
6.111 1 of 9 Lab #4

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Lab #4 Checkoff List

Please be ready with the following when checking off Lab #4:

1. A printout of your Verilog code (put your name at the top!) that will be collected
by the staff and evaluated.

2. Set the labkit’s switches to 0 (i.e., zero puck velocity) and demonstrate your game
in its reset state.

3. Demonstrate the paddle moving along the left edge of the screen in response to
pushing the UP and DOWN buttons.

4. Enter a small velocity in switch[7:4] and demonstrate the puck moving and
bouncing off the top, right and bottom of the screen.

5. Demonstrate the puck bouncing off the paddle, and how your game halts when the
puck reaches the left edge of the screen.

6. Demonstrate that your game can be restarted after halting by pressing the ENTER
button.

During checkoff you may be asked to discuss one or more of the following questions:

1. What would have to change in your Verilog code if the size of playing screen was
reduced to 800x600? [Hint: it’s always a good idea to use the parameter
statement to give a symbolic name to important constants rather than scattering
numbers all through your code.]

2. If the display were being driven from a frame buffer memory that supplies 8-bits
for each of red, green and blue for each pixel, how much memory would be
needed? If we used the labkit’s ZBT rams for the frame buffer, what fraction of
the memory bandwidth would be used by refreshing the screen? (Look at the
labkit’s documentation for the ZBT memories to get the throughput information
you need to answer this question.)

6.111 2 of 9 Lab #4

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.111 Lab #4

Goal: Implement a simple Pong game on a video monitor.

Video display technologies

Most video displays accept the image to be displayed in a serial fashion, usually a
sequence of horizontal scan lines to be displayed one under another with a small vertical
offset to create a raster image. Typically the raster is transmitted in left-to-right, top-to-
bottom order. A complete raster image is called a frame and one can create the
appearance of motion by displaying frames in rapid succession (24 frames/sec in movies,
30 frames/sec in broadcast TV, 60+ frames/sec in computer monitors).

To transmit a raster image, one must encode the color image information and provide
some control signals that indicate the end of each horizontal scan line (horizontal sync)
and frame (vertical sync). The display device creates the image using red, green and
blue emitters, so an obvious way to encode the color information is to send separate
signals that encode the appropriate intensity of red, green and blue. This is indeed how
most analog computer monitors work – they accept 5 analog signals (red, green, blue,
hsync, and vsync) over a standardized HD15 connector. The signals are transmitted as
0.7V peak-to-peak (1V peak-to-peak if the signal also encodes sync). The monitor
supplies a 75Ω termination for each signal, which if matched with a driver and cable with
a characteristic impedance of 75Ω minimizes the interference due to signal reflections.
The labkit incorporates an integrated circuit – the ADV7125 Triple 8-bit high-speed
video DAC – which produces the correct analog signals given the proper digital inputs:
three 8-bit values for R, G and B intensity, hsync, vsync, and blanking.

[Small digression on other video encodings; feel free to skip to the end of the digression.]

When encoding a color video image for broadcast or storage, it’s important to use the
bandwidth/bits as efficiently as possible. And, in the case of broadcast, there was the
issue of backwards compatibility with black-and-white transmissions. Since the human
eye has less resolution for color than intensity, the color image signal is separated into
luminance (Y, essentially the old black-and-white signal) and chrominance (U/Cr/Pr,
V/Cb/Pb). YUV are related to RGB as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

V
U
Y

100.0515.0615.0
436.0289.0147.0
114.0587.0229.0

6.111 3 of 9 Lab #4

Luminance and chrominance are encoded separately and transmitted/stored at different
bandwidths. In most systems the chrominance bandwidth is a half (4:2:2 format) or a
quarter (4:2:0 format) of the luminance bandwidth. There are several common ways of
transmitting Y, U and V:

• Composite video where Y and the composite sync are combined to form a 1V
peak-to-peak signal. U+V and U-V are used to modulate orthogonal phases of a
color subcarrier (3.58MHz in NTSC broadcasts) and then mixed with a low-pass-
filtered version of Y/sync signal.

