## Welcome to 6.111! <br> Introductory Digital Systems Laboratory

Handouts:
Info form (yellow)
Course Calendar
Lecture slides
Lectures:
Ike Chuang
Chris Terman
TAs:
Javier Castro
Eric Fellheimer
Jae Lee
Willie Sanchez

## Course Website (http://mit.edu/6.111)

| 63.111-Mozilla Firefox |  | - - 미 $\times$ |
| :---: | :---: | :---: |
| Eile Edit View Go | Bookmarks Iools Help | $8 \%$ |
| $\Delta \cdot \square$ |  |  |
| Fall 2005 <br> Home <br> Announcements <br> Tutorial problems <br> Labkit <br> Handouts <br> - Lectures <br> Course info <br> Course calendar <br> Course description <br> Previous terms | 6.1111 <br> Intiroductory <br> Dighitall Systems Labrorationy <br> Week of September 5, 2005 <br> - This week's to-do list: <br> - Wed, Fri: lecture <br> - Fill out information form in Wed lecture <br> - Read Safety Memo <br> - The first meeting of 6.111 will be at lecture on Wednesday, $9 / 7$ at 1 p in 34-101. Note there are no Tuesday recitations as listed in the Registrar's Subject Listing \& Schedule. Consult the Course calendar for schedule of lectures, labs and quizzes. <br> - Please take a moment to read the Course info page which describes course mechanics and policies. <br> - Lab \#1 will be posted on Friday, September 9. The Lab Kit Sianout form will be distributed in Friday's lecture. |  |
| Done |  |  |

### 6.111 Goals

- Fundamentals of logic design
- combinational and sequential blocks
- System integration with multiple components
- FPGAs, memories, discrete components, etc.
- Learn a Hardware Description Language (Verilog)
- Interfacing issues with analog components
- ADC, DAC, sensors, etc.
- Understand different design methodologies
- Understand different design metrics
- component/gate count and implementation area, switching speed, energy dissipation and power
- Design \& implement a substantial digital system
- Have fun!


## Labs: learning the ropes

- Lab 1
- Experiment with gates, design \& implement some logic
- Learn about lab equipment in the Digital Lab (38-600): oscilloscopes and logic analyzers
- Introduction to Verilog
- Lab 2
- Design and implement a Finite State Machine (FSM)
- Use Verilog to program an FPGA
- Report and its revision will be evaluated for CI-M
- Lab 3
- Design a complicated system with multiple FSMs (Major/Minor FSM)
- Voice recorder using AC97 codec and SRAMs
- Lab 4
- Video circuits: a simple Pong game


## Final Project

- Done in groups of two (or sometimes three)
- Open ended
- You and the staff negotiate a project proposal
- Must emphasize digital concepts, but inclusion of analog interfaces (e.g., data converters, sensors or motors) common and often desirable
- Proposal Conference, several Design Reviews
- Design presentation in class (\% of the final grade for the in-class presentation)
- Staff will provide help with project definition and scope, design, debugging, and testing
- It is extremely difficult for a student to receive an A without completing the final project


## Evaluation

- Midterm (11/2): 20\%
- Labs: 30\%
- Labs 1 \& 2: 5\%, Labs 3 \& 4: 10\%
- CI-M paper: 10\%
- Final Project: 40\%
- Deadlines and participation: 5\%
- Quality and organization of presentation and report: 5\%
- Complexity, innovation and risk: 10\%
- Problem definition: 2\%
- Architecture: 3\%
- Design (modularity, Verilog): 5\%
- Functionality: 10\%
- A large number of students do " $A$ " level work and are, indeed, rewarded with a grade of " $A$ ". The corollary to this is that, since average performance levels are so high, punting any part of the subject can lead to a disappointing grade.


## Why Digital? A Thought Experiment



Goal: transmit results of 100 coin flips

## Experiment \#1: Analog Encoding



100 coin flips $\rightarrow 2^{100}$ possibilities
Transmit voltage N/2 ${ }^{100}$ for possibility \#N
Required voltage resolution $=1 / 2^{100}=\sim 8 e-31$ volts

$\theta$impossible to reliably transmit/receive voltages with that resolution

## Rethink basic system architecture

- Noise and inaccuracy are inevitable: we can't reliably transmit/receive/manipulate "infinite" information-- we must design our system to tolerate some amount of error if it is to process information reliably.
- A system is a structure that is guaranteed to exhibit a specified behavior, assuming all of its components obey their specified behaviors.

