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Arithmetic Circuits

01011
+00101
10000

Didn’t I learn how
to do addition in
the second grade?
MIT courses aren’t
what they used to
be...
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• Three common schemes: sign-magnitude, ones complement, 
twos complement

• Sign-magnitude: MSB = 0 for positive, 1 for negative
– Range: -(2N-1 – 1) to +(2N-1 – 1)
– Two representations for zero: 0000… & 1000…
– Simple multiplication but complicated addition/subtraction

• Ones complement: if N is positive then its negative is N
– Example: 0111 = 7,  1000 = -7
– Range: -(2N-1 – 1) to +(2N-1 – 1)
– Two representations for zero: 0000… & 1111…
– Subtraction implemented as addition followed by ones 

complement

Number Systems Basics

How to represent negative numbers?

_
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2’s Complement

20212223…2N-2-2N-1 ……
N bits

8-bit 2’s complement example:
11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s-complement representation for signed integers, the 
same binary addition procedure will work for adding both signed and 
unsigned numbers.

By moving the implicit location of “decimal” point, we can represent 
fractions too:

1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.25

“sign bit” “decimal” point
Range: – 2N-1 to  2N-1 – 1
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Twos Complement Representation

Asymmetric range:  -2N-1 to +2N-1-1
Only one representation for zero
Simple addition and subtraction
Most common representation

Twos complement = bitwise complement + 1

0111 → 1000 + 1 = 1001 = -7
1001 → 0110 + 1 = 0111 =  7

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

[Katz93, chapter 5]
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Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

1101
+ 0101
10010

1011
Carries from previous column

Adding two N-bit 
numbers produces 
an (N+1)-bit result

We’ve already built the circuit that implements one column:

So we can quickly build a circuit two add two 4-bit numbers…
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Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

~ = bit-wise complement

So let’s build an arithmetic unit that does both addition and subtraction.  
Operation selected by control input:

But what about 
the “+1”?
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Condition Codes

Besides the sum, one often wants four other bits 
of information from an arithmetic unit: To compare A and B,

perform A–B and use
condition codes:

Signed comparison:
LT N⊕V
LE Z+(N⊕V)
EQ Z
NE ~Z
GE ~(N⊕V)
GT ~(Z+(N⊕V))

Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

To compare A and B,
perform A–B and use
condition codes:

Signed comparison:
LT N⊕V
LE Z+(N⊕V)
EQ Z
NE ~Z
GE ~(N⊕V)
GT ~(Z+(N⊕V))

Unsigned comparison:
LTU C
LEU C+Z
GEU ~C
GTU ~(C+Z)

111111 −−−+−−−= NSNBNANSNBNAV

11 −⊕−= NCINNCOUTV

V (overflow): indicates that the answer has 
too many bits to be represented correctly by 
the result width, e.g., “(2N-1 - 1)+ (2N-1- 1)”

Z (zero): result is = 0                  big NOR gate

N (negative): result is < 0          SN-1

C (carry):  indicates that add in the most 
significant position produced a carry, e.g.,
“1 + (-1)” from last FA
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tPD of Ripple-carry Adder

Worse-case path: carry propagation from LSB to MSB, e.g., when 
adding 11…111 to 00…001.

tPD = (N-1)*(tPD,OR + tPD,AND) + tPD,XOR ≈ Θ(N)

CI to CO CIN-1 to SN-1

Θ(N) is read “order N” and tells us that the latency of our adder 
grows proportional to the number of bits in the operands.
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Faster carry logic

Let’s see if we can improve the speed by rewriting the equations for COUT:

COUT = AB + ACIN + BCIN

= AB + (A + B)CIN

= G + P CIN where G = AB and P = A + B

generate propagate

For adding two N-bit numbers:

CN = GN-1 + PN-1CN-1

= GN-1 + PN-1 GN-2 + PN-1 PN-2CN-2

= GN-1 + PN-1 GN-2 + PN-1 PN-2GN-3 + … + PN-1 ...P0CIN

Actually, P is usually
defined as P = A⊕B
which won’t change
COUT but will allow us
to express S as a
simple function of
P and CIN: S = P ⊕CIN

