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6.111 Lab #3 Checkoff List 

 
 
Please be ready with the following when checking off Lab #3: 
 

1. A printout of your Verilog code (put your name at the top!) that will be collected 
by the staff and evaluated. 
 

2. Have a sketch of a timing diagram showing how your circuit works during record 
and playback.  Show what happens in each mode over a sequences of eight ready 
cycles. 
 

3. Be prepared to demonstrate your recorder without the interpolating filter. 
 

4. Be prepared to demonstrate your recorder with the interpolating filter. 
 

During checkoff you may be asked to discuss one or more of the following questions: 
 

1. The linear interpolator is a simple example of digital signal processing (DSP).  
How can the FPGA be used to implement more sophisticated DSP functions, e.g., 
how would you add echo (reverb) to your playback audio signal? 

 
2. How would you use the labkit's on-board ZBT memory for audio signal storage, 

instead of the Xilinx's BRAM?  What is the longest recording sample you could 
have using all the ZBT memory?  (See the labkit page for info about the ZBT 
configuration.) 

 
3. Can you use the labkit's Flash ROM for storing audio data?  (See the Flash ROM 

datasheet on the labkit page for info about how that components works.) 
 

4. Explain why adding the linear interpolator makes a qualitative difference in what 
one hears during playback. 
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6.111 Lab #3 

 
Goal: Build a voice recorder that records and plays back 8-bit digital audio samples. 

 
Digital Audio Interface 
 
Our labkit is equipped with an AC97 Audio Codec chip (a National Semiconductor 
LM4550) which serves as an interface between the analog world of traditional audio 
components (e.g., headphones and microphones) and the digital world of the FPGA.  The 
block diagram of the LM4550 shown below has been marked up to show the processing 
paths we’ll be using for this lab: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Incoming audio from microphone (top arrow, pointing left-to-right): the incoming audio 
signal from the microphone is boosted by +20dB by an on-chip amplifier and then 
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selected as the input source for the two (one for each of the stereo channels) 18-bit sigma-
delta analog-to-digital converters (ΣΔ ADCs).  The ADCs sample the analog waveforms 
at 48KHz, digitize the sampled voltages, and output sequences of 18-bit two’s 
complement numbers (referred to as the pulse-code modulated or PCM data).  Each pair 
(left and right channel)  of PCM samples is packaged along with other status data into a 
256-bit frame which is then transmitted serially at 12.288Mhz (= 256 * 48Khz) to the 
FPGA via the SDATA-IN pin. 
 
Outgoing audio to headphones (bottom arrow, pointing right-to-left):  the FPGA 
transmits a 256-bit frame of serial data to the AC97 chip via the SDATA-OUT pin.  Each 
frame contains two 18-bit fields with PCM data for the left and right audio channels.  The 
PCM data is converted to two 48KHz analog waveforms by the sigma-delta digital-to-
analog converters (ΣΔ DACs).   The analog waveforms are amplified and sent to the 
stereo headphones. 
 
So 48,000 times per second the AC97 codec provides two stereo PCM samples from the 
microphone and accepts two stereo PCM samples for the headphones.   (Actually the 
microphone is a monaural source and so the same data appears on both the left and right 
incoming data streams.)  It’s the FPGA’s job to keep up with the codec’s data rates since 
the codec does not have on-chip buffering for either the incoming or outgoing data 
streams. 
 
Voice recorder 
 
The goal of this lab is to implement a voice recorder using the labkit’s AC97 codec and 
FPGA.  The top-level plan is pretty simple – when recording, store the stream of 
incoming samples in a memory, when playing back feed the stored data stream back to 
the codec. 
 
There are (of course) some interesting details: 
 

• Let’s use the FPGA’s block rams (BRAMs) to build the memory for saved audio 
samples.  A good size (i.e., one that fits in the FPGA we have) for the memory is 
64K locations of 8 bits.  To store a recording of respectable length let’s store 8-bit 
samples at 6Khz, i.e., one eighth of the data rate of the incoming stream. 
 

