
6.111 Fall 2004 Lectures 9/10, Slide 1

Arithmetic Circuits

01011
+00101
10000

Didn’t I learn how
to do addition in
the second grade?
MIT courses aren’t
what they used to
be...

Acknowledgements:

• R. Katz, “Contemporary Logic Design”, Addison Wesley Publishing Company, Reading, MA, 1993. (Chapter 5)
• J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A Design Perspective” Prentice Hall, 2003.
• Kevin Atkinson, Alice Wang, Rex Min

6.111 Fall 2004 Lectures 9/10, Slide 2

• Three common schemes: sign-magnitude, ones complement,
twos complement

• Sign-magnitude: MSB = 0 for positive, 1 for negative
– Range: -(2N-1 – 1) to +(2N-1 – 1)
– Two representations for zero: 0000… & 1000…
– Simple multiplication but complicated addition/subtraction

• Ones complement: if N is positive then its negative is N
– Example: 0111 = 7, 1000 = -7
– Range: -(2N-1 – 1) to +(2N-1 – 1)
– Two representations for zero: 0000… & 1111…
– Subtraction implemented as addition followed by ones

complement

Number Systems Basics

How to represent negative numbers?

_

6.111 Fall 2004 Lectures 9/10, Slide 3

2’s Complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s-complement representation for signed integers, the
same binary addition procedure will work for adding both signed and
unsigned numbers.

By moving the implicit location of “decimal” point, we can represent
fractions too:

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.25

“sign bit” “decimal” point
Range: – 2N-1 to 2N-1 – 1

6.111 Fall 2004 Lectures 9/10, Slide 4

Twos Complement Representation

Asymmetric range: -2N-1 to +2N-1-1
Only one representation for zero
Simple addition and subtraction
Most common representation

Twos complement = bitwise complement + 1

0111 → 1000 + 1 = 1001 = -7
1001 → 0110 + 1 = 0111 = 7

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

[Katz93, chapter 5]

6.111 Fall 2004 Lectures 9/10, Slide 5

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1011
Carries from previous column

Adding two N-bit
numbers produces
an (N+1)-bit result

We’ve already built the circuit that implements one column:

So we can quickly build a circuit two add two 4-bit numbers…

6.111 Fall 2004 Lectures 9/10, Slide 6

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

So let’s build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

But what about
the “+1”?

6.111 Fall 2004 Lectures 9/10, Slide 7

Condition Codes

Besides the sum, one often wants four other bits
of information from an arithmetic unit: To compare A and B,

perform A–B and use
condition codes:

Signed comparison:
LT N⊕V
LE Z+(N⊕V)
EQ Z
NE ~Z
GE ~(N⊕V)
GT ~(Z+(N⊕V))

Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

To compare A and B,
perform A–B and use
condition codes:

Signed comparison:
LT N⊕V
LE Z+(N⊕V)
EQ Z
NE ~Z
GE ~(N⊕V)
GT ~(Z+(N⊕V))

Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

111111 −−−+−−−= NSNBNANSNBNAV

11 −⊕−= NCINNCOUTV

V (overflow): indicates that the answer has
too many bits to be represented correctly by
the result width, e.g., “(2N-1 - 1)+ (2N-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
significant position produced a carry, e.g.,
“1 + (-1)” from last FA

6.111 Fall 2004 Lectures 9/10, Slide 8

tPD of Ripple-carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when
adding 11…111 to 00…001.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR ≈ Θ(N)

CI to CO CIN-1 to SN-1

Θ(N) is read “order N” and tells us that the latency of our adder
grows proportional to the number of bits in the operands.

