Something We Can't Build (Yet)

What if you were given the following design specification:

When the button is pushed:

1) Turn on the light if
it is off
2) Turn off the light if

The light should change
state within a second of the button press

What makes this circuit so different from those we've discussed before?

1. "State" - i.e. the circuit has memory 2. The output was changed by a input "event" (pushing a button) rather than an input "value"

Digital State

One model of what we'd like to build

Plan: Build a Sequential Circuit with stored digital STATE -

- Memory stores CURRENT state, produced at output
- Combinational Logic computes
- NEXT state (from input, current state)
- OUTPUT bit (from input, current state)
-State changes on LOAD control input

Storage: Using Feedback

IDEA: use positive feedback to maintain storage indefinitely. Our logic gates are built to restore marginal signal levels, so noise shouldn't be a problem!

Result: a bistable storage element

Three solutions:

- two end-points are stable
- middle point is unstable

We'll get back to this!

Settable Storage Element

It's easy to build a settable storage element (called a latch) using a lenient MUX:

New Device: D Latch

$$
\begin{array}{cc}
G=1: & G=O: \\
Q \text { follows } D & Q \text { holds }
\end{array}
$$

$G=1$: Q Follows D, independently of Q '
$G=O: Q$ Holds stable Q ', independently of D

BUT... A change in D or G contaminates Q, hence Q ' ... how can this possibly

work?

D-Latch timing

To reliably latch V2:

- Apply V2 to D, holding $G=1$
- After $T_{P D}, V 2$ appears at $Q=Q$ '
- After another $T_{P D}, Q^{\prime} \& D$ both valid for $T_{P D}$; will hold $Q=V 2$ independently of G
- Set $G=O$, while Q \& D hold $Q=D$
- After another $T_{P D}, G=O$ and Q ' are sufficient to hold $Q=V 2$ independently of D

NOR-based Set-Reset (SR) Flipflop

Flip-flop refers to a bi-stable element

Lets try using the D-Latch...

Plan: Build a Sequential Circuit with one bit of STATE -

- Single latch holds CURRENT state

What happens
when $G=1$?

- Combinational Logic computes
- NEXT state (from input, current state)
- OUTPUT bit (from input, current state)
- State changes when $G=1$ (briefly!)

Combinational Cycles

When $G=1$, latch is Transparent...

Looks like a stupid
Approach to me...
... provides a combinational path from D to Q.
Can't work without tricky timing constrants on $G=1$ pulse:

- Must fit within contamination delay of logic
- Must accommodate latch setup, hold times

Edge-triggered D-Register

The gate of this
latch is open when

Observations:

- only one latch "transparent" at any time:
- master closed when slave is open
- slave closed when master is open
\rightarrow no combinational path through flip flop
(the feedback path in one of the master or slave latches is always active)
- Q only changes shortly after $O \rightarrow 1$ transition of CLK, so flip flop appears to be "triggered" by rising edge of CLK

Lecture 5, Slide 10

D-Register Waveforms

D-Register Timing - I

Values determined

$t_{\text {PD }}$: maximum propagation delay, CLK $\rightarrow Q$
$\dagger_{C D}$: minimum contamination delay, $C L K \rightarrow Q$

Values determined from master latch
$\dagger_{\text {SETUP: }}$ setup time
guarantee that D has propagated through feedback path before master closes
$\dagger_{\text {HOLD }}$: hold time
guarantee master is closed and data is stable before allowing D to change

D-Register Timing - II

Questions for register-based designs:

- how much time for useful work (i.e. for combinational logic delay)?
- does it help to guarantee a minimum $t_{C D}$? How about designing registers so that

$$
t_{C D, \text { reg }}>t_{\text {HOLD, reg }} ?
$$

- what happens if CLK signal doesn't arrive at the two registers at exactly the same time (a phenomenon known as "clock skew")?

Sequential Circuit Timing

Questions:

- Constraints on $T_{C D}$ for the logic? > 1 ns
- Minimum clock period? $\quad>10 \mathrm{~ns}\left(T_{P D, R}+T_{P D, L}+T_{S, R}\right)$
- Setup, Hold times for Inputs?

$$
\begin{aligned}
& T_{S}=T_{P D, L}+T_{S, R} \\
& T_{H}=T_{H, R}-T_{C D, L}
\end{aligned}
$$

This is a simple Finite State Machine ... more on next time!