• The outgoing data stream wants samples every 48KHz , which we can produce by 
replicating each stored 6KHz sample eight times.  But if we do that we’ll hear lots 
of high frequency noise introduced by the large steps between successive samples 
in the 6KHz waveform.  We can improve the sound dramatically by building a 
48KHz data stream using linear interpolation between the 6KHz samples. 

 
Implementation steps 
 

1. Download lab3.v from the Handouts page.  This file contains several Verilog 
modules: 
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lab3:  a modified version of labkit.v that includes instances of the audio and 
recorder modules, hooking them up appropriately to each other and the pins 
connecting to the AC97 codec.  The labkit’s ENTER pushbutton is used as the 
record/playback button (push to record).  You shouldn’t need to modify this 
module. 
 
debounce: used to debounce and synchronize pushbuttons. 
 
audio: a wrapper around the ac97 and ac97commands modules which implement 
the low-level interface to codec.  This module has three ports of interest to us: a 
ready output that signals users of this module that a new sample is ready, and two 
8-bit data ports, one for incoming monaural PCM data and one for outgoing 
monaural PCM data.  You shouldn’t need to modify this module. 
 
ac97: interfaces with the AC97 codec, transmitting and receiving the 256-bit 
serial data streams.  It has ports for both incoming and outgoing 18-bit stereo 
PCM data.  You shouldn’t need to modify this module. 
 
ac97commands: generates a repeating sequence of writes to the AC97 command 
registers that perform the appropriate initialization.  In this case, that includes 
selecting the microphone as the input source, setting the correct amplifier gains, 
etc.  You shouldn’t need to modify this module. 
 
tone750hz: supplies a 20-bit PCM stream which if played at 48KHz produces a 
750Hz sinewave.  You shouldn’t need to modify this module. 
 
recorder:  You’ll be modifying this module to implement the necessary 
functionality.  The supplied module tests the basic functionality of the 
microphone and headphones.   In playback mode, this dummy module sends a 
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750Hz tone to the headphones.  In record mode, it loops incoming samples back 
to the outgoing data stream, so you should hear your voice in the headphones.  
The module has the following ports all of which are synchronous with 
clock_27mhz: 
 
clock_27mhz input system clock 
reset input 1 to reset the module to its initial state 
playback input 1 for playback, 0 for record 
ready input transitions from 0 to 1 when a new sample is 

available 
from_ac97_data[7:0] input 8-bit PCM data from the microphone 
to_ac97_data[7:0] output 8-bit PCM data to the headphones 

 
2. Using the Xilinx tools, build a lab3 project, compile lab3.v and load lab3.bit into 

the labkit.   Plug in the headphone and microphone plugs from the headset into the 
appropriate jacks on the left-hand side of the labkit.    You should a hear a 750Hz 
tone in the headset.   Pushing the ENTER pushbutton should silence the tone and 
instead you should hear sounds picked up by the microphone. 
 

3. Using the steps outlined in lecture, build a single-port 64K x 8 memory 
component using BRAMs. 
 

4. Modify the recorder module to implement basic record and playback 
functionality. 
 
Record mode:  When entering record mode, reset the memory address.  When the 
ready input transitions from 0 to 1, a new sample from the microphone is 
available on the from_ac97_data[7:0] inputs.  Store every eighth sample in the 
memory, incrementing the memory address after each write.  You should also 
keep track of the highest memory address that’s written. 
 
Playback mode:  When entering playback mode, reset the memory address.  When 
the ready input transitions from 0 to 1, supply an 8-bit sample on the 
to_ac97_data[7:0] outputs.   For now, read a new sample from the memory every 
eight transitions of ready, i.e., upsample the 6KHz samples to 48KHz using 
simple replication.  When you reach the last stored sample (compare the memory 
address to the highest memory address written which you saved in record mode), 
reset the address to 0 and continue – this will loop through the saved data again 
and again. 
 
