
° userl[0
— M ——+ [0]
NES +5

NES neutral

Figure 13: Optical Conversion Circuit

This circuit converts the optical output from the light gun to a useable signal for
the lab kit. The input comparator ensures that this circuit draws only a negligeable
amount of current from the light gun, and the output comparator cleans up the
signal from the LED. Except where otherwise noted, all resistor values are 1k{2.
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Figure 14: Optical Signal Input to Lab Kit

When this snapshot was taken, the light gun was pointed at a television screen dis-
playing a moderately bright signal. The pulse width corresponds to the brightness,
with the maximum observed pulse width at 1.36ms.

4 Debugging

Debugging was performed in different ways for the two different systems. For the light gun, a series of demos
provided feedback as to the correct (or incorrect) workings of the gun and allowed for focused debugging.
The disc tracking system followed a more traditional debugging approach due to the nature of the system.
Since video output was available that, in most cases, gave a good idea of the failure, a more traditional
method of code, observe, debug, reobserve was followed.

4.1 Demo Modes

In order to debug Duckhunter, a series of tests were developed that isolated a single module or aspect of
the design. Later, these debugging modes were used as demonstration modes. A description of these tests
follow. The corresponding Verilog code is appended in Section 6.1.8.

Many of the various modules that make up Duckhunter have individual demo modes, so that they can
be demonstrated independently. The demo modes are reached by setting the switches on the labkit to the
binary representation of the demo mode, and then pressing the enter button and button 0 simultaneously.
Table 1 provides a summary of the different demo mode numbers and the inputs used in each mode.

4.1.1 Trigger

This mode demonstrates the ability to “shoot” the light gun using an output from the lab kit. It tests both
the light gun trigger circuit (Figure 12) and the ability to use an output from the user I/O banks. In this
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Table 1: Demo Modes: number, name, and inputs used

# name inputs

1 Trigger Demo buttonO

2 Coordinate Conversion switch[0], switch[7:4]

3 Pong button_enter, switch[7:4], button_up, button_down
4 Servomechanism Demo button_up, button_down, button_right, button_left
5 Laser Demo buttonl

6 Video Output Demo switch[1:0]

7 Light Detection Demo  switch[1:0]

8 Hit Location Demo switch[1:0]

255  Calibration Mode button0

mode, pressing button0 causes the light gun to fire (when the trigger signal is connected to user3[0]).

4.1.2 Coordinate Conversion

The coordinate conversion demo mode demonstrates the the coord_conversion and rc_motor_move mod-
ules. The test module, (test), generates a XVGA signal showing a white square on a black background.
The inputs to test are the vsync, hcount, and vcount signals required to generate the XVGA signal, as
well as clock_27mhz and enable. When test’s enable signal is high, this white square scans across the
screen beginning in the upper left corner. At the same time, test outputs the coordinates of the upper left
corner of this target to the coord_conversion module, which ultimately drives the motors to point at the
target. switch[7:4] are used to input the television distance to the conversion module.

4.1.3 Pong

The pong demo mode is similar to the coordinate conversion demo, except the target is generated by Andrew
Lisy’s pong game from Lab 4. switch[7:4] sets the speed of the puck, button_up and button_down control
the paddle, and button_enter resets the game. This mode is a good demonstration of how the gun moves
when driven at different speeds.

4.1.4 Servomechanisms

This demo mode uses the test module driver_test to demonstrate the servo driver directly. Its inputs are
h_speed and v_speed, which are set with the lab kit switches switch[7:4] and switch[3:0] respectively,
and the up, down, left, and right buttons on the lab kit. The module changes the pulse width sent to
rc_motor_move based on the user button inputs. The pulse width is also displayed on the LED display on
the lab kit.

4.1.5 Laser Pointer

This demo mode demonstrates the ability to turn the laser pointer on and off using a lab kit output. It is
essentially the same as the trigger demo, but with the input buttonl and the output user3[1]. The other
difference is that the laser pointer is an active low (it turns on when its switch signal is grounded), so the
button input must be inverted.
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4.1.6 NTSC Video Output

The video output demonstration simply outputs the calibration video patterns. This video signal is described
in depth in Section 2.2.1. The lab kit switches select between horizontal bar and vertical bar mode, or
colorbars.

4.1.7 Light Detection

The light detection demonstration uses the hit output signal of the hit_detection module (Section 2.2.2)
to light the lab kit LEDs. Observers can see the LEDs light when one of the bars created in the calibration
video module passes through the light gun’s sights.

4.1.8 Hit Location

The hit location demonstration outputs the coordinates x_hit and y_hit created by the hit_location
module (Section 2.2.3) onto the hex display. Using switch[1:0], the user can choose between observing
x-coordinate and y-coordinate hits.

4.1.9 Calibration Mode

The calibration mode is used to calibrate the system. It runs through exactly the process described in
Section 2.2.4. In order to aid debuggung, this module displays a XVGA signal showing the x and y positions
of the intended point of aim and the hit position.

The calibration mode was the most difficult to debug, because it exposed errors in the modules it used
which otherwise had seemed to be working. At first, for example, there was a sign error in the offset inputs
to the coordinate conversion module, which caused the targets displayed on the computer monitor to move
away from, instead of towards, each other. Once this was fixed, the calibration module continued to display
an interesting charactaristic that remains unsolved. Although it would initially move incrementally towards
the desired coordinates, the hit position would generally begin to move away again after a certian number
of iterations.

To a certain extent, this behavior is to be expected, since the gun can only aim to a certain accuracy
due to the division of the screen into blocks (for ease of coordinate conversion and to reduce the required
memory size).

The current solution to this behavior is to keep a certain level of human input to the system, so that
when the calibration looks “good enough,” the user halts the process and switches over to Duckhunter mode.
A more elegant solution, which would have been persued had time allowed, is to have the calibration routine
halt when the new offsets required to adjust the aim fall below a certain threshold value.

4.2 Disc Tracking

The issues in the disc tracking system came from two sources. The first problems to arise was getting the
NTSC resolution video into a module that only supported 256x192 video. Once this problem was resolved,
the next issues to arise were with the trajectory system. Originally, the trajectory system was integrated
into the vga_with_ram module. However, when they were split and modularized individually, the problems
were lessened.

4.2.1 Video Debugging

Since the original module provided by Javier Castro only supported a black and white resolution of 256x192,
substantial modifications needed to be made in order to capture and display the 640x480 signal provided by
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the Nintendo NT'SC signal. The first step in boosting the resolution was increasing the size of the dual-port
ram address space from 16 bits to 18 bits. Since 16-bits only allows for a maximum of 256x256 (using the
[yyyyyyyyxxxxxxxx] scheme discussed earlier in the NTSC_decoder section, I clearly needed more space. The
BRAMs at 8 bits wide can support only 262144 (2'8, or 18-bits), so I decided to use that. However, this
arrangement only allowed for a 512x512 display resolution, which would be fine in the y direction, but come
up short in the x-direction. The problem was, of course, that the final 128 bits at the right side of the video
signal would not be included in the RAM, so no calculations could be done with the values.

Since I was not very concerned with image quality on the VGA display (since we were also piping the
original input to a TV), I decided to save only every other pixel in the x-direction. This modification allowed
me to receive all of the x-resolution in memory, at the expense of some signal distortion. Since there would
still be more than enough pixels of “disc”, and I could compensate for the distortion by shifting the eventual
output coordinates, I opted to make this modification, which involved changing the dual-port RAM and
updating the address lines and counter registers throughout the original system. Once this was done, I had
a working image of the NES display with which to work.

The next (and recurring) issue was with the trajectory module. Since the signal was noisy, there was an
inherent difficulty in preventing “false positives” caused by the stray white pixels over the display. My first
attempt at disc detection was to look for one white pixel anywhere on the screen above the menubar. The
worked a small percentage of the time, but was fooled frequently be noise before the disc had an opportunity
to be “shot”. My next attempt to compensate for this was to divide the screen into two zones, and require
a detection on both before either would become valid. This worked better, however, the first zone was still
frequently tripped by stray pixels, thus causing an inaccurate reading on the first region.

Thinking about this problem, a revelation came to me one night as I lay awake in bed. I thought to
implement a sub-FSM to look for two consecutive pixels in each zone. This would perfect match the disc flying
through, since it was much less likely that two pixels would show up sequentially in each zone. When I loaded
up the code for this, it worked better than the original system, but still not quite enough for production.
I added another state to the pixel FSM, as well as a ’clear’ state for when it detects non-sequential pixels,
and my system worked much better.

I then extended the zones to four sequential regions with adjustable bars delimiting each. Now, I could
display four red squares corresponding to the disc as it passed through the regions. However, there was still
an occasional glitch when the disc would pass through, but nothing would be registered. I looked at my
code, realized it was now far too complicated to easily debug, and decided that I needed to take apart the
giant vga_with_ram module and make a designated trajectory module. Once this was completed, I had a
much more stable system.

When I designed the trajectory module, I added special signals, count and offset, to enable easy
integration of a second disc. The exact details are explained in the trajectory description. Although most
of the logic was there, since I had made my primary concern the solid timing and prediction of the first disc,
I was unable to fully implement the second disc functionality. However, due to the encapsulation of each
disc’s trajectory, the basis is there and could be added (relatively) easily in the future.

4.2.2 Integrating the Systems

Integration proved to be more difficult than expected. Initially, there were some communication issues
between the two parts. For example, the coordinates generated by the video input system were for a
640x480 screen, while the coordinate conversion module and television screen expected a resolution of 720
by 486 pixels. Most of these small difficulties were ironed out quickly.

The one remaining issue that Duckhunter had was using the video tracking system to trigger the light
gun. Although it was proven early on in the project that it was possible to trigger the gun by pressing a
button on the labkit, we did not initially consider the importance of the duration of this button press. The
original Nintendo light gun trigger is spring loaded so that a single pull back both closes and opens the
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switch contacts. This sends the Nintendo a pulse of approximately the same width every time. In order to
emulate this behavior so that the Nintendo would register our trigger signal, we should have measured that
pulse width and sent one of the same length. We didn’t encounter this problem originally because in testing
with a pushbutton, the natural pulse width of pushing the button coincided roughly with what the Nintendo
expected. Unfortunately, this simple solution did not occur to us until after the checkoff.

5 Conclusions

Our project required both new design and integration with old design. As a result, we gained invaluable
experience dealing with not only our own code and Verilog, but also already-integrated systems. This is
extremely important and will serve us well in our future academic and professional lives, since much of
engineering is about designing systems that work alongside and interface with systems designed by others.

Both subsystems required interfacing with the Nintendo signals. The gun system needed to use the same
signals provided and expected by the Nintendo. Furthermore, the system needed to be robust enough to
withstand perturbations in angle, distance, and tracking speed. To compensate for the angle and distance
variables, Taylor constructed a calibration system that would determine run-time offsets for the motors to
ensure that coordinates pointed to the same physical location from run to run. To adjust for motor speed,
Andrew’s system is able to change the time allowed for the gun to retrack in realtime. These systems keep
the gun accurate across demonstrations, and ensure that we don’t need to continuously adjust its calibration
manually.

