6.111 Lecture 12

Today: Arithmetic: Addition \& Subtraction

1. Binary representation

2. Addition and subtraction
3.Speed: Ripple-Carry
3. Carry-bypass adder
5.Carry-lookahead adder

Acknowledgements:

- R. Katz, "Contemporary Logic Design", Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)
- J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Prentice Hall, 2003.
- Kevin Atkinson, Alice Wang, Rex Min

Arithmetic Circuits

Didn't I learn how to do addition in the second grade? MIT courses aren't what they used to be...

1. Binary Representation of Numbers

How to represent negative numbers?

- Three common schemes:
- sign-magnitude, ones complement, twos complement
- Sign-magnitude: MSB = 0 for positive, 1 for negative
- Range: -($\left.\mathbf{2}^{\mathrm{N}-1}-1\right)$ to $+\left(2^{\mathrm{N}-1}-1\right)$
- Two representations for zero: 0000... \& 1000...
- Simple multiplication but complicated addition/subtraction
- Ones complement: if \mathbf{N} is positive then its negative is $\overline{\mathbf{N}}$
- Example: $0111=7,1000=-7$
- Range: -($\left.\mathbf{2}^{\mathrm{N}-1}-1\right)$ to $+\left(2^{\mathrm{N}-1}-1\right)$
- Two representations for zero: 0000... \& 1111...
- Subtraction is addition followed by ones complement

Negative Numbers: Twos Complement

Twos complement $=$ bitwise complement $\mathbf{+ 1}$

$0111 \rightarrow 1000+1=1001=-7$
$1001 \rightarrow \mathbf{0 1 1 0}+\mathbf{1}=0111=+7$

- Asymmetric range
- Only one representation for zero
- Simple addition and subtraction
- Most common representation

Twos Complement: Examples \& Properties

- 4-bit examples:

4	0100	-4	1100	4	0100	-4
+3	0011					
7	0111	$\frac{(-3)}{-7}$	$\frac{1101}{1001}$	$-\frac{3}{1}$	$\underline{1101}$	

[Katz'93, chapter 5]
-8-bit twos complement example:

$$
11010110=-2^{7}+2^{6}+2^{4}+2^{2}+2^{1}=-128+64+16+4+2=-42
$$

-With twos complement representation for signed integers, the same binary addition procedure works for adding both signed and unsigned numbers.

- By moving the implicit location of "decimal" point, we can represent fractions too:
$1101.0110=-2^{3}+2^{2}+2^{0}+2^{-2}+2^{-3}=-8+4+1+0.25+0.125=-2.25$

2. Binary Addition \& Subtraction

Addition:

Here's an example of binary addition as one might do it by "hand":

	1101	
	Carries from previous Adding two N -bit numbers produces an $(\mathrm{N}+1)$-bit result	+0101

We've already built the circuit that implements one column:

So we can quickly build a circuit two add two 4-bit numbers...

"Ripplecarry adder"

Subtraction: $A-B=A+(-B)$

Using 2's complement representation: $-B=\sim B+1$
$\sim=$ bit-wise complement

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by control input:

Condition Codes

Besides the sum, one often wants four other bits of information from an arithmetic unit:

Z (zero): result is = $\mathbf{0}$
N (negative): result is < 0
C (carry): indicates an add in the most significant position produced a carry, e.g., 1111 + 0001
from last FA
V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., 0111 + 0111

$$
\begin{aligned}
& V=A_{N-1} B_{N-1} \overline{S_{N-1}}+\overline{A_{N-1}} \overline{B_{N-1}} S_{N-1} \\
& V=C O U T_{N-1} \oplus{ }^{\oplus} N_{N-1}
\end{aligned}
$$

To compare A and B, perform A-B and use condition codes:

Signed comparison:

LT	$\mathrm{N} \oplus \mathrm{V}$
LE	$\mathrm{Z}+(\mathrm{N} \oplus \mathrm{V})$
EQ	Z
NE	$\sim \mathrm{Z}$
GE	$\sim(N \oplus V)$
GT	$\sim(Z+(N \oplus V))$

Unsigned comparison:
LTU C

LEU C+Z
GEU ~C
GTU ~ ($\mathrm{C}+\mathrm{Z}$)