How is this achieved? CONTRACTS!
Every system component will have clear obligations and responsibilities. If contracts are violated all bets are off.

## Going Digital

- Digital representation = information encoded as a sequence of symbols chosen from a (small) set.
- Keep in mind that the world is not digital, we will simply engineer it to behave that way. Furthermore, we must use real physical (analog, continuous) phenomena to implement digital designs!
- Common choices
- Binary symbols $(0,1)$
- If we have DC connectivity (wired): encode using voltages/currents
- If we don't have DC connectivity (wireless):

We'll work
with these encode using frequency/phase

- Going digital keeps the contracts simple - limit quantum of information we process in exchange for reliablity


## Using Voltages Digitally

- Key idea: don't allow " 0 " to be mistaken for a " 1 " or vice versa
- Use the same "uniform representation convention" for every component and wire in our digital system
- To implement devices with high reliability, we outlaw "close calls" via a representation convention which forbids a range of voltages between " 0 " and "1".


Consequence: notion of valid and invalid signals

## A Digital Processing Element

- A combinational device is a circuit element that has
- one or more digital inputs
- one or more digital outputs
- a functional specification that details the value

Static discipline of each output for every possible combination of valid input values

- a timing specification consisting (at minimum) of an upper bound $t_{p d}$ on the required time for the device to compute the specified output values from an arbitrary set of stable, valid input values



## Why have processing blocks?

- The goal of modular design:


## ABSTRACTION

- What does that mean anyway:
- Rules simple enough for a 6-3 to follow...
- Understanding BEHAVIOR without knowing IMPLEMENTATION
- Predictable composition of functions
- Tinker-toy assembly
- Guaranteed behavior under REAL WORLD circumstances


## A Combinational Digital System

- A set of interconnected elements is a combinational device if
- each circuit element is a combinational device
- every input is connected to exactly one output or a constant (eg, some vast supply of 0 's and 1's)
- the circuit contains no directed cycles
- Why is this true?
- Given an acyclic circuit meeting the above constraints, we can derive functional and timing specs for the input/output behavior from the specs of its components!
- We'll see lots of examples soon. But first, we need to build some combinational devices to work with...


## Wires: theory vs. practice

Does a wire obey the static discipline?

Noise: changes voltage...

(voltage close to boundary with forbidden zone)
(voltage in forbidden zone: Oops, not a valid voltage!)


Questions to ask ourselves:
In digital systems, where does noise come from?
How big an effect are we talking about?

## Power Supply Noise

Power supply
Integrated circuit

$\Delta V$ from:

- IR drop
(between gates: 30 mV , within module: 50 mV , across chip: 350 mV )
- L(dI/dt) drop
(use extra pins and bypass caps to keep within 250 mV )
- LC ringing triggered by current "steps"


## Crosstalk



This situation frequently happens on integrated circuits where there are many overlapping wiring layers. In a modern integrated circuit $\Delta \mathrm{V}_{\mathrm{A}}$ might be $2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{O}}=20 \mathrm{fF}$ and $C_{c}=10 \mathrm{fF} \rightarrow \Delta \mathrm{V}_{\mathrm{B}}=0.83 \mathrm{~V}$ ! Designers often try to avoid these really bad cases by careful routing of signals, but some crosstalk is unavoidable.

## Intersymbol Interference

$\Delta \mathrm{V}$ from energy storage left over from earlier signaling on the wire:

- transmission line discontinuities
(reflections off of impedance mismatches and terminations)

- charge storage in RC circuit (narrow pulses are lost due to incomplete transitions)

- RLC ringing
(triggered by voltage "steps")


Fix: slower operation, limiting voltage swings and slew rates

## Needed: Noise Margins!

Does a wire obey the static discipline?


No! A combinational device must restore marginally valid signals. It must accept marginal inputs and provide unquestionable outputs (i.e., to leave room for noise).