The tracking subsystem also needed a measure of robustness to compensate for noise in the video signal.
Since errant white pixels can throw off the disc trajectory utility, Andrew built a two-FSM system which
filtered out the noise inherent in the signal. Although the probability of a false positive is not quite 0, these
improvements bring the chance down to an acceptable level.

Overall, the project was very helpful in giving us first-hand experience at systems engineering. In a
non-ideal world, its is important to have mechanisms to control the independent variables, and this system
does just that.

5.1 Extensions

Although our system performs relatively well, there are three areas in which improvements could be made:
general integration, second disc tracking, and tracking precision. The general integration is perhaps the
closest goal. At this point, although the gun does move to track the interpolated disc, the trigger signal
is not asserted correctly. The reason behind this is the differences in a computer asserting a signal and a
human finger. To properly cause the trigger signal to be interpreted by the Nintendo, we need to attach the
oscilloscope to the trigger and measure the signal duration that comes out. Our first attempt used a single
clock high signal, which did not properly fire the gun. With some empirical data, we could determine the
exact duration that the signal needs to be high, and then use that effectively.

6 Appendices

6.1 Verilog Code
6.1.1 Interface Module (detection_toplevel.v)

detection toplevel:

module detection_toplevel (reset, clock_27mhz, upbutton, downbutton, ledbank,
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vga_out_red, vga_out_green, vga_out_blue,

vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync,

tv_in_reset_b, tv_in_i2c_clock, tv_in_i2c_data,

tv_in_ycrcb, switch, tv_in_line_clockl, x_coord, y_coord, trigger);

/*General I/0%/

input reset, clock_27mhz;

input upbutton, downbutton; //synchronized/debounced versions of button_up and button_down
input [7:0] switch;

input tv_in_line_clockl;

output [7:0] ledbank;
output  trigger;

wire  trigger;

/*Video outputs*/

output [7:0] vga_out_red, vga_out_green, vga_out_blue; // Outputs to DAC
output vga_out_sync_b, vga_out_blank_b; // Composite sync/blank outputs to DAC
output vga_out_pixel_clock; // Pixel clock for DAC

output vga_out_hsync, vga_out_vsync; // Sync outputs to VGA connector

/*NTSC */

output tv_in_reset_b; // Reset signal to ADV7185
output tv_in_i2c_clock; // I2C clock output to ADV7185
output tv_in_i2c_data; // I2C data line to ADV7185
input [19:0] tv_in_ycrcb;

output [10:0] x_coord;
output [9:0] y_coord;

/*Set bars - this determines the zones where the discs will be detected*/
reg [9:0] barl, bar2, bar3, bar4, barb;
initial barl = 10’h093;

initial bar2 = 10’hOF4;
initial bar3 = 10’h16F;
initial bar4 = 10’h17F;
initial barb5 = 10°h18D;

wire [63:0] hexbank;
wire [7:0] region_leds;
wire [63:0] hex_out;
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wire [7:0] vram_data_out;
reg [17:0] vram_addr;

reg [7:0] vram_data_in;
reg vram_clk;

reg vram_we;

wire [9:0] x_coord_tmp;
assign x_coord = {0, x_coord_tmp};

vga_with_ram vr(reset, clock_27mhz, vga_out_red, vga_out_green,
vga_out_blue,

vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,

vga_out_hsync, vga_out_vsync,

vram_addr, vram_data_in, vram_data_out, vram_clk, vram_we, barl, bar2, bar3,
bar4, barb5,region_leds, x_coord_tmp, y_coord, trigger);

adv7185init adv7185(.reset(reset), .clock_27mhz(clock_27mhz),
.source(1’°b0), .tv_in_reset_b(tv_in_reset_b),
.tv_in_i2c_clock(tv_in_i2c_clock),
.tv_in_i2c_data(tv_in_i2c_data));

wire [29:0] ycrcb; // video data (luminance, chrominance)
wire [2:0] f£fvh; // sync for field, vertical, horizontal
wire dv; // data valid

ntsc_decode decode (.clk(tv_in_line_clockl), .reset(reset),
.tv_in_ycrcb(tv_in_ycrcb[19:10]),
.ycrcb(ycreb), .f(fvh[2]),
.v(fvh([1]), .h(fvh[0]), .data_valid(dv));

/* Display memory: test pattern or NTSC video */

//Put test pattern on vdata3

wire [17:0] vaddr3;

wire [7:0] vdata3;

wire vclk3;

wire vwe3;

vid_test_pat vp3 (clock_27mhz,vaddr3,vdata3,vclk3,vwe3);

//Convert YCrCb data to RGB data
wire [7:0] R, G, B;
YCrCb2RGB color_conv(R,G,B,clock_27mhz,reset,ycrcb[29:20] ,ycrcb[19:10],ycrcb[9:0]);

//Put NTSC-in signal on vdatad
wire [17:0] vaddr4;

wire [7:0] vdata4;

wire vwed;
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re vclk4;
sc_to_ram vp4 (.clk(tv_in_line_clockl),

vaddr (vaddr4), .vwe(vwed), .vdata(vdata4d));

elect video source
lways @(switch[0])
case (switch[0])
1°b0: begin // £ill video RAM with NTSC video data

vram_addr = vaddré4;

vram_data_in = vdata4; // luminance data
vram_clk = tv_in_line_clockl; //vclké4;
vram_we = vwe4;

end

1°bl: begin // £ill video RAM with b/w bars

vram_addr = vaddr3;
vram_data_in = vdata3;
vram_clk = vclk3;

vram_we = vwe3;

re
re

//
al
be

2°d0:
2°d1:
2°d2:
2°d3:

begin
if
if

end

begin
if

end
endcase // case(switch[0])

g bu_old, bd_old, br_old, bl_old;
g [3:0] line_speed;

diagnostic mode

ways @ (posedge clock_27mhz)
gin

bu_old <= “upbutton;
bd_old <= “downbutton;

case (switch[7:6])
line_speed <= 4’d2;
line_speed <= 4°d5;
line_speed <= 4°d10;
line_speed <= 4’d15;
endcase

if (switch[3:1] == 3’d1l)

(“upbutton && “bu_old) barl <= barl - line_speed;
("downbutton && “bd_old) barl <= barl + line_speed;
if (switch[3:1] == 3°d2)

(Tupbutton && “bu_old) bar2 <= bar2 - line_speed;

27
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if (“downbutton && ~“bd_old) bar2 <= bar2 + line_speed;
end

if (switch[3:1] == 3°d3)
begin
if (Tupbutton && “bu_old) bar3 <= bar3 - line_speed;
if (“downbutton && ~“bd_old) bar3 <= bar3 + line_speed;
end

if (switch[3:1] == 3°d4)
begin
if (“upbutton &% “bu_old) bar4 <= bar4 - line_speed;
if (“downbutton && ~“bd_old) bar4 <= bar4 + line_speed;
end

if (switch[3:1] == 3°d5)
begin
if (Tupbutton && “bu_old) barb <= bar5 - line_speed;
if (“downbutton && “bd_old) barb5 <= bar5 + line_speed;
end
end // always @ (posedge clock_27mhz)

assign ledbank
assign hexbank
/*
display_16hex my_display(reset, clock_27mhz, hexbank,
disp_blank, disp_clock, disp_rs,
disp_ce_b, disp_reset_b, disp_data_out);
*/
endmodule // detection_toplevel

“region_leds;
64°d0; //= hex_out;

6.1.2 VGA RAM module (vga_with_ram.v)

// SVGA video module with dual-port video ram
// the vram_* lines are used to read/write to the video RAM

//

module vga_with_ram (reset, clock_27mhz, vga_out_red, vga_out_green,
vga_out_blue,
vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync,
vram_addr, vram_data_in, vram_data_out, vram_clk,
vram_we, barl, bar2, bar3, bar4, bar5, region_leds,
coord_x, coord_y, trigger);

input reset; // Active high reset, synchronous with 27MHz clock
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input clock_27mhz; // 27MHz input clock

output [7:0] vga_out_red, vga_out_green, vga_out_blue; // Outputs to DAC
output vga_out_sync_b, vga_out_blank_b; // Composite sync/blank outputs to DAC
output vga_out_pixel_clock; // Pixel clock for DAC

output vga_out_hsync, vga_out_vsync; // Sync outputs to VGA connector

input [9:0] barl, bar2, bar3, bar4, barb; //zone bars
output [7:0] region_leds;

input [17:0] vram_addr; // video ram address
input [7:0] vram_data_in; // video ram data input

input

vram_clk, vram_we; // video ram clock and write enable

output [7:0] vram_data_out; // video ram data output

output [9:0] coord_x, coord_y; //aiming coords
output trigger;

//assign discd_x_test
// assign discd_y_test

10°b0000011010;
10°b0000011010;

II1117777777770777777770777777777777777777777777777777777777777777777777777777

//

// Timing values

//

LI1I111777777777777777777777777777777777777777777777777777777777777777777777

// 1024 X 768 @ 75Hz with a 78.750MHz pixel clock

‘define
‘define
‘define
‘define
‘define

‘define
‘define
‘define
‘define
‘define

H_ACTIVE 1024 // pixels
H_FRONT_PORCH 16 // pixels
H_SYNCH 96 // pixzels
H_BACK_PORCH 176 // pixels
H_TOTAL 1312 // pixels

V_ACTIVE 768 // lines
V_FRONT_PORCH 1 // lines
V_SYNCH 3 // lines
V_BACK_PORCH 28 // lines
V_TOTAL 800 // lines

[I11177777777777777777777777777777777777777777777777777777777777777777777777

//

// Internal signals

//
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[I1I177777177777777777777777777777777777777777777777777777777777777777117777

wire pixel_clock;
reg prst, pixel_reset; // Active high reset, synchronous with pixel clock

reg [7:0] vga_out_red, vga_out_blue, vga_out_green;
wire vga_out_sync_b, vga_out_blank_b;
reg hsyncl, hsync2, vga_out_hsync, vsyncl, vsync2, vga_out_vsync;

reg [10:0] pixel_count; // Counts pixels in each line
reg [10:0] line_count; // Counts lines in each frame

reg [9:0] xpos; // horizontal image pixel count
reg [9:0] ypos; // vertical image pixel count

LI11111777777777777777777777777777777777777777777777777777777777777777777777
//

// Generate the pixel clock (78.750MHz)

//
LITIT7177777777777777777777777777777777777777777777777777777777777777777777

// synthesis attribute period of clock_27mhz is 37ns;