3. Speed: $\dagger_{\text {PD }}$ of Ripple-carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when adding 11... 111 to 00... 001.

$$
t_{P D}=(N-1)^{*}\left(t_{P D, O R}+t_{P D, A N D}\right)+t_{P D, X O R} \approx \Theta(N)
$$

Cl to CO
$\mathrm{Cl}_{\mathrm{N}-1}$ to $\mathrm{S}_{\mathrm{N}-1}$
$\mathbf{t}_{\text {adder }}=(\mathbf{N}-1) \mathbf{t}_{\text {carry }}+\mathbf{t}_{\text {sum }}$
$\Theta(N)$ is read "order N": means that the latency of our adder grows at worst in proportion to the number of bits in the operands.

Faster carry logic

Let's see if we can improve the speed by rewriting the equations for $\mathrm{C}_{\text {out }}$:

$$
C_{\text {OUT }}=A B+A C_{I N}+B C_{I N}
$$

$$
=A B+(A+B) C_{\mathbb{I N}}
$$

Generate (G) = AB
Propagate $(P)=A \oplus B$

$$
\begin{aligned}
C_{o}(G, P) & =G+P C_{i} \\
S(G, P) & =P \oplus C_{i}
\end{aligned}
$$

Actually, P is usually defined as $\mathbf{P}=\mathbf{A} \oplus \mathbf{B}$ which won't change
$\mathrm{C}_{\text {out }}$ but will allow us to express S as a simple function :
$\mathbf{S}=\mathbf{P} \oplus \mathrm{C}_{\mathrm{IN}}$

4. Carry Bypass Adder

Key Idea: if $\left(\mathbf{P}_{\mathbf{0}} \mathbf{P}_{\mathbf{1}} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{3}}\right)$ then $\mathbf{C}_{\mathbf{0}, \mathbf{3}}=\mathbf{C}_{\mathbf{i}, \mathbf{0}}$

16-bit Carry Bypass Adder

What is the worst case propagation delay for the 16-bit adder?

Assume the following for delay each gate:
P, G from $A, B: 1$ delay unit
P, G, C_{i} to C_{o} or Sum for a FA: 1 delay unit
2:1 mux delay: 1 delay unit

Critical Path Analysis

For the second stage, is the critical path:
$B P 2=0$ or $B P 2=1 ?$
Message: Timing Analysis is Very Tricky Must Carefully Consider Data Dependencies For False Paths

Carry Bypass vs Ripple Carry

Ripple Carry: $\quad t_{\text {adder }}=(N-1) t_{\text {carry }}+t_{\text {sum }}$
Carry Bypass: $\mathbf{t}_{\text {adder }} \approx(M-1) t_{\text {carry }}+t_{\text {sum }}+(N / M-1) t_{\text {bypass }}$

M = bypass word size

N = number of bits being added

5. Carry Lookahead Adder (CLA)

- Recall that $\quad C_{\text {OUT }}=G+P C_{I N} \quad$ where $G=A B$ and $P=A \oplus B$
- For adding two N-bit numbers:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{N}} & =\mathrm{G}_{\mathrm{N}-1}+\mathrm{P}_{\mathrm{N}-1} \mathrm{C}_{\mathrm{N}-1} \\
& =\mathrm{G}_{\mathrm{N}-1}+\mathrm{P}_{\mathrm{N}-1} \mathrm{G}_{\mathrm{N}-2}+\mathrm{P}_{\mathrm{N}-1} P_{\mathrm{N}-2} \mathrm{C}_{\mathrm{N}-2} \\
& =\underbrace{\mathrm{G}_{\mathrm{N}-1}+\mathrm{P}_{\mathrm{N}-1} G_{\mathrm{N}-2}+\mathrm{P}_{\mathrm{N}-1} P_{\mathrm{N}-2} \mathrm{G}_{\mathrm{N}-3}+\ldots+\mathrm{P}_{\mathrm{N}-1} \ldots \mathrm{P}_{0} \mathrm{C}_{\mathrm{IN}}}_{\mathrm{C}_{\mathrm{N}} \text { in only } 3 \text { gate delays (!) : }} \\
1 & \text { for P/G generation, } 1 \text { for ANDs, } 1 \text { for final OR }
\end{aligned}
$$