Test your code.  The playback will not be very intelligible given the high 
frequency noise introduced by the large steps in the 6KHz waveform. 
 

• Modify your recorder module to generate playback samples using an 8-step linear 
interpolation between successive samples in memory.   Use one of the switches to 
control if your interpolator is used during playback.  If the successive samples are 
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S1 and S2 (S1 being the older of the two), then your module should output the 
following data over the course of 8 cycles of ready: 
 
S1 = (8 * S1) >> 3     (the right shift by 3 divides by 8) 
.875 * S1 + .125 * S2 = (7 * S1 + S2) >> 3 
.750 * S1 + .250 * S2 = (6 * S1 + 2 * S2) >> 3 
.625 * S1 + .375 * S2 = (5 * S1 + 3 * S2) >> 3 
.500 * S1 + .500 * S2 = (4 * S1 + 4 * S2) >> 3 
.375 * S1 + .625 * S2 = (3 * S1 + 5 * S2) >> 3 
.250 * S1 + .750 * S2 = (2 * S1 + 6 * S2) >> 3 
.125 * S1 + .875 * S2 = (S1 + 7 * S2) >> 3 
In general, on cycle i (for i from 0 to 7) you should output ((8–i)*S1 + i*S2)>>3.  
 
At this point S1 ← S2 and S2 ← new memory sample, and the whole process 
repeats for another eight cycles of ready. 
 
NOTE: the samples from the AC97 are in 8-bit two’s complement format, i.e., 
they range in value from -128 to +127.   BUT the default Verilog data type is 
unsigned and arithmetic circuits for unsigned operands are, in general, different 
than arithmetic circuits for two’s complement operands. 
 
Using a feature introduced in the Verilog 2001 specification (which, happily, 
issupported by the Xilinx tools), you can solve this problem by adding a signed 
modifier to your register declarations so that Verilog knows that those quantities 
are in two’s complement format, e.g., 
 
      reg signed [7:0] s1, s2; 
 
Now when, say, you use the “*” operator in your Verilog code, the Xilinx tools 
will generate the circuitry for signed multiplication instead of unsigned 
multiplication. 
 

5. [optional] Have your recorder module record continuously when in record mode 
and then playback the last 11 seconds when you switch to playback mode – sort 
of an instant reply of the most recent part of a conversation. 

Implementation Tips 
After coding, examining the waveforms in simulation before attempting to program 
everything onto the FPGA can save you a lot of time.  In particular, closely examine what 
happens when processing an incoming sample and generating a new outgoing sample 
(i.e., what your logic does just after a low-to-high transition of ready).  It’s pretty easy to 
generate a known sequence of from_ac97_data values and ensure that they get written to 
your memory in record mode and get played back correctly in playback mode.  Check 
that all control signals rise and fall as you would expect them to.   Another good time to 
use the simulator: examining the values produced by your linear interpolator – you 
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should see the appropriate intermediate values created over 8 ready cycles using two 
successive stored values. 
 
If your circuit seems to work under simulation but not when loaded into the labkit, try 
bringing critical signals out to the logic analyzer connectors, e.g., the signals for your 
64Kx8 memory.   
 
A good way to debug the interpolator is to use ready and to_ac97_data[7:0] to drive one 
of the logic analyzer connectors.  Hook up the analyzer clock lead to ready and the data 
leads to to_ac97_data, and clock the data on the falling edge of ready.  You can display 
the 8-bit data as a "magnitude waveform" in which the logic analyzer will plot the 
captured data values as a waveform.  Zooming in, you should see the waveform as short 
straight line segments each made up of 8 points as your linear interpolator interpolates 
between the stored samples.  There shouldn't be any big jumps between one captured 
value and the next if your interpolator is doing its job correctly. 
 
In general, using the logic analyzer to examine what’s happening is a quick way to “see 
inside” your chip and get some idea of what’s going on. 