6.111 Fall 2004 Lectures 9/10, Slide 9

Faster carry logic

Let’s see if we can improve the speed by rewriting the equations for COUT:

COUT = AB + ACIN + BCIN

= AB + (A + B)CIN

= G + P CIN where G = AB and P = A + B

generate propagate

For adding two N-bit numbers:

CN = GN-1 + PN-1CN-1

= GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2

= GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN

Actually, P is usually
defined as P = A⊕B
which won’t change
COUT but will allow us
to express S as a
simple function of
P and CIN: S = P ⊕CIN

Actually, P is usually
defined as P = A⊕B
which won’t change
COUT but will allow us
to express S as a
simple function of
P and CIN: S = P ⊕CIN

CN in only 3 (!) gate delays:
1 for P/G generation, 1 for ANDs, 1 for final OR

6.111 Fall 2004 Lectures 9/10, Slide 10

Carry Bypass Adder

FA

P,G

Ci,0

P0 G0

A0 B0

Co,0

FA

P,G
P1 G1

A1 B1

Co,1

FA

P,G
P2 G2

A2 B2

Co,2

FA

P,G
P3 G3

A3 B3

Co,3

Can compute P, G
in parallel for all bits

FA

P,G

Ci,0

P0 G0

Co,0

FA

P,G
P1 G1

Co,1

FA

P,G
P2 G2

Co,2

FA

P,G
P3 G3

0

1

BP= P0P1P2P3

Co,3

Key Idea: if (P0 P1 P2 P3) then Co,3 = Ci,0

6.111 Fall 2004 Lectures 9/10, Slide 11

16-bit Carry Bypass Adder

FA

P,G

Ci,0

Co,0

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

FA

P,G

Co,4

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P4P5P6P7

Co,5 Co,6

Co,7 FA

P,G

Co,8

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P8P9P10P11

Co,9 Co,10

FA

P,G

Co,11

Co,12

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P12P13P14P15

Co,13 Co,14

Co,15

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
P, G, Ci to Co or Sum for a FA: 1 delay unit
2:1 mux delay: 1 delay unit

Co,3

What is the worst case propagation delay for the 16-bit adder?

6.111 Fall 2004 Lectures 9/10, Slide 12

Critical Path Analysis

FA

P,G

Ci,0

Co,0

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

FA

P,G

Co,4

FA

P,G

FA

P,G

FA

P,G

0

1

BP2= P4P5P6P7

Co,5 Co,6

Co,7 FA

P,G

Co,8

FA

P,G

FA

P,G

FA

P,G

0

1

BP3= P8P9P10P11

Co,9 Co,10

FA

P,G

Co,11

Co,12

FA

P,G

FA

P,G

FA

P,G

0

1

BP4= P12P13P14P15

Co,13 Co,14

Co,15

Co,3

For the second stage, is the critical path:

BP2 = 0 or BP2 = 1?

Message: Timing Analysis is Very Tricky –
Must Carefully Consider Data Dependencies For

False Paths

6.111 Fall 2004 Lectures 9/10, Slide 13

Carry-lookahead Adders (CLA)

We can choose the maximum fan-in we want for our logic
gates and then build a hierarchical carry chain using these
equations:

CJ+1 = GIJ + PIJCI

GIK = GJ+1,K + PJ+1,K GIJ

PIK = PIJ PJ+1,K

where I < J and J+1 < K

“generate a carry from bits I thru
K if it is generated in the high-order
(J+1,K) part of the block or if it is

generated in the low-order (I,J) part
of the block and then propagated
thru the high part”

Hierarchical building block

P/G generation

1st level of
lookahead

6.111 Fall 2004 Lectures 9/10, Slide 14

8-bit CLA (P/G generation)

From Hennessy & Patterson, Appendix A

Log2(N)

6.111 Fall 2004 Lectures 9/10, Slide 15

8-bit CLA (carry generation)

Log2(N)

6.111 Fall 2004 Lectures 9/10, Slide 16

8-bit CLA (complete)

tPD = Θ(log(N))

6.111 Fall 2004 Lectures 9/10, Slide 17

Unsigned Multiplication

A0A1A2A3
B0B1B2B3

A0B0A1B0A2B0A3B0

A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

A0B3A1B3A2B3A3B3

x

+

ABi called a “partial product”

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products
(just an AND gate since BI is either 0 or 1)

Hard part: adding M N-bit partial products

6.111 Fall 2004 Lectures 9/10, Slide 18

Sequential Multiplier

Assume the multiplicand (A) has N bits and the
multiplier (B) has M bits. If we only want to invest
in a single N-bit adder, we can build a sequential
circuit that processes a single partial product at a
time and then cycle the circuit M times:

AP B

+

SN

NC

N
xN

N

N+1

SN-1…S0 Init: P←0, load A and B

Repeat M times {
P ← P + (BLSB==1 ? A : 0)
shift P/B right one bit

}

Done: (N+M)-bit result in P/B

M bits

LSB

1

6.111 Fall 2004 Lectures 9/10, Slide 19

Combinational Multiplier

Partial product computation
is simple (single and gate)

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

6.111 Fall 2004 Lectures 9/10, Slide 20

2’s Complement Multiplication

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Step 1: two’s complement operands so
high order bit is –2N-1. Must sign extend
partial products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction
in add of (complement + 1).

Step 3: add the ones to the partial
products and propagate the carries. All
the sign extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1
- 1 1 1 1

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

6.111 Fall 2004 Lectures 9/10, Slide 21

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3
z4

z5z6z7

y3

y2

y1

y0

6.111 Fall 2004 Lectures 9/10, Slide 22

Carry-Save Adder (CSA)

Last stage is still a carry-propagate adder (CPA)

Good for pipelining: delay
through each partial product
(except the last) is just
tPD,AND + tPD,FA. No
carry propagation time!

6.111 Fall 2004 Lectures 9/10, Slide 23

Latency Improvements

Abstract
partial
product
picture :

CS
A

CS
A

CS
A

CS
A

CS
A

CP
A

M-2

...

CS
A

CS
A

CS
A

CS
A

CS
A

CP
A

M-4

... CS
A

2

Rewire so that first two adders work in parallel. Feed results
into third and fourth adders which also work in parallel, etc.

Even and odd streams pass through half the adders so
even/odd design runs at almost twice the speed of simple
implementation.

6.111 Fall 2004 Lectures 9/10, Slide 24

More Latency Improvements

CS
A

CS
A

CS
A

CS
A

...

CS
A

CS
A

CS
A

CP
A

O(log1.5M)

We have been using full-
adders (3 inputs, 2 outputs) in
our array adders. Higher
fan-in adders can be used to
further reduce delays for
large M.

Wallace
Tree

6.111 Fall 2004 Lectures 9/10, Slide 25

Higher-radix multiplication

AN-1 AN-2 … A4 A3 A2 A1 A0
BM-1 BM-2 … B3 B2 B1 B0x

...

2M/2

BK+1,K*A = 0*A → 0
= 1*A → A
= 2*A → 4A – 2A
= 3*A → 4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating
each partial product we would halve the number of columns and
halve the latency of the multiplier!

Booth’s insight: rewrite
2*A and 3*A cases,
leave 4A for next partial
product to do!

6.111 Fall 2004 Lectures 9/10, Slide 26

Booth recoding

BK+1

0
0
0
0
1
1
1
1

BK

0
0
1
1
0
0
1
1

BK-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage
needed to add 4*A. Since this stage is
shifted by 2 bits with respect to the
previous stage, adding 4*A in the previous
stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair

6.111 Fall 2004 Lectures 9/10, Slide 27

There are a large number of implementations of the
same functionality

These implementations present a different point in the
area-time-power design space

Behavioral transformations allow exploring the design
space a high-level

Optimization metrics:

area

time

power
1. Area of the design
2. Throughput or sample time TS
3. Latency: clock cycles between

the input and associated
output change

4. Power consumption
5. Energy of executing a task
6. …

Behavioral Transformations

6.111 Fall 2004 Lectures 9/10, Slide 28

Fixed-Coefficient Multiplication

Z0Z1Z2Z3Z4Z5Z6Z7

X0 · Y3X1 · Y3X2 · Y3X3 · Y3

X0 · Y2X1 · Y2X2 · Y2X3 · Y2

X0 · Y1 X1 · Y1X2 · Y1X3 · Y1

X0 · Y0 X1 · Y0X2 · Y0X3 · Y0

Y0Y1Y2Y3

X0X1X2X3

Z = X · Y

Z0Z1Z2Z3Z4Z5Z6Z7

X0X1X2X3

X0X1X2X3

1001
X0X1X2X3

Conventional Multiplication

Z = X · (1001)2

Constant multiplication (become hardwired shifts and adds)

X Z
<< 3

Y = (1001)2 = 23 + 20

shifts using wiring

6.111 Fall 2004 Lectures 9/10, Slide 29

Transform: Canonical Signed Digits (CSD)

10 11…1

1 110 1101 0 -110 0011

Canonical signed digit representation is used to increase the number of
zeros. It uses digits {-1, 0, 1} instead of only {0, 1}.