DCM vga_dcm (.CLKIN(clock_27mhz),

.RST(1°b0),

.CLKFX (pixel_clock));
// synthesis attribute DLL_FREQUENCY_MODE of vga_dcm is "LOW"
// synthesis attribute DUTY_CYCLE_CORRECTION of vga_dcm is "TRUE"
// synthesis attribute STARTUP_WAIT of vga_dcm is "TRUE"
// synthesis attribute DFS_FREQUENCY_MODE of vga_dcm is "LOW"
// synthesis attribute CLKFX_DIVIDE of vga_dcm is 9
// synthesis attribute CLKFX_MULTIPLY of vga_dcm is 26
// synthesis attribute CLK_FEEDBACK of vga_dcm is "NONE"
// synthesis attribute CLKOUT_PHASE_SHIFT of vga_dcm is "NONE"
// synthesis attribute PHASE_SHIFT of vga_dcm is O
// synthesis attribute clkin_period of vga_dcm is 37

assign vga_out_pixel_clock = “pixel_clock;

always @(posedge pixel_clock)
begin
prst <= reset;
pixel_reset <= prst;
end

LIII11777777770777777770777777777777777777777777777777777777777777777777777777
//
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// Pixel and Line Counters
//
LITI1117777777077777777777777777777777777777777777777777777777777777777777777
always @(posedge pixel_clock)
if (pixel_reset)
begin
pixel_count <= 0;
line_count <= 0;
end
else if (pixel_count == (‘H_TOTAL-1)) // last pixel in the line
begin
pixel_count <= 0;
if (line_count == (‘V_TOTAL-1)) // last line of the frame
line_count <= 0;
else
line_count <= line_count + 1;
end
else
pixel_count <= pixel_count +1;

always Q(pixel_reset or pixel_count or line_count)
if (pixel_reset)
begin
xpos <= 0;
ypos <= 0;
end
else begin
if (pixel_count > ‘H_FRONT_PORCH)
xpos <= pixel_count - ‘H_FRONT_PORCH;
if (line_count > ‘V_FRONT_PORCH)
ypos <= line_count - ‘V_FRONT_PORCH;
end

LI11117777777777777777777777777777777777777777777777777777777777777777777777
//

// Sync and Blank Signals

//
LI11111777777777777777777777777777777777777777777777777777777777777777777777

always @ (posedge pixel_clock)

begin

if (pixel_reset)

begin

hsyncl <= 1;
hsync2 <= 1;
vga_out_hsync <= 1;
vsyncl <= 1;
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vsync2 <= 1;
vga_out_vsync <= 1;
end
else
begin

// Horizontal sync

if (pixel_count == (‘H_ACTIVE+‘H_FRONT_PORCH))
hsyncl <= 0; // start of h_sync

else if (pixel_count == (‘H_ACTIVE+‘H_FRONT_PORCH+‘H_SYNCH))
hsyncl <= 1; // end of h_sync

// Vertical sync
if (pixel_count == (‘H_TOTAL-1))
begin
if (line_count == (‘V_ACTIVE+‘V_FRONT_PORCH))
vsyncl <= 0; // start of v_sync
else if (line_count == (‘V_ACTIVE+‘V_FRONT_PORCH+‘V_SYNCH))
vsyncl <= 1; // end of v_sync
end

end

// Delay hsync and vsync by two cycles to compensate for 2 cycles of
// pipeline delay in the DAC.

hsync2 <= hsyncl;

vga_out_hsync <= hsync2;

vsync2 <= vsyncl;

vga_out_vsync <= vsync2;

end

// Blanking
assign vga_out_blank_b = ((pixel_count<‘H_ACTIVE) & (line_count<‘V_ACTIVE));

// Composite sync
assign vga_out_sync_b = hsyncl = vsyncl;

LI11177777777777777777777777777777777777777777777777777777777777777777777777
//

// Display an image from dual-port RAM

//
LI1111177077777777777777777777777777777777777777777777777777777777777777/7777

reg [7:0] pixdata; // for the memory read pipeline
reg [17:0] memaddr; // for memory read address
wire [7:0] memdata; // for memory output data 8 bits: BBGGGRRR
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// read data from memory at pixel clock, with one pipeline stage
reg [9:0] interpl_x = 10°d0;

reg [9:0] interpl_y = 10°d0;

reg interpl_detect = 1°b0;

reg [26:0] count;
reg start_count;

initial count = O;
initial start_count = 0;

reg trigger, trigger_temp;
reg [9:0] coord_x,coord_y;

initial coord_x
initial coord_y

10°h17f;
10°h93;

//assign hexbank = {4°hF,34°d0,count};

wire [9:0] disca_x, disca_y, discb_x, discb_y, discc_x, discc_y, discd_x, discd_y;
wire disc_detect;
wire [7:0] region_leds;

wire [7:0] regionl_leds;
wire [1:0] regionl, region2;

reg trigger_count_start = 0;
reg [9:0] trigger_count;

//trajectory instance for discl
trajectory trajl(pixel_clock, reset, xpos, ypos, 26°d0, 26°d0, memdata, barl, bar2, bar3, bar4, b
discb_y, discc_x, discc_y, discd_x, discd_y, disc_detect, regionl_leds, interp_display, regioni)

//trajectory instance for disc2 -- not used
//trajectory traj2(pixel_clock, reset, xpos, ypos, 26°d9000000, count, memdata, barl, bar2, bar3,
// discb2_y, discc2_x, discc2_y, discd2_x, discd2_y, disc2_detect, region_leds, interp2_display,

//Diagnostic display
//assign hexbank = {2°d0,disca2_x,2°d0,disca2_y,14°d0,count};

always @(posedge pixel_clock)
begin

if (reset) count <= 26°d1;



duckhunter.tex 2572 2005-12-14 21:54:437 alisy

if (disc_detect)
begin
interpl_x <= discd_x + (discd_x - discc_x);
interpl_y <= discd_y + (discd_y - discc_y);
interpl_detect <= 1’bl;
end

//Create trigger signal
trigger_temp <= interp_display;
if (“trigger_temp && interp_display)
begin
trigger <= 1°’bl;
trigger_count_start <= 1’bl;
end
else if (trigger_count == 10°d1000)
begin
trigger <= 1°b0;
trigger_count_start <= 1’b0;
end
else if (trigger_count_start)
begin
trigger <= 1°bl;
trigger_count <= trigger_count + 1;
end
else
trigger <= 0;

//Output coordinates
if (interpl_detect == 1)
begin
coord_x <= interpl_x - 17;
coord_y <= interpl_y + 4;
end
else //position near center of screen
begin
coord_x <= 10’hl17F;
coord_y <= 10’°h93;
end

if (disca_x !'= 10°d0) count <= count + 1;
memaddr <= {xpos[9:1] + ypos[9:1]1%512}; // oversample
/*Display red boxes for first discx*/

/*Draw calibration lines*/
if (ypos == barl)
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pixdata <= 8’b11100000;
else if (ypos == bar2)
pixdata <= 8’b00000011;
else if (ypos == bar3)
pixdata <= 8’b00011100;
else if (ypos == bar4)
pixdata <= 8’b11111100;
else if (ypos == barb)
pixdata <= 8’b11100011;

//Display horizontal threshold lines
// else if (xpos == horiz_scopel)

//  pixdata <= 8’b11100000;

// else if (xpos == horiz_scope2)

//  pixdata <= 8’b11100000;

//Display trajectory boxes
else if (disc_detect == 1 && xpos>disca_x && xpos<disca_x+32 && ypos>disca_y && ypos<disca_y
pixdata <= 8’b11100000;

else if (disc_detect == 1 && xpos>discb_x && xpos<discb_x+32 && ypos>discb_y && ypos<discb_y+32)
pixdata <= 8’b11100000;

else if (disc_detect == 1 && xpos>discc_x && xpos<discc_x+32 && ypos>discc_y && ypos<discc_y+32)
pixdata <= 8’b11100000;

else if (disc_detect == 1 && xpos>discd_x && xpos<discd_x+32 && ypos>discd_y && ypos<discd_y+32)
pixdata <= 8’b11100000;

/*Display blue box for interpolation*/
else if (interpl_detect == 1 && interp_display == 1 && xpos>interpl_x && xpos<interpl_x+32 && ypos>i
pixdata <= 8’b00000011;

//Display green box corresponding to gun aiming
else if (xpos>coord_x && xpos<coord_x+32 && ypos>coord_y && ypos<coord_y+32)
pixdata <= 8’b00011100;

//Paint rest of picture
else
pixdata <= memdata;

end

// RAM with a 512 x 512 b&w image, 8-bits per pixel
// the vga output is 1024x768, so we skip 2 bits of xpos and ypos, each

videoram vram( .addra(memaddr), .clka(pixel_clock), .douta(memdata),
.addrb(vram_addr),
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.doutb(vram_data_out), .dinb(vram_data_in),
.clkb(vram_clk), .web(vram_we), .wea(1’b0), .dina(8’b0));

// feed pixel values to VGA machine

always @ (posedge pixel_clock)
begin

vga_out_red <= {pixdatal[7:5], 5’b00000};
vga_out_green <= {pixdatal4:2], 5’b00000};
vga_out_blue <= {pixdatal[1:0], 6’b000000};

/*
vga_out_red <= pixdatal[7:5]; // for black and white display
vga_out_green <= pixdatal[4:2];
vga_out_blue <= pixdatal[1:0];
*/

end

endmodule

6.1.3 Trajectory Module (trajectory.v)

module trajectory(clock, reset, xpos, ypos, offset, count, memdata, barl, bar2, bar3, bar4, bar5, di
discb_y, discc_x, discc_y, discd_x, discd_y, disc_detect, region_leds, display_interp, region_de

input clock, reset;

input [9:0] xpos, ypos;

input [25:0] offset, count;

input [7:0] memdata;

input [9:0] barl, bar2, bar3, bar4, barb;

output [9:0] disca_x, disca_y, discb_x, discb_y, discc_x, discc_y, discd_x, discd_y;
output [7:0] region_leds;

output disc_detect;

output display_interp;

output [1:0] region_detect;

reg [9:0] disca_x, disca_y, discb_x, discb_y, discc_x, discc_y, discd_x, discd_y;
reg [1:0] pix_detect;
reg [1:0] region_detect;

reg disc_detect;
reg [7:0] region_leds;
reg display_interp;

reg start_interval_count, start_wait_count;
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initial velocity = 26°d0;
initial wait_count = 26°d0;
initial start_wait_count = 1’b0;
initial region_leds = 8’d0;
initial disca_x = 10’d0;
initial disca_y = 10’d0;
initial discb_x = 10’dO;
initial discb_y = 10’d0;
initial discc_x = 10°dO0;
initial discc_y = 10’d0;
initial discd_x = 10°d0;
initial discd_y = 10°d0;
parameter horiz_scopel = 150;
parameter horiz_scope2 = 600;
always @ (posedge clock)
begin
//Wait for trigger signal
if (wait_count == 26°d18000000) display_interp <= 1’bl;

if (start_wait_count) wait_count <= wait_count + 1;

if (reset)
begin

//reset all hit counters

disc_detect <= 1°Db0;

disca_
disca_
discb_
discb_
discc_
discc_
discd_
discd_

x <= 10°d0;
y <= 10’°d0;
x <= 10’d0;
y <= 10°d0;
x <= 10°dO0;
y <= 10’d0;
x <= 10°d0;
y <= 10°d0;

region_detect <= 2’b0;
region_leds <= 8°’d0;

pix_detect <= 27d0;

interval_count <= 26°d0;
velocity <= 26°d0;