• S-Video where Y and the modulated color subcarrier are transmitted on separate
signal/ground pairs. This avoids the low-pass filtering of Y used in composite
video, resulting in a higher-resolution video image.

• Component video where Y, Cr/Pr, and Cb/Pb are transmitted on separate signal
ground pairs (Cr and Cb are just scaled versions of U and V).

Some transmission schemes break a frame into an even field (containing the even
numbered scan lines) and an odd field (containing the odd numbered scan lines) and then
transmit the fields in alternation. This technique is called interlacing and permits slower
frame rates (and hence lower bandwidths) while still avoiding the problem of image
flicker. When higher bandwidths are available, non-interlaced transmissions are
preferred (often called progressive scan).

The labkit contains interface chips for encoding (ADV7194) and decoding (ADV7185)
composite and S-Video signals. The decoder chip is particularly useful if you want to use
a video camera signal as part of your project.

[End of digression.]

To create a video image for our Pong game, it’s helpful to think of the image as a
rectangular array of picture elements or pixels. There are several common choices for
the dimensions (HxV) of the rectangle:

640x480 (VGA), requires 25MHz (40ns) pixel clock for 60Hz refresh
800x600 (SVGA), requires 40MHz (25ns) pixel clock for 60Hz refresh
1024x768 (XVGA), requires 65MHz (15ns) pixel clock for 60Hz refresh

The computer monitors in the lab support resolutions up to 1280x1024 but the required
pixel clock doesn’t leave much time for the game logic to figure out the pixel to display,
so let’s go with a 1024x768 display for our game.

Please take a moment to read through the “VGA Video” hardware tutorial that’s part of
the on-line Labkit documentation. You’ll see that the timings for the RGB image
information relative to the horizontal and vertical syncs are somewhat complicated. For
example, the horizontal sync goes active in the interval between the end of one scan line

6.111 4 of 9 Lab #4

and the beginning of the next – the exact timings are specified by the XVGA
specification. Lab4.v includes an xvga module that generates the necessary signals; it
uses two counters:

hcount counts pixels in a horizontal scan line. Values 0 through 1023 are the
1024 displayed pixels, values 1024 through 1343 time the interval between the
end of one scan line and the start of the next. Specific values in this interval are
decoded to time the beginning and end of the active-low horizontal sync signal
(hsync).

vcount counts scan lines in a frame. Values 0 through 767 are the 768 displayed
scan lines, values 768 through 805 time interval between end of one frame and the
start of the next. Specific values in this interval are decoded to time the beginning
and end of the active-low vertical sync signal (vsync).

The xvga module also generates blank, a signal that’s 0 when a pixel value will be
displayed and 1 when the pixel would be off the screen (hcount > 1023 or vcount > 767).
The inversion of this signal is required by the AD7125 VGA interface chip

You can use (hcount,vcount) as the (x,y) coordinate of the pixel to be displayed: (0,0) is
the top-left pixel, (1023,0) is the top-right pixel, (1023,767) is the bottom-right pixel, etc.
Given the coordinates and dimensions of a graphic element, your game logic can use
(hcount,vcount) to determine the contribution the graphic element makes to the current
pixel. If you are storing the pixels in a memory array (called a frame buffer) then the
index of the current pixel would be H·vcount + hcount[9:0], where H is the number of
displayed pixels in each scan line.

Visible
pixels

0 1023 1024 1343
0

767
768

805

hcount

vsync interval

hsync
interval

vcount

6.111 5 of 9 Lab #4

Pong Game

Pong was one of the first mass-produced video games, a hit more because of its novelty
than because of the gaming experience itself. Our version will be a single-player
variation where the player is defending a “goal” by moving a rectangular paddle up and
down the left edge of the screen. The puck moves about the screen with a fixed velocity,
bouncing off the paddle and the implicit walls at the top, right and bottom edges of the
screen. If the puck reaches the left edge of the screen (i.e., it wasn’t stopped by bouncing
off the paddle), the player looses and the game is over:

A 65MHz clock serves as the system clock and times the duration of a single pixel. The
position of moving objects (e.g., the paddle and puck) are changed once every frame
(1/60 second) as triggered by the high-to-low transition of vsync.