Actually, P is usually
defined as P = A⊕B
which won’t change
COUT but will allow us
to express S as a
simple function of
P and CIN: S = P ⊕CIN

CN in only 3 (!) gate delays:
1 for P/G generation, 1 for ANDs, 1 for final OR
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Carry Bypass Adder

FA

P,G

Ci,0

P0 G0

A0 B0

Co,0

FA

P,G
P1 G1

A1 B1

Co,1

FA

P,G
P2 G2

A2 B2

Co,2

FA

P,G
P3 G3

A3 B3

Co,3

Can compute P, G 
in parallel for all bits

FA

P,G

Ci,0

P0 G0

Co,0

FA

P,G
P1 G1

Co,1

FA

P,G
P2 G2

Co,2

FA

P,G
P3 G3

0

1

BP= P0P1P2P3

Co,3

Key Idea: if (P0 P1 P2 P3) then Co,3 = Ci,0
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16-bit Carry Bypass Adder

FA

P,G

Ci,0

Co,0

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

FA

P,G

Co,4

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P4P5P6P7

Co,5 Co,6

Co,7 FA

P,G

Co,8

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P8P9P10P11

Co,9 Co,10

FA

P,G

Co,11

Co,12

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P12P13P14P15

Co,13 Co,14

Co,15

Assume the following for delay each gate:
P, G from A, B: 1 delay unit
P, G, Ci to Co or Sum for a FA: 1 delay unit
2:1 mux delay: 1 delay unit

Co,3

What is the worst case propagation delay for the 16-bit adder? 
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Critical Path Analysis

FA

P,G

Ci,0

Co,0

FA

P,G

FA

P,G

FA

P,G

0

1

BP= P0P1P2P3

Co,1 Co,2

FA

P,G

Co,4

FA

P,G

FA

P,G

FA

P,G

0

1

BP2= P4P5P6P7

Co,5 Co,6

Co,7 FA

P,G

Co,8

FA

P,G

FA

P,G

FA

P,G

0

1

BP3= P8P9P10P11

Co,9 Co,10

FA

P,G

Co,11

Co,12

FA

P,G

FA

P,G

FA

P,G

0

1

BP4= P12P13P14P15

Co,13 Co,14

Co,15

Co,3

For the second stage,  is the critical path:

BP2 = 0 or BP2 = 1? 

Message: Timing Analysis is Very Tricky –
Must Carefully  Consider Data Dependencies For 

False Paths
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Carry-lookahead Adders (CLA)

We can choose the maximum fan-in we want for our logic 
gates and then build a hierarchical carry chain using these 
equations:

CJ+1 = GIJ + PIJCI

GIK = GJ+1,K + PJ+1,K GIJ

PIK = PIJ PJ+1,K 

where I < J and J+1 < K

“generate a carry from bits I thru
K if it is generated in the high-order
(J+1,K) part of the block or if it is

generated in the low-order (I,J) part
of the block and then propagated
thru the high part”

Hierarchical building block

P/G generation

1st level of
lookahead
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8-bit CLA (P/G generation)

From Hennessy & Patterson, Appendix A 

Log2(N)



6.111 Fall 2004 Lectures 9/10, Slide 15

8-bit CLA (carry generation)

Log2(N)
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8-bit CLA (complete)

tPD = Θ(log(N))
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Unsigned Multiplication

A0A1A2A3
B0B1B2B3

A0B0A1B0A2B0A3B0

A0B1A1B1A2B1A3B1

A0B2A1B2A2B2A3B2

A0B3A1B3A2B3A3B3

x

+

ABi called a “partial product”

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Easy part: forming partial products 
(just an AND gate since BI is either 0 or 1)

Hard part: adding M N-bit partial products
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Sequential Multiplier