37
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start_interval_count <= 1’b0;
start_wait_count <= 1°b0;
wait_count <= 26°d0;

display_interp <= 1’b0;

end

/*Stage 4x*/
//Final part

if (xpos==discd_x+2 && ypos==discd_y && memdata == 8’b11111111 && disc_detect == 0 &%
region_detect == 2’d3)
begin

velocity <= interval_count;
start_wait_count <= 1’bil;
start_interval_count <= 1’b0;
//interval_count <= 26°d0;
wait_count <= 26’d0;
disc_detect <= 1°’b1;
pix_detect <= 2°4d0;
region_detect <= 2’d4;
region_leds <= 8’b00001111;
end

//*Second partx//
else if (xpos==discd_x+1 && ypos==discd_y && memdata == 8’b11111111 && disc_detect ==

&& region_detect == 2’°d3 && pix_detect == 2°d1l)
begin

pix_detect <= 2’d2;

end

//*First part*//
else if (ypos>barl && ypos<bar2 && memdata == 8’b11111111 && disc_detect ==
&& xpos>horiz_scopel && xpos<horiz_scope2 && region_detect == 2’d3)
begin
pix_detect <= 2’d1;
discd_x <= xpos;
discd_y <= ypos;
//region_leds <= 8’b00000100;
end

//*Clear part - reset if next pixel isn’t whitex//
else if ((xpos==discd_x+1 || xpos==discd_x+2) && ypos==discd_y && memdata != 8°b11111111 && disc_det
&& region_detect == 2°d3 && (pix_detect == 2°dl || pix_detect == 2°d2))
begin
pix_detect <= 2°4d0;
discd_x <= 10’d0;
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discd_y <= 10’dO0;
//region_leds <= 8°d0;
end

/*Stage 3 ————————————————————— */
//*Final partx//
if (xpos==discc_x+2 && ypos==discc_y && memdata == 8°b11111111 && disc_detect == 0
&& region_detect == 2°d2) //&& pix_detect == 2’d2)
begin
start_interval_count <= 1’bl;
interval_count <= 26°d0;
start_wait_count <= 1’b0;
wait_count <= 26°d0;
velocity <= 26°d0;
pix_detect <= 2°4d0;
region_detect <= 2’d3;
region_leds <= 8’b00000111;
end

//*Second partx//
else if (xpos==discc_x+1 && ypos==discc_y && memdata == 8’b11111111 && disc_detect ==
&& region_detect == 2°d2 && pix_detect == 2’d1)
begin
//disc_detect <= 1’bil;
pix_detect <= 2’d2;
//region_detect <= 2’d1;
//disca_x <= xpos;
//disca_y <= ypos;
//region_leds <= 8’b0000001;
end

//*First part*//
else if (ypos>bar2 && ypos<bar3 && memdata == 8’b11111111 &% disc_detect ==
&& xpos>horiz_scopel && xpos<horiz_scope2 && region_detect == 2’d2)
begin
pix_detect <= 2’d1;
discc_x <= xpos;
discc_y <= ypos;
//region_leds <= 8’b00000100;
end

//*Clear part - reset if next pixel isn’t whitex//
else if ((xpos==discc_x+1 || xpos==discc_x+2) && ypos==discc_y && memdata != 8°b11111111 && disc_det
&& region_detect == 2°d2 && (pix_detect == 2°dl || pix_detect == 2°d2))
begin
pix_detect <= 2°4d0;
discc_x <= 10°d0;
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discc_y <= 10’d0;
//region_leds <= 8°d0;
end

/*Stage 2 ————————————————————— */
//*Final partx//
if (xpos==discb_x+2 && ypos==discb_y && memdata == 8°b11111111 && disc_detect ==
&& region_detect == 2°dl) //&& pix_detect == 2’d2)
begin
//disc_detect <= 1’bil;
pix_detect <= 27d0;
region_detect <= 2’d2;
//disca_x <= xpos;
//disca_y <= ypos;
region_leds <= 8’b00000011;
end

//*Second partx//
else if (xpos==discb_x+1 && ypos==discb_y && memdata == 8’b11111111 && disc_detect ==

&& region_detect == 2’dl && pix_detect == 2’d1)

begin
//disc_detect <= 1’bil;
pix_detect <= 2’d2;
//region_detect <= 2°d1;
//disca_x <= xpos;
//disca_y <= ypos;
//region_leds <= 8’b0000001;

end

//*First partx//
else if (ypos>bar3 && ypos<bar4d && memdata == 8°b11111111 && disc_detect ==
&& xpos>horiz_scopel && xpos<horiz_scope2 && region_detect == 2’d1)
begin
pix_detect <= 2’dil;
discb_x <= xpos;
discb_y <= ypos;
//region_leds <= 8’b00000100;
end

//*Clear part - reset if next pixel isn’t whitex//
else if ((xpos==discb_x+1 || xpos==discb_x+2) && ypos==discb_y && memdata != 8’b11111111 && disc_det
&& region_detect == 2°dl && (pix_detect == 2°dl || pix_detect == 2°d2))
begin
pix_detect <= 2°4d0;
discb_x <= 10’d0;
discb_y <= 10°’d0;
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//region_leds <= 8°d0;
end

/*Stage 1 —————————————————————————— */
//*Final partx//
if (xpos==disca_x+2 && ypos==disca_y && memdata == 8’b11111111 && disc_detect ==
&& region_detect == 2°d0) //&& pix_detect == 2’d2)
begin
//disc_detect <= 1’bil;
pix_detect <= 2°d0;
region_detect <= 2’dil;
//disca_x <= xpos;
//disca_y <= ypos;
region_leds <= 8’b00000001;
end

//*Second partx//
else if (xpos==disca_x+1 && ypos==disca_y && memdata == 8’b11111111 && disc_detect ==
&& region_detect == 2°d0 && pix_detect == 2’d1)
begin
//disc_detect <= 1’bl;
pix_detect <= 2’d2;
//region_detect <= 2°d1;
//disca_x <= xpos;
//disca_y <= ypos;
region_leds <= 8’b11000000;

end

//*First partx//
else if (ypos>bard && ypos<bar5 && memdata == 8°b11111111 && disc_detect ==
&& xpos>horiz_scopel && xpos<horiz_scope2 && region_detect == 2’d0)
//&& count >= offset)
begin
pix_detect <= 2’d1;
disca_x <= xpos;
disca_y <= ypos;
region_leds <= 8’di;
// start_count <= 1°’bil;
// count <= 26°d0;
// region_leds <= 8’b10000000;

end

//*Clear part - reset if next pixel isn’t whitex*//
else if ((xpos==disca_x+1 || xpos==disca_x+2) && ypos==disca_y && memdata != 8’b11111111 && disc_det
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&& region_detect == 2°d0 && (pix_detect == 2°dl || pix_detect == 2°d2))

begin

pix_detect <= 2°4d0;

disca_x <= 10°d0;

disca_y <= 10’d0;
//region_leds <= 8’°b00100000;

end

end

// always @ (posedge clock)

endmodule // trajectory

6.1.4 Calibration Modules

video generation:

// generates NTSC encoded video output used for calibration

module video (reset, clock_27mhz, tv_out_ycrcb, tv_out_reset_b, tv_out_clock,

tv_
tv_
tv_

input
input
input

input
input

out_i2c_clock, tv_out_i2c_data, tv_out_pal_ntsc,
out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
out_subcar_reset, mode, up, down, left, right, enable, x_pos, y_pos);

reset;
clock_27mhz;
enable;

[2:0] mode;
up, down, left, right;

output [9:0] tv_out_ycrcb;
output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,

tv_out_
tv_out_

pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
subcar_reset;

output [10:0] x_pos;
output [9:0] y_pos;

wire colorbars, vbar, hbar;

assign colorbars = (mode == | mode == 5);
assign vbar = (mode == | mode == 3);
assign hbar = (mode == 2 | mode == 4);

parameter SHEIGHT = 486;
parameter SWIDTH = 720;

//

// Bar generator
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//

wire [9:0] y_
wire [10:0] =x_
reg [9:0] ry_
reg [10:0] rx_

//  initial ry_pos
//  initial rx_pos

wire [9:0] hbar_ycrcb, vbar_ycrcb;

pos;
pos;
pos;
pos;

200;
300;

always @(posedge clock_27mhz)

begin
if (reset)
begin
ry_pos <= 20;
rx_pos <= 20;
end
else if (enable)
begin
if (rx_pos <

SWIDTH)

rx_pos <= rx_pos + 1;

else
rx_pos <= 0;
if (rx_pos <

SHEIGHT)

ry_pos <= ry_pos + 1;

else
ry_pos <= 0;
end

end

assign x_pos =
assign y_pos =

hbar barl (reset, clock_27mhz, hbar_ycrcb,

IX_pos;
Iy_pos;

defparam barl.dim = 32;

vbar bar2 (reset, clock_27mhz, vbar_ycrcb,

defparam bar2.dim = 32;

//

// ADV7194 (Output)

/7

assign tv_out_clock = clock_27mhz;

assign tv_out_pal_ntsc

1°b0;

y_pos);

X_pos) ;
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assign tv_out_vsync_b = 0;
assign tv_out_hsync_b = 0;
assign tv_out_subcar_reset = 0;
assign tv_out_blank_b = 0;

adv7194init init7194 (reset, clock_27mhz, colorbars,
tv_out_reset_b, tv_out_i2c_clock, tv_out_i2c_data);

assign tv_out_ycrcb = vbar ? vbar_ycrcb :
(hbar 7 hbar_ycrcb : (vbar_ycrcb | hbar_ycrcb));

endmodule

generate vertical bar:
Note: the module to generate a horizontal bar is not included because it is so similar to this one.

