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Memories: a practical primer
• The good news: huge selection of technologies

– Small & faster vs. large & slower
– Every year capacities go up and prices go down
– New kid on the block: high density, fast flash memories

• Non-volatile, read/write, no moving parts! (robust, efficient)

• The bad news: perennial system bottleneck
– Latencies (access time) haven’t kept pace with cycle times
– Separate technology from logic, so must communicate 

between silicon, so physical limitations (# of pins, R’s and 
C’s and L’s) limit bandwidths

• New hopes: capacitive interconnect, 3D IC’s
– Likely the limiting factor in cost & performance of many 

digital systems: designers spend a lot of time figuring out 
how to keep memories running at peak bandwidth

– “It’s the memory, stupid”
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Memories in Verilog
• reg bit;  // a single register
• reg [31:0] word;   // a 32-bit register
• reg [31:0] array[15:0]  // 16 32-bit regs

• wire [31:0] read_data,write_data;
wire [3:0] index;

// combinational (asynch) read
assign read_data = array[index];

// clocked (synchronous) write
always @ (posedge clock)

array[index] <= write_data;
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Multi-port Memories (aka regfiles)
reg [31:0] regfile[31:0]; // 32 32-bit words

// Beta register file: 2 read ports, 1 write
wire [4:0] ra1,ra2,wa;
wire [31:0] rd1,rd2,wd;

assign ra1 = inst[20:16];
assign ra2 = ra2sel ? inst[25:21] : inst[15:11];
assign wa = wasel ? 5'd30 : inst[25:21];

// read ports
assign rd1 = (ra1 == 31) ? 0 : regfile[ra1]; 
assign rd2 = (ra2 == 31) ? 0 : regfile[ra2];
// write port
always @ (posedge clk)

if (werf) regfile[wa] <= wd;

assign z = ~| rd1;   // used in BEQ/BNE instructions
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FPGA memory implementation
• Regular registers in logic blocks

– Piggy use of resources, but convenient & fast if small
• [Xilinx Vertex II] use the LUTs:

– Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1
– Dual port (1 R/W, 1R): 16x1, 32x1, 64x1
– Can fake extra read ports by cloning memory: all clones 

are written with the same addr/data, but each clone can 
have a different read address

• [Xilinx Vertex II] use block ram:
– 18K bits: 16Kx1, 8Kx2, 4Kx4

with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4)
– Single or dual port
– Pipelined (clocked) operations
– Labkit XCV2V6000: 144 BRAMs, 2952K bits total
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Virtex memory configurations

Using LUT resources in 
configurable logic blocks:

Using BRAMs:
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Xilinx Synchronous Block Memory

Source: Xilinx App Note 463

BRAM
Single-port

Config.
CLK
WE

Address

Data_in Data_out
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Using  BRAMs (eg, a 64Kx8 ram)
• From menus:  Project → New Source…

Select “IP”
Fill in name

Click “Next” when done…
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BRAM Example

Click open folders

Select “Single Port 
Block Memory”

Click “Next” and then “Finish” on next window
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BRAM Example

Fill in name
(again?!)

Select RAM 
vs ROM

Click “Next” …

Fill in width
& depth

Usually “Read 
After Write” is 
what you want



6.111 Fall 2005 Lecture 9, Slide 10

BRAM Example

Click “Next” …

Can add extra 
control pins, but 
usually not
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BRAM Example

Click “Next” …

Select polarity 
of control pins; 
active high 
default is 
usually just fine
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BRAM Example

Click “Generate” to complete

Click to name a 
.coe file that 
specifies initial 
contents (eg, 
for a ROM)
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.coe file format
memory_initialization_radix=2;
memory_initialization_vector=

00000000,
00111110,
01100011,
00000011,
00000011,
00011110,
00000011,
00000011,
01100011,
00111110,
00000000,
00000000,

Memory contents with location 0 first, 
then location 1, etc.  You can specify 
input radix, in this example we’re using 
binary.  MSB is on the left, LSB on 
the right.  Unspecified locations (if 
memory has more locations than given 
in .coe file) are set to 0.

Memory contents with location 0 first, 
then location 1, etc.  You can specify 
input radix, in this example we’re using 
binary.  MSB is on the left, LSB on 
the right.  Unspecified locations (if 
memory has more locations than given 
in .coe file) are set to 0.
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Using result in your Verilog
• Look at generated Verilog for module def’n:

module ram64x8 (addr,clk,din,dout,we);
input [15 : 0] addr;
input clk;
input [7 : 0] din;
output [7 : 0] dout;
input we;
…

endmodule

• Use to instantiate instances in your code:

ram64x8 foo(addr,clk,din,dout,we);
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Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that 
produces exactly the same outputs.

• Can we simplify the FSM by removing equivalent states?
No!  The outputs may be the same, but the 
next-state transitions are not.

• This situation closely resembles a procedure call or function call in 
software...how can we apply this concept to FSMs?

Acknowledgements: Rex Min
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The Major/Minor FSM Abstraction

• Subtasks are encapsulated in minor FSMs with common 
reset and clock

• Simple communication abstraction:
– START:  tells the minor FSM to begin operation (the call)
– BUSY:  tells the major FSM whether the minor is done 

(the return)
• The major/minor abstraction is great for...

– Modular designs (always a good thing)
– Tasks that occur often but in different contexts
– Tasks that require a variable/unknown period of time
– Event-driven systems

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK
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Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until 
the minor FSM 

is ready

2. Trigger the 
minor FSM 

(and make sure 
it’s started)

3. Wait until 
the minor FSM 

is done

START

BUSY

Major FSM 
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”
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Inside the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

1. Wait for a 
trigger from the 

major FSM

2. Do some useful work

T1
BUSY

START

START

START

BUSY

Major FSM 
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM 

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the 
major FSM that 

work is done

can we 
speed 

this up?
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Optimizing the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

T1
BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
BUSY

T1
BUSY

START

START
T4

BUSY

Bad idea #2:
BUSY never asserts!

T1
BUSY

START

START T2
BUSY
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A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB
STARTA
STARTB

WTAB

TICK BUSYABUSYB

TICK BUSYA+BUSYB BUSYA+BUSYB

STC
STARTC

BUSYABUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Assume that BUSYA and 
BUSYB both rise before either 

minor FSM completes. 
Otherwise, we loop forever!

Operating Scenario:
• Major FSM is triggered 

by TICK
• Minors A and B are 

started simultaneously
• Minor C is started once 

both A and B complete
• TICKs arriving before 

the completion of C are 
ignored
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Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB

state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK
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Lab 3 overview

ac97

ac97-
commands

audio

Serial links 
to/from AC97 
chip

Recorder
(your job!)

ready

8

8

64K x 8 BRAM

w
e 88Addr 16

ENTER button
(push to record)

lab3.v

Assignment: build a voice recorder that uses 8-bit PCM data @ 6KHz

About 11 seconds of speech @ 6KHz
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AC97: PCM data

Slot 0 (16) Slot 1 (20) Slot 20 (20)…
…

SYNCH

RECORD

Slot 2 (20)

256 bits @ 12.288Mhz = 48KHz frame rate

Slot 3 (20)

Frame info commands Data…

Sample new 
incoming 8-bit 
PCM data here
(from_ac97_data)

Provide new 
outgoing 8-bit 
PCM data by here
(to_ac97_data)

~10us

PCM = pulse code modulation

Sample waveform at fixed 
intervals, encode results as an 
N-bit signed number.  For our 
AC97 chip, N = 18.