Iterative encoding: replace
string of consecutive 1’s

2N-2 + … + 21 + 20

01 -
1

0…0

2N-1 - 20

01101111

10010001

=

0 -
1

01 00-10

Worst case CSD has 50% non zero bits

X << 7 Z

<< 4
Shift translates to re-wiring

6.111 Fall 2004 Lectures 9/10, Slide 30

Algebraic Transformations

A B B A

⇔

Commutativity

⇔

Associativity

A

CB

C

A B

⇔

Distributivity

A BA B

⇔

Common sub-expressions

C

A B
A C B

A + B = B + A (A + B) C = AB + BC

(A + B) + C = A + (B+C)

X YX Y X

6.111 Fall 2004 Lectures 9/10, Slide 31

Transforms for Efficient Resource Utilization

CA B FD E

2

1

IG H

2

1

CA B

distributivity

Time multiplexing: mapped
to 3 multipliers and 3

adders

Reduce number of
operators to 2 multipliers

and 2 adders

FD E IG H

6.111 Fall 2004 Lectures 9/10, Slide 32

Retiming is the action of moving delay around in the systems
Delays have to be moved from ALL inputs to ALL outputs or vice versa

D

D

D

D

D

Cutset retiming: A cutset intersects the edges, such that this would result in
two disjoint partitions of these edges being cut. To retime, delays are moved
from the ingoing to the outgoing edges or vice versa.

Benefits of retiming:
• Modify critical path delay
• Reduce total number of registers

D

D

D

Retiming: A very useful transform

6.111 Fall 2004 Lectures 9/10, Slide 33

Retiming Example: FIR Filter

associativity
of addition

D D Dx(n)

h(0) h(1) h(2) h(3)

y(n)

D D Dx(n)

h(0) h(1) h(2) h(3)

y(n)

D D D

x(n)

h(0) h(1) h(2) h(3)

y(n)

retime

Direct
form

Transposed
form

Symbol for multiplication

∑
=

⋅−=⊗=
K

i
ihinxnxnhny

0
)()()()()(

(10)

(4)

Tclk = 22 ns

Tclk = 14 ns

Note: here we use a first cut analysis that assumes the delay of a chain of
operators is the sum of their individual delays. This is not accurate.

6.111 Fall 2004 Lectures 9/10, Slide 34

Pipelining = Adding Registers + Retiming

How to pipeline:
1. Add extra registers at all

inputs (or, equivalently, all
outputs)

2. Retime
D

D

D

D

D

D

D

retime

Add more input
registers

Unlike retiming, pipelining
adds extra registers to
the system

D

D D
15

15

5 5 TCLK = 25 (w/ ideal regs)
Latency = 1 clock cycle
Throughput = 1/clock cycle

TCLK = 25 (w/ ideal regs)
Latency = 1 clock cycle
Throughput = 1/clock cycle

D

D

D

D

D DD

15

15

5 5

TCLK = 15 (w/ ideal regs)
Latency = 3 clock cycles
Throughput = 1/clock cycle

TCLK = 15 (w/ ideal regs)
Latency = 3 clock cycles
Throughput = 1/clock cycle

6.111 Fall 2004 Lectures 9/10, Slide 35

The Power of Transforms: Lookahead

D

x(n) y(n)

A

2D

x(n) y(n)

D A
A

2D

x(n) y(n)

D
AAA

2D

x(n) y(n)

D
A2A

D

x(n) y(n)

A2

A DD

loop
unrolling

distributivity

associativity

retiming

precomputed

y(n) = x(n) + A[x(n-1) + A y(n-2)]

y(n) = x(n) + A y(n-1)

Try pipelining
this structure