module vbar (reset, clock_27mhz, ycrcb, h_pos);

input reset, clock_27mhz;
input [10:0] h_pos;
output [9:0] ycrcb;

reg [9:0] y, cr, cb;

reg [10:0] sample_count;

reg [9:0] line_count;

reg £, v, h;

reg [7:0] xy;

reg [9:0] ycrcb;

reg [9:0] h_position, v_position;

always Q(negedge clock_27mhz)
if (reset)
begin
sample_count <= O;
line_count <= 0;
end
else
begin
if (sample_count < 1440)
// Output active video
// 720 pixels per line, two samples (Y and C) per sposition
// Sample order is CbO, YO, Cril, Y1, Cb2, Y2,
case (sample_count[1:0])
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2°b00: ycrcb <= cb;
2°b01: ycrcb <= y;
2°b10: ycrcb <= cr;
2°bl11: ycrcb <= y;
endcase
else if (sample_count == 1440)
// Start header for the EAV timecode
ycrcb <= 10’h3FC;
else if (sample_count == 1441)
ycrcb <= 10°h000;
else if (sample_count == 1442)
ycrcb <= 10’h000;
else if (sample_count == 1443)
// EAV timecode
begin
ycrcb <= {xy, 2’b00};
$display("EAV at line %d, sample %d is Ob%B",
line_count, sample_count, xy);
end
else if (sample_count < 1712)
ycrcb <= sample_count[0] 7 10°h200 : 10°h040;
else if (sample_count == 1712)
// Begin header for SAV timecode
ycrcb <= 10’h3£C;
else if (sample_count == 1713)
ycrcb <= 10°h000;
else if (sample_count == 1714)
ycrcb <= 10’h000;
else if (sample_count == 1715)
// SAV timecode
begin
ycrcb <= {xy, 2’b00};
$display("SAV at line %d, sample %d is Ob%B",
line_count, sample_count, xy);
end

if (sample_count == 1715)
begin
sample_count <= 0;
if (line_count == 524)
line_count <= 0;
else
line_count <= line_count+1;
end
else
sample_count <= sample_count+1;
end
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// Compute the F, V, H, X, and Y bits for the timecodes
always @(sample_count or line_count)

begin
f <= (line_count < 9) || (line_count > 271);
v <= (line_count < 19) || ((line_count > 262) && (line_count < 282));

h <= (sample_count > 1439) & (sample_count < 1715);
xy <= {1’b1, £, v, h, v"h, £°h, £7v, £ v h};
end

always @(sample_count or line_count)
if (line_count < 19)
begin
h_position <= 0;
v_position <= 0;
end
else if (line_count < 262)
begin
h_position <= (sample_count[10:1] < 719) 7
sample_count [10:1]+sample_count [0] : 0;
v_position <= {line_count-19, 1’bil};
end
else if (line_count < 282)
begin
h_position <= 0;
v_position <= 0;
end
else
begin
h_position <= (sample_count[10:1] < 719) 7
sample_count [10:1]+sample_count [0] : O;
v_position <= {line_count-281, 1°b0};
end

parameter SHEIGHT = 486;
parameter SWIDTH = 720;

parameter dim = 64;

always @(h_position or v_position or h_pos)
if ((h_position > h_pos) && (h_position < h_pos+dim)
&& (v_position > 0) && (v_position < SHEIGHT))
begin
y <= 512;
cr <= 512;
cb <= 512;

end
else
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begin
y <= 0;
cr <= b12;
cb <= 512;
end

endmodule

hit detection:

// hit detection module

// inputs: optical signal from light gun

// reset
// 27mhz clock
// threshold value

// outputs: hit detect signal
module hit_detect(reset, clock_27mhz, hit, optical, enable);

input clock_27mhz, reset, enable;
input optical;

output hit;

parameter thresh = 20000;

reg [15:0] count;
reg hit;

always @(posedge clock_27mhz)
begin
if (reset)
begin
hit <= 0;
count <= 0;
end
else if (optical & enable)
begin
count <= count + 1;
if (count == thresh)
hit <= 1;
// hit is high for one clock pulse only
end
else
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begin
count <= 0;
hit <= 0;
end
end // always @ (posedge clock_27mhz)

endmodule

hit location:

// detect hit location using hit output from hit_detect
// and video generator outputs

module hit_location(clock_27mhz, reset, video_mode,
hit, bar_x_pos, bar_y_pos, x_pos, y_pos, X_there, y_there);

input reset;

input clock_27mhz;
input [2:0] video_mode;
input [10:0] bar_x_pos;
input [9:0] Dbar_y_pos;
input hit;

output [10:0] x_pos;
output [9:0] y_pos;
output x_there;
output y_there;

3) 71 : 0;
4) 71 : 0

video_mode =
video_mode =

(video_mode ==
(video_mode ==

wire vbar
wire hbar

I
N =
I

reg [10:0] =x_pos;
reg [9:0] y_pos;

reg X_there;
reg y_there;

// save hit positions
always Q(posedge clock_27mhz)

begin
if (reset)
begin
x_pos <= 0;
y_pos <= 0;
end

else if (hit & vbar) // detected hit at horizontal position
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begin
X_pos <= bar_x_pos;
X_there <= 1;
end
else if (hit & hbar) // detected hit at vertical position
begin
y_pos <= bar_y_pos;
y_there <= 1;
end
else
begin
x_there <= 0;
y_there <= 0;
end
end // always @ (posedge clock_27mhz)

endmodule
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calibrator:

// calibrator FSM
// outputs: x_offset[10:0], y_offset[9:0] (SIGNED offsets)

// x_aim[10:0], y_aim[9:0]
// detect_mode, detect_reset
// done

// inputs: x_hit[10:0], y_hit[9:0]
// enable

module calibrator (clock_27mhz, reset, enable, x_offset, y_offset,

x_aim, y_aim, video_mode, hit_enable, done,
x_hit, y_hit, x_there, y_there, video_state,
b0, aim_point_x, aim_point_y);

input clock_27mhz, reset, enable;
input [10:0] x_hit;

input [9:0] y_hit;

input x_there, y_there;

input bO;

input [1:0] aim_point_x;

input [1:0] aim_point_y;

output [10:0] x_offset, x_aim;
output [9:0] y_offset, y_aim;
output hit_enable;

output [2:0] video_mode;
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output done;
output [2:0] video_state;

reg [1:0] detect_mode;
reg [10:0] x_aim;
reg [9:0] y_aim;

reg [2:0] pass;

reg [2:0] video_state;
reg [2:0] video_mode;
reg hit_enable;

// FSM
always @(posedge clock_27mhz)
begin
if (reset) //reset
begin
video_state <= 0;
video_mode <= 3’b001;
hit_enable <= 1;
pass <= 0;
x_aim <= 0;
y_aim <= 0;
end
else
case (video_state)
3°b000 : video_state <= 3’b001;
3’b001: begin // x detect mode
video_mode <= 1;
video_state <= x_there 7 3’b010 : 3’°b001;
hit_enable <= 1;
end
3’b010: begin // x wait mode
video_state <= b0 7 3°b011 : 3°b010; // wait
hit_enable <= 0;
end
3’b011: begin // y detect mode
video_mode <= 2;
video_state <= y_there 7 3°b100 : 3’b011;
hit_enable <= 1;
end
3’b100: begin // y wait mode
pass <= pass + 1; // end of this pass
video_state <= b0 7 3’°b101 : 3’b100;
hit_enable <= 0;

some.
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X_

y_

en

end
3’b101: begin // start over
video_state <= 3’b001;
end
endcase // case(video_state)
aim <= 180*aim_point_x;
aim <= 114*aim_point_y;

end

// indicate when done, enabling with high pulse
// this didn’t actually get used.
assign done = (video_state == 5) 7 1 : 0;

reg signed [10:0] x_offset;
reg signed [9:0] y_offset;
// calculate offsets:
always @(x_there)

x_offset = x_aim - x_hit;
always @(y_there)

y_offset = y_aim - y_hit;

dmodule

6.1.5 Servomechanism Modules

coordinate conversion:

//
//
//
//
//
//

//
//
//
//
//
//
//

coordinate conversion module

inputs: x_coord and y_coord (from Main FSM)
x_offset and y_offset (from calibration FSM, already SIGNED)
tv_distance (switches on labkit)

outputs: h_coord (horizontal, ie bottom motor, angle)
v_coord (vertical, ie top mottor, angle)

offsets will be signed, so need to sign x,y coord

position = coord + offset

compare position to center of screen, set right/left and up/down bits
take absolute value of difference

convert to larger blocks, resolution = 10 blocks / half screen.

look up address is {distance, pos_diff}

output coord is (output of ROM + neutral coord value)

51
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module coord_conversion(x_coord, y_coord, x_offset, y_offset, tv_distance,
h_coord, v_coord, clock, reset);
input clock, reset;

input [10:0] x_coord; // unsigned target coordinates from main FSM
input [9:0] y_coord;
input [10:0] x_offset; // signed offset values from calibration FSM

input [9:0] y_offset;
input [3:0] tv_distance; // (debounced) switch inputs from labkit

output [7:0] h_coord, v_coord; // signals for the motor drivers

parameter signed SWIDTH = 1024;
parameter signed SHEIGHT = 768;
//  parameter signed SWIDTH = 768;
//  parameter signed SHEIGHT = 384;

16; // each half-screen is divided into XRES by YRES blocks
12;

parameter XRES
parameter YRES

// sign extend the (always positive) x and y coords.
// do i need to extend the offsets too??
wire signed [11:0] sx_coord, sx_offset;
wire signed [10:0] sy_coord, sy_offset;

assign sx_coord = {x_coord[10], x_coord};
assign sy_coord = {y_coord[9], y_coord};
assign sx_offset = {x_offset[10], x_offset};
assign sy_offset = {y_offset[9], y_offset};

// calculate position to aim at:
wire signed [11:0] x_pos;
wire signed [10:0] y_pos;

assign y_pos = sy_coord+sy_offset;
assign x_pos sy_coord+sx_offset;

reg rhp, thp; // right-half-plane and top-half-plane indicators.
// when rhp = 1, it the target is in the right half
// of the screen.

reg signed [10:0] x_diff; // these are signed too now, but values should always be positive.

reg signed [9:0] y_diff; // the maximum values are half of the max for x_coord and y_coord
wire [3:0] x_block_tmp, y_block_tmp; // indicate which of the "chunks" the target is in.
wire [3:0] x_block, y_block;// ultimately part of the lookup address
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always @(x_pos)
begin
if (x_pos >= SWIDTH/2) // target is in right half of screen
begin
rhp = 1;
x_diff = x_pos - SWIDTH/2;
end
else
begin
rhp = 0;
x_diff = SWIDTH/2 - x_pos;
end
end // always @ (x_pos)

always @(y_pos)
begin
if (y_pos >= SHEIGHT/2) // target is in bottom half of screen.
// y_pos INCREASES as it moves DOWN!
begin
thp = 0;
y_diff = y_pos - SHEIGHT/2;
end
else
begin
thp = 1;
y_diff = SHEIGHT/2 - y_pos;
end
end // always @ (y_pos)

assign x_block_tmp = (x_diff - x_diff’ (SWIDTH/(2*XRES)))/(SWIDTH/(2*XRES))+rhp;
assign y_block_tmp = (y_diff - y_diff%(SHEIGHT/(2*YRES)))/(SHEIGHT/ (2*YRES))+thp;

//make sure blocks are within bounds
assign x_block = (x_block_tmp < XRES) ? x_block_tmp : XRES - 1;
assign y_block = (y_block_tmp < YRES) 7 y_block_tmp : YRES - 1;

wire [7:0] x_addr, y_addr;
assign x_addr = {tv_distance,x_block};
assign y_addr = {tv_distance,y_block};

wire [7:0] h_ram, v_ram;

x_ram xram(x_addr, clock, h_ram);
y_ram yram(y_addr, clock, v_ram);
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parameter h_neutral = 152;
parameter v_neutral = 100;

assign h_coord = rhp ? (h_neutral + h_ram) : (h_neutral - h_ram);
assign v_coord = thp 7 (v_neutral + v_ram) : (v_neutral - v_ram);
endmodule
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TV coordinate conversion:

