
6.111 Fall 2005 Lecture 9, Slide 1

Memories: a practical primer
• The good news: huge selection of technologies

– Small & faster vs. large & slower
– Every year capacities go up and prices go down
– New kid on the block: high density, fast flash memories

• Non-volatile, read/write, no moving parts! (robust, efficient)

• The bad news: perennial system bottleneck
– Latencies (access time) haven’t kept pace with cycle times
– Separate technology from logic, so must communicate

between silicon, so physical limitations (# of pins, R’s and
C’s and L’s) limit bandwidths

• New hopes: capacitive interconnect, 3D IC’s
– Likely the limiting factor in cost & performance of many

digital systems: designers spend a lot of time figuring out
how to keep memories running at peak bandwidth

– “It’s the memory, stupid”

6.111 Fall 2005 Lecture 9, Slide 2

Memories in Verilog
• reg bit; // a single register
• reg [31:0] word; // a 32-bit register
• reg [31:0] array[15:0] // 16 32-bit regs

• wire [31:0] read_data,write_data;
wire [3:0] index;

// combinational (asynch) read
assign read_data = array[index];

// clocked (synchronous) write
always @ (posedge clock)

array[index] <= write_data;

6.111 Fall 2005 Lecture 9, Slide 3

Multi-port Memories (aka regfiles)
reg [31:0] regfile[31:0]; // 32 32-bit words

// Beta register file: 2 read ports, 1 write
wire [4:0] ra1,ra2,wa;
wire [31:0] rd1,rd2,wd;

assign ra1 = inst[20:16];
assign ra2 = ra2sel ? inst[25:21] : inst[15:11];
assign wa = wasel ? 5'd30 : inst[25:21];

// read ports
assign rd1 = (ra1 == 31) ? 0 : regfile[ra1];
assign rd2 = (ra2 == 31) ? 0 : regfile[ra2];
// write port
always @ (posedge clk)

if (werf) regfile[wa] <= wd;

assign z = ~| rd1; // used in BEQ/BNE instructions

6.111 Fall 2005 Lecture 9, Slide 4

FPGA memory implementation
• Regular registers in logic blocks

– Piggy use of resources, but convenient & fast if small
• [Xilinx Vertex II] use the LUTs:

– Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1
– Dual port (1 R/W, 1R): 16x1, 32x1, 64x1
– Can fake extra read ports by cloning memory: all clones

are written with the same addr/data, but each clone can
have a different read address

• [Xilinx Vertex II] use block ram:
– 18K bits: 16Kx1, 8Kx2, 4Kx4

with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4)
– Single or dual port
– Pipelined (clocked) operations
– Labkit XCV2V6000: 144 BRAMs, 2952K bits total

6.111 Fall 2005 Lecture 9, Slide 5

Virtex memory configurations

Using LUT resources in
configurable logic blocks:

Using BRAMs:

6.111 Fall 2005 Lecture 9, Slide 6

Xilinx Synchronous Block Memory

Source: Xilinx App Note 463

BRAM
Single-port

Config.
CLK
WE

Address

Data_in Data_out

6.111 Fall 2005 Lecture 9, Slide 7

Using BRAMs (eg, a 64Kx8 ram)
• From menus: Project → New Source…

Select “IP”
Fill in name

Click “Next” when done…

6.111 Fall 2005 Lecture 9, Slide 8

BRAM Example

Click open folders

Select “Single Port
Block Memory”

Click “Next” and then “Finish” on next window

6.111 Fall 2005 Lecture 9, Slide 9

BRAM Example

Fill in name
(again?!)

Select RAM
vs ROM

Click “Next” …

Fill in width
& depth

Usually “Read
After Write” is
what you want

6.111 Fall 2005 Lecture 9, Slide 10

BRAM Example

Click “Next” …

Can add extra
control pins, but
usually not

6.111 Fall 2005 Lecture 9, Slide 11

BRAM Example

Click “Next” …

Select polarity
of control pins;
active high
default is
usually just fine

6.111 Fall 2005 Lecture 9, Slide 12

BRAM Example

Click “Generate” to complete

Click to name a
.coe file that
specifies initial
contents (eg,
for a ROM)

6.111 Fall 2005 Lecture 9, Slide 13

.coe file format
memory_initialization_radix=2;
memory_initialization_vector=

00000000,
00111110,
01100011,
00000011,
00000011,
00011110,
00000011,
00000011,
01100011,
00111110,
00000000,
00000000,

Memory contents with location 0 first,
then location 1, etc. You can specify
input radix, in this example we’re using
binary. MSB is on the left, LSB on
the right. Unspecified locations (if
memory has more locations than given
in .coe file) are set to 0.

Memory contents with location 0 first,
then location 1, etc. You can specify
input radix, in this example we’re using
binary. MSB is on the left, LSB on
the right. Unspecified locations (if
memory has more locations than given
in .coe file) are set to 0.