Assume the multiplicand (A) has N bits and the 
multiplier (B) has M bits.  If we only want to invest 
in a single N-bit adder, we can build a sequential 
circuit that processes a single partial product at a 
time and then cycle the circuit M times:

AP B

+

SN

NC

N
xN

N

N+1

SN-1…S0 Init: P←0, load A and B

Repeat M times {
P ← P + (BLSB==1 ? A : 0)
shift P/B right one bit

}

Done: (N+M)-bit result in P/B

M bits

LSB

1
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Combinational Multiplier

Partial product computation
is simple (single and gate)

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0
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2’s Complement Multiplication

X3 X2   X1   X0
*  Y3 Y2   Y1   Y0
--------------------

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+    1              1

Step 1: two’s complement operands so 
high order bit is –2N-1.  Must sign extend 
partial products and subtract the last one

Step 2: don’t want all those extra additions, so 
add a carefully chosen constant, remembering 
to subtract it at the end. Convert subtraction 
in add of (complement + 1).

Step 3: add the ones to the partial 
products and propagate the carries.  All 
the sign extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands 
takes just about same amount of hardware as 
multiplying unsigned operands!

X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+                        1
- 1    1    1    1

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+                        1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+                   1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+              1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+                        1
+         1
- 1    1    1    1

–B = ~B + 1
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2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3
z4

z5z6z7

y3

y2

y1

y0



6.111 Fall 2004 Lectures 9/10, Slide 22

Carry-Save Adder (CSA)

Last stage is still a carry-propagate adder (CPA)

Good for pipelining: delay 
through each partial product 
(except the last) is just 
tPD,AND + tPD,FA.  No 
carry propagation time!
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Latency Improvements

Abstract 
partial 
product 
picture :

CS
A

CS
A

CS
A

CS
A

CS
A

CP
A

M-2

...

CS
A

CS
A

CS
A

CS
A

CS
A

CP
A

M-4

... CS
A

2

Rewire so that first two adders work in parallel. Feed results 
into third and fourth adders which also work in parallel, etc.

Even and odd streams pass through half the adders so 
even/odd design runs at almost twice the speed of simple 
implementation.
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More Latency Improvements

CS
A

CS
A

CS
A

CS
A

...

CS
A

CS
A

CS
A

CP
A

O(log1.5M)

We have been using full-
adders (3 inputs, 2 outputs) in 
our array adders.  Higher 
fan-in adders can be used to 
further reduce delays for 
large M.

Wallace
Tree
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Higher-radix multiplication

AN-1 AN-2 … A4 A3 A2 A1 A0
BM-1 BM-2 … B3 B2 B1 B0x

...

2M/2

BK+1,K*A = 0*A → 0
= 1*A → A
= 2*A → 4A – 2A
= 3*A → 4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating 
each partial product we would halve the number of columns and 
halve the latency of the multiplier!

Booth’s insight: rewrite 
2*A and 3*A cases, 
leave 4A for next partial 
product to do! 
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Booth recoding

BK+1

0
0
0
0
1
1
1
1

BK

0
0
1
1
0
0
1
1

BK-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage 
needed to add 4*A.  Since this stage is 
shifted by 2 bits with respect to the 
previous stage, adding 4*A in the previous 
stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair
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There are a large number of implementations of the 
same functionality 

These implementations present a different point in the 
area-time-power design space

Behavioral transformations allow exploring the design 
space a high-level

Optimization metrics:

area

time

power
1. Area of the design
2. Throughput or sample time TS
3. Latency: clock cycles between 

the input and associated 
output change

4. Power consumption
5. Energy of executing a task
6. …

Behavioral Transformations
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Fixed-Coefficient Multiplication

Z0Z1Z2Z3Z4Z5Z6Z7

X0 · Y3X1 · Y3X2 · Y3X3 · Y3

X0 · Y2X1 · Y2X2 · Y2X3 · Y2

X0 · Y1 X1 · Y1X2 · Y1X3 · Y1

X0 · Y0 X1 · Y0X2 · Y0X3 · Y0

Y0Y1Y2Y3

X0X1X2X3

Z = X · Y

Z0Z1Z2Z3Z4Z5Z6Z7

X0X1X2X3

X0X1X2X3

1001
X0X1X2X3

Conventional Multiplication

Z = X · (1001)2

Constant multiplication (become hardwired shifts and adds)