//
//
//
//
//
//

//
//
//
//
//
//
//

coordinate conversion module for TV

inputs: x_coord and y_coord (from Main FSM)
x_offset and y_offset (from calibration FSM, already SIGNED)
tv_distance (switches on labkit)

outputs: h_coord (horizontal, ie bottom motor, angle)
v_coord (vertical, ie top mottor, angle)

offsets will be signed, so need to sign x,y coord

position = coord + offset

compare position to center of screen, set right/left and up/down bits
take absolute value of difference

convert to larger blocks, resolution = 10 blocks / half screen.

look up address is {distance, pos_diff}

output coord is (output of ROM + neutral coord value)

module coord_conversion_tv(x_coord, y_coord, x_offset, y_offset, tv_distance,
h_coord, v_coord, clock, reset, x_block, y_block);

input clock, reset;

input [10:0] x_coord; // unsigned target coordinates from main FSM
input [9:0] y_coord;
input [10:0] x_offset; // signed offset values from calibration FSM

input [9:0] y_offset;
input [3:0] tv_distance; // (debounced) switch inputs from labkit

output [7:0] h_coord, v_coord; // signals for the motor drivers
output [3:0] x_block, y_block;

parameter signed SWIDTH = 720;
parameter signed SHEIGHT = 486;

parameter XRES
parameter YRES

12;

16; // each half-screen is divided into XRES by YRES blocks
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// sign extend the (always positive) x and y coords.
// do i need to extend the offsets too??
wire signed [11:0] sx_coord, sx_offset;
wire signed [10:0] sy_coord, sy_offset;

assign sx_coord = {x_coord[10], x_coord};
assign sy_coord = {y_coord[9], y_coord};
assign sx_offset = {x_offset[10], x_offset};
assign sy_offset = {y_offset[9], y_offset};

// calculate position to aim at:
wire signed [11:0] x_pos;
wire signed [10:0] y_pos;

assign y_pos = sy_coord+sy_offset;
assign x_pos = sy_coord+sx_offset;

reg rhp, thp; // right-half-plane and top-half-plane indicators.
// when rhp = 1, it the target is in the right half
// of the screen.

reg signed [10:0] x_diff; // these are signed too now, but values should always be positive.
reg signed [9:0] y_diff; // the maximum values are half of the max for x_coord and y_coord
// x_diff and y_diff refer to the distance of the position from the center of the screen

// they are used to determine which block the coords are in

reg [3:0] x_block, y_block;// ultimately part of the lookup address

always Q(x_pos)
begin
if (x_pos >= SWIDTH/2) // target is in right half of screen
begin
rhp = 1;
x_diff = x_pos - SWIDTH/2;
end
else
begin
rhp = 0;
x_diff = SWIDTH/2 - x_pos;
end
end // always @ (x_pos)

always @(y_pos)
begin
if (y_pos >= SHEIGHT/2) // target is in bottom half of screen.
// y_pos INCREASES as it moves DOWN!
begin
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thp = 0;

y_diff = y_pos - SHEIGHT/2;
end

else

begin

thp = 1;

y_diff = SHEIGHT/2 - y_pos;
end

end // always @ (y_pos)

// determine x block:

// (add rhp or thp so that there aren’t two zero blocks at the center)

always @(x_diff or rhp)
begin
if (x_diff < 45)
x_block = 0 + rhp;
else if (x_diff < 2x45)
x_block = 1 + rhp;
else if (x_diff < 3%45)
x_block = 2 + rhp;
else if (x_diff < 4x45)
x_block = 3 + rhp;
else if (x_diff < 5%45)
x_block = 4 + rhp;
else if (x_diff < 6%45)
x_block = 5 + rhp;
else if (x_diff < 7%45)
x_block = 6 + rhp;
else if (x_diff < 8%45)
x_block = 7 + rhp;
else if (x_diff < 9%45)
x_block = 8 + rhp;
else if (x_diff < 10%45)
x_block = 9 + rhp;
else if (x_diff < 11x45)
x_block = 10 + rhp;
else if (x_diff < 12x45)
x_block = 11 + rhp;
else if (x_diff < 13%45)
x_block = 12 + rhp;
else if (x_diff < 14x45)
x_block = 13 + rhp;
else if (x_diff < 15%45)
x_block = 14 + rhp;
else if (x_diff < 16%45)
x_block = 15;
end
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always @(y_diff or thp)
begin
if (y_diff < 40)
y_block = 0 + thp;
else if (y_diff < 2x40)
y_block = 1 + thp;
else if (y_diff < 3%40)
y_block = 2 + thp;
else if (y_diff < 4%40)
y_block = 3 + thp;
else if (y_diff < 5%40)
y_block = 4 + thp;
else if (y_diff < 6%40)
y_block = 5 + thp;
else if (y_diff < 7%40)
y_block = 6 + thp;
else if (y_diff < 8%40)
y_block = 7 + thp;
else if (y_diff < 9%40)
y_block = 8 + thp;
else if (y_diff < 10%40)
y_block = 9 + thp;
else if (y_diff < 11%40)
y_block = 10 + thp;
else
y_block
end

11;

wire [7:0] x_addr, y_addr;
assign x_addr = {tv_distance,x_block};
assign y_addr = {tv_distance,y_block};

wire [7:0] h_ram, v_ram;

x_ram xram(x_addr, clock, h_ram);
y_ram yram(y_addr, clock, v_ram);

parameter h_neutral = 152;
parameter v_neutral = 100;

assign h_coord = rhp ? (h_neutral + h_ram)
assign v_coord = thp 7 (v_neutral + v_ram)

endmodule

(h_neutral - h_ram);
(v_neutral - v_ram);

o7
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6.1.6 Duckhunter and Integration

This is a truncated version of the duckhunter module. It includes only the additions made to the standard
labkit.v file that can be found at http://www-mtl.mit.edu/Courses/6.111/labkit/verilog/labkit.v

LI1I1117777777077777777777777777777777777777777777777777777777777777777777777
//

// DUCKHUNTER

//
[I11777777777777777777777777777777777777777777777777777777777777777777777777

// use FPGA’s digital clock manager to produce a

// 65MHz clock (actually 64.8MHz)

wire clock_65mhz_unbuf,clock_65mhz;

DCM vclk1l(.CLKIN(clock_27mhz),.CLKFX(clock_65mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclkl is 10

// synthesis attribute CLKFX_MULTIPLY of vclkl is 24

// synthesis attribute CLK_FEEDBACK of vclkl is NONE

// synthesis attribute CLKIN_PERIOD of vclkl is 37

BUFG vclk2(.0(clock_65mhz), .I(clock_65mhz_unbuf));

// power-on reset generation

wire power_on_reset; // remain high for first 16 clocks
SRL16 reset_sr (.D(1°b0), .CLK(clock_65mhz), .Q(power_on_reset),
LA0(1°b1), .A1(1°bl), .A2(1°bl), .A3(1’bl));

defparam reset_sr.INIT = 16’hFFFF;

// ENTER button is user reset

wire reset,user_reset;

wire [7:0] switches;

debounce dbO(power_on_reset, clock_65mhz, ~“button_enter, b_enter);
debounce dbl(power_on_reset, clock_65mhz, “button_up, up);

debounce db2(power_on_reset, clock_65mhz, “button_down, down);
debounce db3(power_on_reset, clock_65mhz, “button_right, right);
debounce db4(power_on_reset, clock_65mhz, “button_left, left);
debounce db5(power_on_reset, clock_65mhz, switch[0], switches[0]);
debounce db6(power_on_reset, clock_65mhz, switch[1], switches[1]);
debounce db7(power_on_reset, clock_65mhz, switch[2], switches[2]);
debounce db8(power_on_reset, clock_65mhz, switch[3], switches[3]);
debounce db9(power_on_reset, clock_65mhz, switch[4], switches[4]);
debounce db1l0(power_on_reset, clock_65mhz, switch[5], switches[5]);
debounce dbl1l(power_on_reset, clock_65mhz, switch[6], switches[6]);
debounce dbl2(power_on_reset, clock_65mhz, switch[7], switches[7]);
debounce dbl3(power_on_reset, clock_65mhz, “buttonO, b0);

debounce dbl4(power_on_reset, clock_65mhz, “buttonl, bl);

debounce dbl5(power_on_reset, clock_65mhz, “button2, b2);

debounce dbi6(power_on_reset, clock_65mhz, “button3, b3);
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assign reset = power_on_reset | b_enter;

divider n_hz(clock_27mhz, n_hz_enable, reset_sync);
defparam n_hz.DELAY=84375; // =27000000/320

// Set Mode using labkit switches:
reg [7:0] mode;

always Q(posedge clock_27mhz)
if (b_enter & b0)
mode <= switches;

wire trigger_demo, cc_demo, cc_pong_demo, servo_demo, laser_demo,
video_output_demo, light_detect_demo, hit_location, aj_mode,
calibration_mode, c_mode_O, c_mode_1, c_mode_2, c_mode_3,
duckhunter;

assign duckhunter = (mode == 0) 7 1 : 0;

// DUCKHUNTER mode!

assign trigger_demo = (mode == 1) 7 1 : 0;

// Mode 1: Demo trigger functionality. This demo uses button_0 on
// labkit to "pull" light gun trigger.

assign cc_demo = (mode == 2) 7 1 : O;

// Mode 2: Coordinate Conversion/Motor Drive Demo.

// Uses switch[0] to scan target across screen (VGA)

// watch servos track the same path.

assign cc_pong_demo = (mode == 3) 7 1 : 0;

// Mode 3: Coordinate Conversion Demo.