6.111 Fall 2005 Lecture 9, Slide 14

Using result in your Verilog
• Look at generated Verilog for module def’n:

module ram64x8 (addr,clk,din,dout,we);
input [15 : 0] addr;
input clk;
input [7 : 0] din;
output [7 : 0] dout;
input we;
…

endmodule

• Use to instantiate instances in your code:

ram64x8 foo(addr,clk,din,dout,we);

6.111 Fall 2005 Lecture 9, Slide 15

Toward FSM Modularity
• Consider the following abstract FSM:

S0

a1

b1 c1

d1

S1 S2 S3 S4 S5 S6 S7 S8 S9

a2

b2 c2

d2 a3

b3 c3

d3

• Suppose that each set of states ax...dx is a “sub-FSM” that
produces exactly the same outputs.

• Can we simplify the FSM by removing equivalent states?
No! The outputs may be the same, but the
next-state transitions are not.

• This situation closely resembles a procedure call or function call in
software...how can we apply this concept to FSMs?

Acknowledgements: Rex Min

6.111 Fall 2005 Lecture 9, Slide 16

The Major/Minor FSM Abstraction

• Subtasks are encapsulated in minor FSMs with common
reset and clock

• Simple communication abstraction:
– START: tells the minor FSM to begin operation (the call)
– BUSY: tells the major FSM whether the minor is done

(the return)
• The major/minor abstraction is great for...

– Modular designs (always a good thing)
– Tasks that occur often but in different contexts
– Tasks that require a variable/unknown period of time
– Event-driven systems

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYBCLK

RESET RESET

CLK

6.111 Fall 2005 Lecture 9, Slide 17

Inside the Major FSM

S1
S2

START
S3 S4...

BUSYBUSY

BUSY

BUSY

BUSY BUSY

1. Wait until
the minor FSM

is ready

2. Trigger the
minor FSM

(and make sure
it’s started)

3. Wait until
the minor FSM

is done

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK

Variations:
• Usually don’t need both Step 1 and Step 3
• One cycle “done” signal instead of multi-cycle “busy”

6.111 Fall 2005 Lecture 9, Slide 18

Inside the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

1. Wait for a
trigger from the

major FSM

2. Do some useful work

T1
BUSY

START

START

START

BUSY

Major FSM
State S1 S2 S2 S3 S3 S3 S4

CLK
Minor FSM

State T1 T1 T2 T3 T4 T1 T1

3. Signal to the
major FSM that

work is done

can we
speed

this up?

6.111 Fall 2005 Lecture 9, Slide 19

Optimizing the Minor FSM

T2
BUSY

T3
BUSY

T4
BUSY

T1
BUSY

START

START

Good idea: de-assert BUSY one cycle early

Bad idea #1:
T4 may not immediately return to T1

T2
BUSY

T3
BUSY

T1
BUSY

START

START
T4

BUSY

Bad idea #2:
BUSY never asserts!

T1
BUSY

START

START T2
BUSY

6.111 Fall 2005 Lecture 9, Slide 20

A Four-FSM Example

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC

BUSYC

TICK

IDLE
STAB
STARTA
STARTB

WTAB

TICK BUSYABUSYB

TICK BUSYA+BUSYB BUSYA+BUSYB

STC
STARTC

BUSYABUSYB

BUSYC

WTC BUSYC

BUSYC

BUSYC

Assume that BUSYA and
BUSYB both rise before either

minor FSM completes.
Otherwise, we loop forever!

Operating Scenario:
• Major FSM is triggered

by TICK
• Minors A and B are

started simultaneously
• Minor C is started once

both A and B complete
• TICKs arriving before

the completion of C are
ignored

6.111 Fall 2005 Lecture 9, Slide 21

Four-FSM Sample Waveform

IDLE IDLE STAB STAB WTAB WTAB WTAB STC STC WTC WTC WTC IDLE IDLE STAB

state

tick

STARTA

BUSYA

STARTB

BUSYB

STARTC

BUSYC

Major FSM

Minor FSM A

Minor FSM B

STARTA

STARTB

BUSYA

BUSYB

Minor FSM C
STARTC
BUSYC

TICK

6.111 Fall 2005 Lecture 9, Slide 22

Lab 3 overview

ac97

ac97-
commands

audio

Serial links
to/from AC97
chip

Recorder
(your job!)

ready

8

8

64K x 8 BRAM

w
e 88Addr 16

ENTER button
(push to record)

lab3.v

Assignment: build a voice recorder that uses 8-bit PCM data @ 6KHz

About 11 seconds of speech @ 6KHz

6.111 Fall 2005 Lecture 9, Slide 23

AC97: PCM data

Slot 0 (16) Slot 1 (20) Slot 20 (20)…
…

SYNCH

RECORD

Slot 2 (20)

256 bits @ 12.288Mhz = 48KHz frame rate

Slot 3 (20)

Frame info commands Data…

Sample new
incoming 8-bit
PCM data here
(from_ac97_data)

Provide new
outgoing 8-bit
PCM data by here
(to_ac97_data)

~10us

PCM = pulse code modulation

Sample waveform at fixed
intervals, encode results as an
N-bit signed number. For our
AC97 chip, N = 18.