## Sample DC (signalling) Specification

HCMOS family characteristics
FAMILY SPECIFICATIONS

DC CHARACTERISTICS FOR 74HCT
Voltages are referenced to GND (ground $=0 \mathrm{~V}$ )

| SYMBOL | PARAMETER | $\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$ ) |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HCT |  |  |  |  |  |  |  | $V_{C C}$ <br> (V) | $\mathrm{V}_{1}$ | OTHER |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH level input voltage | 2.0 | 1.6 |  | 2.0 |  | 2.0 |  | V | $\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$ |  |  |
| VIL | LOW level input voltage |  | 1.2 | 0.8 |  | 0.8 |  | 0.8 | V | $\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$ |  |  |
| V OH | HIGH level output voltage all outputs | 4.4 | 4.5 |  | 4.4 |  | 4.4 |  | V | 4.5 | $\mathrm{V}_{\mathrm{IH}}$ <br> or <br> $V_{I L}$ | $-l_{0}=20 \mu \mathrm{~A}$ |
| VOH | HIGH level output voltage standard outputs | 3.98 | 4.32 |  | 3.84 |  | 3.7 |  | V | 4.5 | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \\ & \hline \end{aligned}$ | $-\mathrm{l}_{0}=4.0 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH level output voltage bus driver outputs | 3.98 | 4.32 |  | 3.84 |  | 3.7 |  | V | 4.5 | $\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | $\mathrm{l}_{0}=6.0 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW level output voltage all outputs |  | 0 | 0.1 |  | 0.1 |  | 0.1 | V | 4.5 | $V_{\mathrm{IH}}$ <br> or <br> VIL | $\mathrm{l}_{0}=20 \mu \mathrm{~A}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW level output voltage standard outputs |  | 0.15 | 0.26 |  | 0.33 |  | 0.4 | V | 4.5 | $V_{I H}$ or VIL | $\mathrm{l}_{0}=4.0 \mathrm{~mA}$ |

## Experiment \#2: Digital Encoding



100 coin flips $\rightarrow$ one transmission for each flip

## Example device: A Buffer




Voltage Transfer Characteristic (VTC):
Plot of $\mathrm{V}_{\text {out }}$ vs. $\mathrm{V}_{\text {in }}$ where each measurement is taken after any transients have died out.

Note: VTC does not tell you anything about how fast a device is-it measures static behavior not dynamic behavior

Static Discipline requires that we avoid the shaded regions aka "forbidden zones"), which correspond to valid inputs but invalid outputs. Net result: combinational devices must have GAIN > 1 and be NONLINEAR.

## Can this be a combinational device?

Suppose that you measured the voltage transfer curve of the device shown below. Could we build a logic family using it as a single-input combinational device?


Hmmm, it had better be an INVERTER...
The device must be able to actually produce the desired output level. Thus, $\mathrm{V}_{\mathrm{OL}}$ can be no lower than 0.5 V.

$$
\mathrm{V}_{\mathrm{OH}} \quad \text { Try } \mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}
$$

$V_{I H}$ must be high enough to produce $V_{O L}$

$$
\text { Try } V_{I H}=3 \mathrm{~V}
$$

Now, choose noise margins - find an N and set


Such that
$V_{\text {IH }}$ IN generates $V_{\text {OL }}$ or less out; AND
$V_{\text {IL }}$ IN generates $V_{O H}$ or more out.

$$
\text { Try } N=0.5 V
$$

## Summary

- Use voltages to encode information
- "Digital" encoding
- valid voltage levels for representing " 0 " and " 1 "
- forbidden zone avoids mistaking " 0 " for " 1 " and vice versa
- Noise
- Want to tolerate real-world conditions: NOISE.
- Key: tougher standards for output than for input
- devices must have gain and have a non-linear VTC
- Combinational devices
- Each logic family has Tinkertoy-set simplicity, modularity
- predictable composition: "parts work $\rightarrow$ whole thing works"
- static discipline
- digital inputs, outputs; restore marginal input voltages
- complete functional spec
- valid inputs lead to valid outputs in bounded time