// Servos track the puck from Andrew Lisy’s Pong Game (6.111 Lab 4)
// Use switch[7:4] to set puck speed, button_up and button_down
// to move paddle.

assign servo_demo = (mode == 4) 7 1 : 0;

// Mode 4: Servomechanism Demo

// use up/down and left/right buttons to move servos

// can also shoot with button0 to play duckhunt

assign laser_demo = (mode == 5) 7 1 : 0;

// Mode 5: Laser Demo

// Uses buttonO to turn on laser

// Laser pointer is currently broken.

assign video_output_demo = (mode == 6) 7 1 : 0;

// Mode 6: Outputs moving bars for calibration

// Uses switches[1:0]:

// 00: color bars

// 01: vertical bar

// 10: horizontal bar

// 11: both bars

assign light_detect_demo = (mode == 7) 7 1 : 0;
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// Mode 7: Light Detection
// Uses buttonO as enable. If enabled, outputs high pulse
// to LEDs and logic analyzer 1 if hit detected.

assign hit_location = (mode == 8) 7 1 : 0O;

assign aj_mode = (mode == 9) 7 1 : 0;

// test AJ’s stuff.

assign calibration_mode = (mode == 255)7 1:0;

// for display stuff:

assign c_mode_O = (calibration_mode & (switches[7:6] == 0)) ; // "CALIBRATION MODE"
assign c_mode_1 = (calibration_mode & (switches[7:6] == 1)) ; // calculated offset values

(calibration_mode & (switches[7:6] == 2))
(calibration_mode & (switches[7:6] == 3))

assign c_mode_2
assign c_mode_3

N N N N
[ T S

0
: 0
: 0; // hit position
0; // input offset values

// generate basic XVGA video signals:

wire [10:0] hcount;

wire [9:0] vcount;

wire hsync,vsync,blank;

xvga xvgal(clock_65mhz,hcount,vcount,hsync,vsync,blank) ;

// Test Hit Detection (Mode 7):
reg optical;
reg pos_edge, neg_edge;

always Q@(posedge clock_27mhz)
begin
optical <= useri1[0];
pos_edge <= user1[0] & ~optical;
neg_edge <= “user1[0] & optical;
end

wire [9:0] video_bars_ycrcb;

wire [2:0] video_mode;

wire [10:0] bar_x_pos;
wire [9:0] bar_y_pos;

wire hit;

wire [10:0] hit_x_pos;
wire [9:0] hit_y_pos;

wire [10:0] x_offset;
wire [10:0] x_aim;
wire [9:0] y_offset;
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wire [9:0] y_aim;
wire [1:0] detect_mode;

wire detect_reset;
wire done;
wire y_there, x_there;

// use this video to detect hits:

hit_detect hd(b0, clock_27mhz, hit, optical, hit_enable);

// detect hit position:

hit_location hl(clock_27mhz, reset, video_mode, hit,
bar_x_pos, bar_y_pos, hit_x_pos, hit_y_pos, x_there, y_there);

video bars(reset, clock_27mhz, video_bars_ycrcb, tv_out_reset_b, tv_out_clock,
tv_out_i2c_clock, tv_out_i2c_data, tv_out_pal_ntsc,
tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
tv_out_subcar_reset, video_mode, up, down, left, right, n_hz_enable,
bar_x_pos, bar_y_pos);

// calibrate based on hit position:

wire [1:0] video_mode_out;
wire [2:0] video_state;

calibrator calibrate (clock_27mhz, reset, 1’bl, x_offset, y_offset,
x_aim, y_aim, video_mode, hit_enable, done,
hit_x_pos, hit_y_pos, x_there, y_there,
video_state, b0, switches[1:0], switches[3:2]);

assign tv_out_ycrcb = video_bars_ycrcb;
wire [2:0] blob_pixel, blobl_pixel, blob2_pixel;

blob blobl(x_aim, y_aim, hcount, vcount, blobl_pixel);

blob blob2(hit_x_pos, hit_y_pos, hcount, vcount, blob2_pixel);
defparam blob2.COLOR = 3’b100;

// draw outline of screen:

wire [2:0] blobsl_pixel, blobs2_pixel, blobs3_pixel, blobs4_pixel;

blob blobs1(11°b0, 10’b0, hcount, vcount, blobsl_pixel);
defparam blobsl1.WIDTH = 4;

defparam blobsl1.HEIGHT = 486;

blob blobs2(11°d716, 10°b0, hcount, vcount, blobs2_pixel);
defparam blobs2.WIDTH = 4;

defparam blobs2.HEIGHT = 486;

blob blobs3(11°b0, 10’°b0, hcount, vcount, blobs3_pixel);
defparam blobs3.WIDTH = 720;
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//

//

//

defparam blobs3.HEIGHT = 4;
blob blobs4(11°b0, 10°d482, hcount, vcount, blobs4_pixel);
defparam blobs4.WIDTH = 720;
defparam blobs4.HEIGHT = 4;

assign blob_pixel = blobl_pixel | blob2_pixel |
blobsl_pixel | blobs2_pixel | blobs3_pixel | blobs4_pixel;

////////// MOTOR STUFF /////////////

wire [2:0] pixel_target, pixel, pixel_pong;
wire [10:0] x_coord_target, x_coord_pong;
wire [9:0] y_coord_target, y_coord_pong;
wire [7:0] h_coord, v_coord;

wire [7:0] h_coord_cc, v_coord_cc;

wire [3:0] =x_block_tv, y_block_tv;

wire [7:0] h_coord_tv, v_coord_tv;

// for motor:

reg signed [10:0] x_off;
reg signed [9:0] y_off;

initial x_off = 0;
initial y_off = O;

Generate target for standard coordinate conversion demo (mode 2):
test target(b_enter, x_coord_target, y_coord_target, clock_65mhz,
vsync, hcount, vcount, pixel_target, switches[0]);
Generate target for pong game coordinate conversion demo (mode 3):
pong_game pg(clock_27mhz,b_enter,up,down,switches[7:4],
hcount,vcount,hsync,vsync,blank,
pixel_pong, x_coord_pong, y_coord_pong);

wire [10:0] aj_x_pos;
wire [9:0] aj_y_pos;

// AJ MODE (Mode 8):
wire [7:0] aj_red, aj_green, aj_blue;

wire aj_vga_out_sync_b, aj_vga_out_blank_b, aj_vga_out_pixel_clock,
aj_vga_out_hsync, aj_vga_out_vsync;
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//

wire [7:0] ledbank;
wire [63:0] hexbank;
wire aj_trigger;

detection_toplevel aj(reset, clock_27mhz, up, down, ledbank,

aj_red, aj_green, aj_blue,

aj_vga_out_sync_b, aj_vga_out_blank_b, aj_vga_out_pixel_clock,
aj_vga_out_hsync, aj_vga_out_vsync,

tv_in_reset_b, tv_in_i2c_clock, tv_in_i2c_data,

tv_in_ycrcb, switches, tv_in_line_clockl, aj_x_pos, aj_y_pos, aj_trigger);

reg [10:0] x_coord;
reg [9:0] y_coord;

manually generate offsets:
always @(posedge clock_27mhz)
if (b3) // reset offset values
begin
y_off <= 0;
x_off <= 0;
end
else if (up)
y_off <= y_off
else if (down)
y_off <= y_off + 1;
else if (right)
x_off <= x_off + 1;
else if (left)
x_off <= x_off

|
[
-

|
[
..

wire signed [10:0] cc_x_off;
wire signed [9:0] cc_y_off;

assign cc_x_off
assign cc_y_off

calibration_mode 7 x_offset+x_off : 10’bO;
calibration_mode 7 y_offset+y_off : 9°b0;

// Set distance of gun from lab kit using switches[3:0]
// and buttons 1&2
// make default reasonable: 4’°b0110

reg [3:0] distance;
initial distance = 4°b0110;
always Q(posedge clock_27mhz)
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if (bl & b2)
distance <= switches[3:0];

// Test Motors separately (mode 4):

wire [7:0] h_pw, v_pw;

driver_test test_driver(clock_27mhz, reset, “switches[7:4],
“switches[3:0], up, down, left, right, h_pw, v_pw);

always @(mode)
case (mode)
2: begin
x_coord = x_coord_target;
y_coord = y_coord_target;
end
3: begin
x_coord = x_coord_pong;
y_coord = y_coord_pong;
end
9: begin
x_coord = aj_x_pos;
y_coord = aj_y_pos;
end
default: begin
x_coord = x_aim;
y_coord = y_aim;
end
endcase

coord_conversion_tv converts_tv(x_coord, y_coord, cc_x_off, cc_y_off, distance,

h_coord_tv, v_coord_tv, clock_27mhz, reset, x_block_tv, y_block_tv);

coord_conversion converts(x_coord_target, y_coord_target, 11’b0, 10’°b0, distance,
h_coord_cc, v_coord_cc, clock_27mhz, reset);

always @(mode)
case (mode)

2: begin
h_coord = h_coord_cc;
v_coord = v_coord_cc;

end

3: begin
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h_coord = h_coord_cc;

v_coord = v_coord_cc;
end
4: begin

h_coord = h_pw;
v_coord = Vv_pw;

end

default: begin
h_coord = h_coord_tv;
v_coord = v_coord_tv;

end

endcase

rc_motor_move top (clock_27mhz, v_coord, top_motor);
rc_motor_move bottom (clock_27mhz, h_coord, bottom_motor);

// LASER POINTER DEMO (Mode 5):
reg laser_green = laser_demo 7 “bl : 1°bZ;

// TRIGGER DEMO (Mode 1):

wire trigger = b0;
// SET LEDS
assign led = 1light_detect_demo ? “{hit, hit, hit, hit, hit, hit, hit, hit} :

(aj_mode 7 ledbank :
(calibration_mode ? ~{5’b0, video_state} : "“mode));

// SET LED DISPLAY - for coolness.
wire [16%8-1:0] disp_string;

wire disp_blank_tmp, disp_clock_tmp;

wire disp_rs_tmp, disp_ce_b_tmp, disp_reset_b_tmp, disp_data_out_string;
wire disp_blank_tmpl, disp_clock_tmpl;

wire disp_rs_tmpl, disp_ce_b_tmpl, disp_reset_b_tmpl, disp_data_out_hex;

// TEXT Display
assign disp_string = trigger_demo 7 "BO = Trigger
(cc_demo 7 "COORD CONVERSION"
(cc_pong_demo 7 "PONG DEMO "
(laser_demo 7 "B1=LASER POINTER"
(video_output_demo ? "CALIB VIDEO OUT "
(light_detect_demo 7 "LIGHT DETECTION "
(aj_mode 7 "INTERPOLATION "
(calibration_mode 7 "CALIBRATION " :"  DUCKHUNTER  ")))))));
// HEX Display
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wire [63:0] motor_hex = servo_demo ? {24°b0, h_pw, 24’b0, v_pw} :

(aj_mode 7 hexbank :

((hit_location | c_mode_3) 7 {21°b0, hit_x_pos, 22°b0, hit_y_pos} :
(c_mode_0 7 {21°b0, x_offset, 22°b0, y_offset} : 64°b0)));

display_string hex_display(reset, clock_27mhz, disp_string,
disp_blank_tmp, disp_clock_tmp, disp_rs_tmp, disp_ce_b_tmp,
disp_reset_b_tmp, disp_data_out_string);

display_16hex hex_displayl(reset, clock_27mhz, motor_hex,

disp_blank_tmpl, disp_clock_tmpl, disp_rs_tmpl, disp_ce_b_tmpl,

disp_reset_b_tmpl, disp_data_out_hex);

assign disp_blank = servo_demo 7 disp_blank_tmpl : disp_blank_tmp;
assign disp_clock = servo_demo ? disp_clock_tmpl : disp_clock_tmp;
assign disp_rs = servo_demo ? disp_rs_tmpl : disp_rs_tmp;

assign disp_ce_b = servo_demo 7 disp_ce_b_tmpl : disp_ce_b_tmp;

assign disp_reset_b = servo_demo 7 disp_reset_b_tmpl

assign disp_data_out = (servo_demo | hit_location | calibration_mode) 7

disp_data_out_hex : disp_data_out_string;