The Sequential always Block

- Edge-triggered circuits are described using a sequential always block

Combinational
module combinational(a, b, sel,
input $a, b ;$ input sel; output out; reg out;
always @ (a or b or sel)
begin
if (sel) out = a; else out $=\mathrm{b}$;
end
endmodule

Sequential

module sequential (a, b, sel,
clk, out); input $a, b ;$ input sel, clk; output out; reg out;

```
always @ (posedge clk)
```

begin
if (sel) out <= a;
else out <= b;
end
endmodule

Importance of the Sensitivity List

- The use of posedge and negedge makes an always block sequential (edge-triggered)
- Unlike a combinational always block, the sensitivity list does determine behavior for synthesis!

D Flip-flop with synchronous clear
module dff_sync_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock)
begin
if (!clearb) q <= 1'b0;
else q <= d;
end
endmodule
always block entered only at each positive clock edge

D Flip-flop with asynchronous clear

```
module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (negedge clearb or posedge clock)
begin
    if (!clearb) q <= 1'b0;
    else q <= d;
end
endmodule
```

always block entered immediately when (active-low) clearb is asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

- Assign any signal or variable from only one always block, Be wary of race conditions: always blocks execute in parallel

Blocking vs. Nonblocking Assignments

- Verilog supports two types of assignments within always blocks, with subtly different behaviors.
- Blocking assignment: evaluation and assignment are immediate

- Nonblocking assignment: all assignments deferred until all righthand sides have been evaluated (end of simulation timestep)

```
always @ (a or b or c)
begin
```


- Sometimes, as above, both produce the same result. Sometimes, not!

Assignment Styles for Sequential Logic

Flip-Flop Based Digital Delay Line

- Will nonblocking and blocking assignments both produce the desired result?

```
module nonblocking(in, clk, out);
    input in, clk;
    output out;
    reg q1, q2, out;
    always @ (posedge clk)
    begin
        q1 <= in;
        q2 <= q1;
        out <= q2;
    end
endmodule
```

```
module blocking(in, clk, out);
    input in, clk;
    output out;
    reg q1, q2, out;
    always @ (posedge clk)
    begin
        q1 = in;
        q2 = q1;
        out = q2;
    end
endmodule
```


Use Nonblocking for Sequential Logic

```
always @ (posedge clk)
begin
    q1 <= in;
    q2 <= q1;
    out <= q2;
end
```

"At each rising clock edge, q1, q2, and out simultaneously receive the old values of in, q1, and q2."


```
always @ (posedge clk)
begin
    q1 = in;
    q2 = q1;
    out = q2;
end
```

"At each rising clock edge, $q 1=$ in.
After that, $q 2=q 1=$ in.
After that, out $=q 2=q 1=$ in.
Therefore out = in."

- Blocking assignments do not reflect the intrinsic behavior of multi-stage sequential logic
- Guideline: use nonblocking assignments for sequential always blocks

Use Blocking for Combinational Logic

Blocking Behavior	abcxy
(Given) Initial Condition	11011
a changes; always block triggered	01011
$\mathrm{x}=\mathrm{a} \& \mathrm{~b}$;	01001
$\mathrm{y}=\mathrm{x} \mid \mathrm{c}$;	01000

module blocking (a,b,c,x,y);

```
input a,b,c;
```

output x, y;
reg x, y;
always @ (a or b or c)
begin
$\mathbf{x}=\mathrm{a} \& \mathrm{~b} ;$
$\mathrm{y}=\mathrm{x} \mid \mathrm{c} ;$
Y
end
endmodule

Nonblocking Behavior	abcxy	Deferred
(Given) Initial Condition	11011	
a changes; always block triggered	01011	
$\mathbf{x}<=a \& b ;$	01011	$\mathrm{x}<=0$
$\mathrm{y}<=\mathrm{x} \mid \mathrm{c}$;	01011	$x<=0, y<=1$
Assignment completion	01001	

```
module nonblocking(a,b,c,x,y);
    input a,b,c;
    output x,y;
    reg x,y;
    always @ (a or b or c)
    begin
        x <= a & b;
        y<= x | c;
    end
    endmodule
```

- Nonblocking and blocking assignments will synthesize correctly. Will both styles simulate correctly?
- Nonblocking assignments do not reflect the intrinsic behavior of multi-stage combinational logic
- While nonblocking assignments can be hacked to simulate correctly (expand the sensitivity list), it's not elegant
- Guideline: use blocking assignments for combinational always blocks

Implementation for on/off button

module onoff(button,light);
input button;
output light;
reg light;
always @ (posedge button) begin
light <= ~light;
end
endmodule

A Simple Counter

Isn"t this a lot like Exercise 7 in Lab 1?

\# 4-bit counter with enable and synchronous clear module counter(clk,enb, clr, count);
input clk,enb, clr;
output [3:0] count; reg [3:0] count;
always @ (posedge clk) begin count <= clr ? 4'b0 : (enb ? count+1 : count); end
endmodule