To keep the initial implementation easy, let’s make the puck a 64-pixel by 64-pixel
square and have it move at move diagonally at a constant velocity. We’ll use switch[7:4]
to set the puck’s velocity in terms of pixels/frame: 4’b0000 means no motion, 4’b0101
would cause the puck to change both its x and y coordinate by 5 every frame (the sign of
the change for each coordinate would be determined by which of the 4 possible headings
the puck is following at the moment). When the puck collides with an edge or the
paddle, its heading changes appropriately, e.g., a collision with the bottom edge changes
the sign of the puck’s y velocity.

Make the paddle 16 pixels wide and 128 pixels high. It should move up and down the
left edge of the screen at 4 pixels/frame in response to the user pressing the UP or
DOWN buttons on the labkit.

Pressing the ENTER button should reset the game to its initial state: the paddle centered
on the left edge, and the puck somewhere in the middle of the screen, heading southeast.
If the puck reaches the left edge, the game should stop (it can be restarted by pressing the
ENTER button).

Rectangular paddle moves up
and down the left edge of the
screen.

Square puck moves about screen,
bouncing off the paddle, top, right
and bottom edges. Game is over if
it reaches the left edge.

6.111 6 of 9 Lab #4

Implementation steps

1. Download lab4.v from the course website, compile it using the Xilinx tools, and
then load it onto the labkit. Connect the VGA cable from your computer monitor
to the VGA connector on the left-hand side of the labkit’s main board. The VGA
cable is the one with blue connector housings – the computer is connected to the
same monitor with a DVI cable that has white connector housings. Select the
VGA input by pressing the input select button on the lower right bezel of the
monitor (it’s embossed with “—“).

Set the labkit’s slide switches so that switch[1:0] is 2’b10. You should see
vertical colored bars on the monitor; the color sequence progresses through the
eight possible colors where each of R, G or B is on or off. If don’t see this
image, make sure the monitor is reading from the VGA input, the cable is
connected properly and the download to the FPGA completed successfully.

Now set the slide switches so that switch[1:0] is 2’b01. This should produce a
one-pixel wide white outline around the edge of the screen. If one or more of the
edges isn’t visible, the image size and position can be adjusted using the
monitor’s controls. Push the “menu” button and use the “+” and “-“ buttons to
navigate to the Position and Size selections. Adjust until all four edges of the
white rectangle are visible.

Finally set the slide switches so that switch[1:0] is 2’b00. You should see a color
checkerboard that’s being produced by the Verilog code inside of pong_game
module. This is the code you’ll modify to implement your pong game.

lab4.v

ADV7125
r,g,b

hsync
vsync
blank

pong_game

rectangle

color bars

00

01

10

switch[1:0]

xvga

vclock
hcount
vcount
hsync
vsync
blank

reset
up

down
pspeed 65MHz

6.111 7 of 9 Lab #4

2. Modify the pong_game module so that it produces a white square in the middle of
the screen. See the implementation tips below for some hints about how to do
this. The pong_game module has the following inputs and outputs:

vclock input 65MHz pixel clock
reset input 1 to reset the module to its initial state, hooked

to the ENTER pushbutton via a debouncing
circuit

up input 1 to move paddle up, 0 otherwise. Hooked to
the UP pushbutton via a debouncing circuit.

down input 1 to move paddle down, 0 otherwise. Hooked
to the DOWN pushbutton via a debouncing
circuit.

pspeed[3:0] input Puck horizontal & vertical velocity in pixels per
frame. Hooked to switch[7:4]

hcount[10:0] input Counts pixels on the current scan line,
generated by the xvga module.

vcount[9:0] input Counts scan lines in the current frame,
generated by the xvga module.