// VGA QOutput.
// tbarton’s xvga out:

assign pixel = (cc_demo == 1) 7 pixel_target :
(cc_pong_demo 7 pixel_pong :
(calibration_mode ? blob_pixel : 0));

reg [2:0] rgb;
reg b,hs,vs;
always Q@(posedge clock_65mhz)
begin
hs <= hsync;
vs <= vsync;

b <= blank;
rgb <= pixel;
end

// combine with alisy’s:

assign vga_out_red = aj_mode 7 aj_red : {8{rgb[2]1}};

assign vga_out_green = aj_mode 7 aj_green : {8{rgb[1]}};
assign vga_out_blue = aj_mode 7 aj_blue : {8{rgb[0]}};
assign vga_out_sync_b = aj_mode 7 aj_vga_out_sync_b : 1’bl;
assign vga_out_blank_b = aj_mode 7 aj_vga_out_blank_b : "b;

: disp_reset_b_tmp;
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assign vga_out_pixel_clock = aj_mode 7 aj_vga_out_pixel_clock : “clock_65mhz;
assign vga_out_hsync = aj_mode 7 aj_vga_out_hsync : hs;
assign vga_out_vsync = aj_mode 7 aj_vga_out_vsync : Vs;

// USER INPUT and OUTPUT:
assign userl = {32’hZ};

assign trigger_out = aj_trigger | trigger;

assign user3 = {top_motor, bottom_motor, 28°hZ, laser_green, trigger_out};

assign analyzerl_clock = clock_27mhz;
assign analyzerl_data = {15°b0, hit};

assign analyzer2_clock = clock_27mhz;
assign analyzer2_data = {13’b0, video_statel};

endmodule

6.1.7 Demo Modules
6.1.8 Demo Modules

coordinate conversion demo (demo mode 2):

// test module for coordinate conversion

module test(reset, x_coord, y_coord, clock, vsync, hcount, vcount, pixel, enable);
input reset, clock;
input vsync;
input [10:0] hcount;
input [9:0] vcount;
input enable;

output [10:0] x_coord; // use these as inputs to converter and to blob
output [9:0] y_coord;
output [2:0] pixel;

parameter  SWIDTH = 1024;
parameter SHEIGHT = 768;
parameter TDIM = 64; // target dimension

reg [10:0]  x_coord;
reg [9:0]  y_coord;
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//Look for frame transitions
reg old_pvsync;
wire new_frame;

always @ (posedge clock) old_pvsync <= vsync;
assign new_frame = “old_pvsync & vsync; //start of a new frame

always @(posedge clock)
begin
if (reset)
begin
x_coord <= 0;
y_coord <=0;
end
else if (new_frame & enable)
if (x_coord < SWIDTH-TDIM)
x_coord <= x_coord + 2;
else
begin
x_coord <= 0;

if (y_coord < SHEIGHT-TDIM)
y_coord <= y_coord + 64;
else
y_coord <= 0;
end // else: !if(x_coord < SWIDTH)
end // always @ (posedge clock)

blob target(x_coord,y_coord, hcount, vcount, pixel);

defparam target.WIDTH = TDIM;
defparam target.HEIGHT = TDIM;

endmodule // test

68

pong game (demo mode 3), by alisy:

L11777777777777777777777777777777777777777777777777777777777777777777/77777777777
//

// Pong Game

//

// By: Andrew Lisy (alisy)

// 6.111 - Digital Electronics Lab

// October 24, 2005

//
II11777777777777777777777777777777777777777777777777777777777777777777777777777
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module pong_game

(vclock,reset,up,down,pspeed,

hcount,vcount,hsync,vsync,blank,

pixel, puck_h,
input vclock;
input reset;
input up; //
input down; /
input [3:0] p
input [10:0]
input [9:0]
input hsync;
input vsync;
input blank;

output [2:0]
output [10:0]
output [9:0]

assign phsync
assign pvsync
assign pblank

/111111711117
/////Create E
/1111117711117

///Draw box:

puck_v);

// 65MHz clock

// 1 to initialize module

1 when paddle should move up

/ 1 when paddle should move down

speed; // puck speed in pixels/tick
hcount; // horizontal index of current pixel (0..1023)
vcount; // vertical index of current pixel (0..767)
// XVGA horizontal sync signal (active low)

// XVGA vertical sync signal (active low)

// XVGA blanking (1 means output black pixel)

pixel; // pong game’s pixel
puck_h;
puck_v;

= hsync;
= VSync;
blank;

1111111111177
lements//////
1111111111177

wire box_draw; //high when the border should be lit

assign box_dr

///Draw puck

aw = (vcount == 0 || vcount == 767 || hcount == | | hcount == 1023);

reg [10:0] puck_h;

reg [9:0] puc
initial puck_
initial puck_

k_v;
h = 400; //start about 1/3 across and 1/7 down the screen
100;

v

wire [2:0] puck_pixel;

blob puck_1(p

uck_h, puck_v, hcount, vcount, puck_pixel);

defparam puck_1.WIDTH= 64;
defparam puck_1.HEIGHT = 64;
defparam puck_1.COLOR = 3°b111l; //white

//Draw paddle

reg [9:0] paddle_v;

initial paddl

e_v = 400; //start out just over halfway down the screen

wire [2:0] paddle_pixel;

blob paddle_1

(11°d0, paddle_v, hcount, vcount, paddle_pixel);
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defparam paddle_1.WIDTH=16;
defparam paddle_1.HEIGHT = 128;
defparam paddle_1.COLOR = 3°b100; //red

//Look for frame transitions
reg old_pvsync;
wire new_frame;

always @ (posedge vclock) old_pvsync <= pvsync;
assign new_frame = “old_pvsync & pvsync; //start of a new frame

//Initial puck velocities
wire [3:0] puck_vel_h;
assign puck_vel_h = pspeed;
wire [3:0] puck_vel_v;
assign puck_vel_v = pspeed;

//Puck signs

// Although these only represent 2 values (-1 and 1),

// I have defined them as 2 bits each so that they can take

//  the actual signed value of 1 or -1. This simplifies the

// code in the representation. However, it could be optimized out

// if size was a concern.

reg signed [1:0] puck_sign_h, puck_sign_v; // 1: right or down, -1: left or up
initial puck_sign_h = 2°b01; //start going right

initial puck_sign_v = 2°b01; //start going down

11717771117171777777
////Move elements///
11171777711717117777
always @ (posedge vclock) //overarching always block
begin
//Handle reset condition
if (reset)
begin
puck_h <= 220;
puck_sign_v <= 1;
puck_sign_h <= 1;
puck_v <= 220;
end

//Trigger on new_frame
if (new_frame)
begin

//Handle paddle movements
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if (up) paddle_v <= paddle_v - 4; //move up
if (down) paddle_v <= paddle_v + 4; //move down

//Handle puck movements

puck_h <= puck_h + puck_vel_h * puck_sign_h; //horizontal
puck_v <= puck_v + puck_vel_v * puck_sign_v; //vertical

end

//Right wall: Bounce
if (puck_h + 64 >= 1023) puck_sign_h <= -1 ;

//Top and Bottom walls: Bounce
////Note: for the top wall detector, I use a l-frame "look-ahead"
//// to determine if the next frame will cause the ball to crash.
//// This simplifies the code and allows me to avoid using a signed
//// register for puck_v.
if (puck_v + puck_vel_v * puck_sign_v <= 0) puck_sign_v <= 1; //look-ahead
if (puck_v + 64 >= 767) puck_sign v <= -1;

//Hit paddle: Bounce
////Make sure that the puck is at the right horizontal alignment AND
//// is within the vertical "slot" where the paddle exists
if (puck_h <= 16 && puck_v + 64 > paddle_v && puck_v < paddle_v + 128)
begin
puck_sign_h <= 1;
end

//Hit left wall: Lose
////Basically the opposite of the paddle hit checker. Test to see if the
//// puck is within the horizontal alignment, but OUTSIDE the vertical alignment.
if (puck_h <= 15 && (puck_v + 64 < paddle_v || puck_v > paddle_v + 128))
begin
puck_sign v <= 0; //Stop all motion and put puck near the center
puck_sign_h <= 0;
puck_h <= 300;
puck_v <= 300;
end
end

//Draw objects based on draw signals
assign pixel = (
(box_draw 7 3’b111l : 3’b000) |
puck_pixel |
paddle_pixel);

endmodule
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driver demo (demo mode 4):

// module to demonstrate servo driver
// displays h_coord and y_coord on hex display

module driver_test(clock_27mhz, reset, h_speed, v_speed, up, down, left, right, h_pw, v_pw);
input reset, clock_27mhz;
input [3:0] h_speed, v_speed;
input up, down, left, right;

output [7:0] h_pw, v_pw;

// set pulse width with up and down buttons
parameter BRT = 30000;

reg [31:0] v_pcount, h_pcount;

reg [7:0] h_pw, v_pw;

wire v_bflag = (v_pcount == BRT * v_speed) 7 1 : O;
wire h_bflag = (h_pcount == BRT * h_speed) 7 1 : O;

always @(posedge clock_27mhz)
begin
v_pcount <= v_bflag ? O : v_pcount + 1;
h_pcount <= h_bflag ? O : h_pcount + 1;
v_pw <= (down & v_bflag) ? (v_pw>8°h38 7 v_pw-1 : v_pw)
((up & v_bflag) ? (v_pw<8’hf8 7 v_pw+l : v_pw)
(v_pw < 8°h2f ? 8’h38 : v_pw));
h_pw <= (left & h_bflag) ? (h_pw>8’h38 ? h_pw-1 : h_pw)
((right & h_bflag) ? (h_pw<8’hf8 ? h_pw+l : h_pw)
(h_pw < 8°h2f ? 8°h38 : h_pw));
end

endmodule

6.2 Perl Code

#!/usr/bin/perl -w
use POSIX;

$x_res = 16;
$distance_res = 16; # for 1m, 6.25cm units

$width = 38; # in cm

# offsets for motor control:
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$d_max = 100; # maximum distance of gun from TV (cm)
$motor_max = 248; # maximum value sent to motor (pulse width)
$motor_neutral = 152; # pulse width value corresponding to zero angle
$pi = 3.14159;

print "memory_initialization_radix = 10;\nmemory_initialization_vector=\n";

for (my $d = 1; $d <= $distance_res; $d += 1){
for (my $x = 0; $x < $x_res; $x += 1){

$x_pos = ($x/$x_res) * $width/2;
$dist = ($d*$d_max/$distance_res);

$theta = atan ( $x_pos / $dist );
$theta_pw = int(($motor_max-$motor_neutral)* (2*$theta/$pi));

print "$theta_pw,\n";

73