X Z
<< 3

Y = (1001)2 = 23 + 20

shifts using wiring
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Transform: Canonical Signed Digits (CSD)

10 11…1

1 110 1101 0 -110 0011

Canonical signed digit representation is used to increase the number of 
zeros. It uses digits {-1, 0, 1} instead of only {0, 1}.

Iterative encoding: replace 
string of consecutive 1’s 

2N-2 + … + 21 + 20

01 -
1

0…0

2N-1 - 20

01101111

10010001

=

0 -
1

01 00-10

Worst case CSD has 50% non zero bits 

X << 7 Z

<< 4
Shift translates to re-wiring
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Algebraic Transformations

A B B A

⇔

Commutativity

⇔

Associativity

A

CB

C

A B

⇔

Distributivity

A BA B

⇔

Common sub-expressions

C

A B
A C B

A + B = B + A (A + B) C = AB + BC

(A + B) + C = A + (B+C)

X YX Y X
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Transforms for Efficient Resource Utilization

CA B FD E

2

1

IG H

2

1

CA B

distributivity

Time multiplexing: mapped 
to 3 multipliers and 3 

adders

Reduce number of 
operators to 2 multipliers 

and 2 adders

FD E IG H
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Retiming is the action of moving delay around in the systems
Delays have to be moved from ALL inputs to ALL outputs or vice versa

D

D

D

D

D

Cutset retiming: A cutset intersects the edges, such that this would result in 
two disjoint partitions of these edges being cut. To retime, delays are moved  
from the ingoing to the outgoing edges or vice versa.

Benefits of retiming:
• Modify critical path delay
• Reduce total number of registers

D

D

D

Retiming: A very useful transform
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Retiming Example: FIR Filter

associativity
of addition

D D Dx(n)

h(0) h(1) h(2) h(3)

y(n)

D D Dx(n)

h(0) h(1) h(2) h(3)

y(n)

D D D

x(n)

h(0) h(1) h(2) h(3)

y(n)

retime

Direct
form

Transposed 
form

Symbol for multiplication

∑
=

⋅−=⊗=
K

i
ihinxnxnhny

0
)()()()()(

(10)

(4)

Tclk = 22 ns

Tclk = 14 ns

Note: here we use a first cut analysis that assumes the delay of a chain of 
operators is the sum of their individual delays. This is not accurate.



6.111 Fall 2004 Lectures 9/10, Slide 34

Pipelining = Adding Registers + Retiming

How to pipeline:
1. Add extra registers at all

inputs (or, equivalently, all
outputs)

2. Retime
D

D

D

D

D

D

D

retime

Add more input 
registers

Unlike retiming, pipelining 
adds extra registers to 
the system

D

D D
15

15

5 5 TCLK = 25 (w/ ideal regs)
Latency = 1 clock cycle
Throughput = 1/clock cycle

TCLK = 25 (w/ ideal regs)
Latency = 1 clock cycle
Throughput = 1/clock cycle

D

D

D

D

D DD

15

15

5 5

TCLK = 15 (w/ ideal regs)
Latency = 3 clock cycles
Throughput = 1/clock cycle

TCLK = 15 (w/ ideal regs)
Latency = 3 clock cycles
Throughput = 1/clock cycle
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The Power of Transforms: Lookahead

D

x(n) y(n)

A

2D

x(n) y(n)

D A
A

2D

x(n) y(n)

D
AAA

2D

x(n) y(n)

D
A2A

D

x(n) y(n)

A2

A DD

loop 
unrolling

distributivity

associativity

retiming

precomputed

y(n) = x(n) + A[x(n-1) + A y(n-2)]

y(n) = x(n) + A y(n-1)

Try pipelining
this structure 