hsync input Active-low horizontal sync signal generated by
the xvga module

vsync input Active-low vertical sync signal generated by the
xvga module

blank input Active-high blanking signal generated by the
xga module

phsync output Active-low horizontal sync signal generated by
your Pong game. Often this is just hsync,
perhaps delayed by a vclock if your pixel
generating circuitry takes an additional vclock.

pvsync output Active-low horizontal sync signal generated by
your Pong game. Often this is just vsync,
perhaps delayed by a vclock if your pixel
generating circuitry takes an additional vclock.

pblank output Active-high blanking signal generated by your
Pong game. Often this is just blank, perhaps
delayed by a vclock if your pixel generating
circuitry takes an additional vclock.

pixel[2:0] output The {R,G,B} value for the current pixel, one bit
for each color.

3. Add logic to make the puck move along one of the four possible diagonal

directions, making it “bounce” off the edges of the screen. The speed of the puck
is set by the pspeed input to the pong_game module.

4. Add logic to display a paddle along the left edge of the screen which moves up
and down at 4 pixels/frame in response to the up and down inputs to the

6.111 8 of 9 Lab #4

pong_game module.

5. Finally, add logic to make the puck bounce off the paddle and to end the game if
the puck reaches the left edge of the screen. The game should stay halted until the
reset input is asserted by pressing the ENTER button.

6. [optional] There are many possible improvements to this implementation: a two-
player version with another paddle along the right edge of the screen, more
interesting puck motion and puck shapes, sound effects, displaying a score at the
top of the screen, etc. If you have the time and inclination, it can be fun to hack
around a bit!

Implementation Tips
You may find it useful to use the following parameterized module in your
implementation of Pong. Given the pixel coordinate (hcount,vcount) it returns a non-
black pixel if the coordinate falls with the appropriate rectangular area. The coordinate
of the top-left corner of the rectangle is given by the x and y inputs; the width and height
of the rectangle, as well as its color, are determined by module’s parameters.

//
//
// blob: generate rectangle on screen
//
//
module blob(x,y,hcount,vcount,pixel);
 parameter WIDTH = 64; // default width: 64 pixels
 parameter HEIGHT = 64; // default height: 64 pixels
 parameter COLOR = 3'b111; // default color: white

 input [10:0] x,hcount;
 input [9:0] y,vcount;
 output [2:0] pixel;

 reg [2:0] pixel;
 always @ (x or y or hcount or vcount) begin
 if ((hcount >= x && hcount < (x+WIDTH)) &&
 (vcount >= y && vcount < (y+HEIGHT)))
 pixel = COLOR;
 else pixel = 0;
 end
endmodule

You can instantiate several instances of blob to create different rectangles on the screen,
using defparam to specify the instance’s parameters:

 reg [9:0] paddle_y;
 wire [2:0] paddle_pixel;
 blob paddle1(11'd0,paddle_y,hcount,vcount,paddle_pixel);
 defparam paddle1.WIDTH = 16;
 defparam paddle1.HEIGHT = 128;
 defparam paddle1.COLOR = 3'b110; // yellow!

6.111 9 of 9 Lab #4

[From the “more than you wanted to know” department:] blob is a very simple example
of what game hardware hackers call a sprite: a piece of hardware that generates a pixel-
by-pixel image of a game object. A sprite pipeline connects the output (pixel & sync
signals) of one sprite to the input of the next. A sprite passes along the incoming pixel
if the object the sprite represents is transparent at the current coordinate, otherwise it
generates the appropriate pixel of its own. The generated pixel might come from a small
image map and/or depend in some way on the sprite’s internal state. Images produced
by sprites later in the pipeline appear in front of sprites earlier in the pipeline, giving a
pseudo 3D look to the same. This becomes even more realistic if sprites scale the image
they produce so that it gets smaller if the object is supposed to be further away. The
order of the pipeline becomes unimportant if a “Z” or depth value is passed along the
pipeline with each pixel. The current sprite only replaces the incoming pixel/Z-value if
its Z-value puts it in front of the Z-value for the incoming pixel. Simple, but sprites
produced surprisingly playable games in the era before the invention of 3D graphic
pipelines that can render billions of shaded triangles per second.