- Idea: pre-compute all carry bits combinatorially

Carry Lookahead Circuits

The 74182 Carry Lookahead Unit

74182 carry lookahead unit

Active low example:

- high speed carry lookahead generator
- used with 74181 to extend carry lookahead beyond 4 bits
- correctly handles the carry polarity of the 181

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}+\mathrm{x}}=\overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{P} 0}+\overline{\mathrm{G} 0} \cdot \overline{\mathrm{C}}_{\mathrm{n}}} \\
&=\overline{\overline{\mathrm{G} 0} \cdot \overline{\mathrm{P} 0} \cdot \overline{\mathrm{G} 0} \cdot \overline{\mathrm{C}}_{\mathrm{n}}} \\
& \quad=(\mathrm{G} 0+\mathrm{P} 0) \cdot\left(\mathrm{G} 0+\mathrm{C}_{\mathrm{n}}\right)=\mathrm{G} 0+\mathrm{P} 0 \mathrm{C}_{\mathrm{n}} \\
&>\mathrm{C}_{4}= \mathrm{G}_{3: 0}+\mathrm{P}_{3: 0}\left(\mathrm{C}_{\mathrm{n}}\right. \\
& \mathrm{C}_{\mathrm{n}+\mathrm{y}}= \mathrm{C}_{8}=\mathrm{G}_{7: 4}+\mathrm{P}_{7: 4} \mathrm{G}_{3: 0}+\mathrm{P}_{7: 4} \mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{i}, 0}=\mathrm{G}_{7: 0}+\mathrm{P}_{7: 0} \mathrm{C}_{\mathrm{n}} \\
& \mathrm{C}_{\mathrm{n}+\mathrm{z}}=\mathrm{C}_{12}=\mathrm{G}_{11: 8}+\mathrm{P}_{11: 8} \mathrm{G}_{7: 4}+\mathrm{P}_{11: 8} \mathrm{P}_{7: 4} \mathrm{G}_{3: 0}+\mathrm{P}_{11: 8} \mathrm{P}_{7: 4} \mathrm{P}_{3: 0} \mathrm{C}_{\mathrm{n}} \\
&=\mathrm{G}_{11: 0}+\mathrm{P}_{11: 0} \mathrm{C}_{\mathrm{n}}
\end{aligned}
$$

Block Generate and Propagate

G and P can be computed for groups of bits (instead of just for individual bits). This allows us to choose the maximum fan-in we want for our logic gates and then build a hierarchical carry chain using these equations:

$$
\begin{array}{ll}
C_{J+1}=G_{I J}+P_{I J} C_{I} & \begin{array}{l}
\text { "generate a carry from bits I thru } \\
K \text { if it is generated in the high-order } \\
(J+1, K) \text { part of the block or if it is } \\
\text { generated in the low-order (I,J) part }
\end{array} \\
G_{I K}=G_{J+1, K}+P_{J+1, K} G_{I J} & \begin{array}{l}
\text { of the block and then propagated } \\
\text { thru the high part" }
\end{array} \\
P_{I K}=P_{I J} P_{J+1, K} &
\end{array}
$$

where $I<J$ and $J+1<K$

Hierarchical building block

8-bit CLA (P/G generation)

8-bit CLA (carry generation)

8-bit CLA (complete)

Summary

- Negative numbers:
- Twos Complement -B = $\bar{B}+1$

- Addition \& Subtraction use same adder
- Ripple Carry Adder:
$-\mathbf{t}_{\text {adder }}=(\mathbf{N}-1) \mathbf{t}_{\text {carry }}+\mathrm{t}_{\text {sum }}$

- Carry Bypass Adder:
$-\mathbf{t}_{\text {adder }} \approx(M-1) \mathbf{t}_{\text {carry }}+\mathbf{t}_{\text {sum }}+(N / M-1) t_{\text {bypass }}$
- Carry Lookahead Adder:
$-\mathbf{t}_{\text {adder }} \approx 2 \log _{2}(\mathbf{N}) \mathrm{t}_{\mathrm{pg}}$

