
6.111 Fall 2004 Lecture 6, Slide 1

D-Register Timing - I

CLK

D

Q
D QD

CLK

Q

<tPD

tPD: maximum propagation delay, CLK →Q

>tCD

tCD: minimum contamination delay, CLK →Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to change

Values determined
from master latch

Values determined
from slave latch

6.111 Fall 2004 Lecture 6, Slide 2

D-Register Timing - II

CLK

t1

t1 = tCD,reg1 + tCD,1 > tHOLD,reg2

1D Q D Q

CLK

reg1 reg2

Questions for register-based designs:
• how much time for useful work

(i.e. for combinational logic
delay)?

• does it help to guarantee a
minimum tCD? How about
designing registers so that

tCD,reg > tHOLD,reg?

• what happens if CLK signal
doesn’t arrive at the two
registers at exactly the same
time (a phenomenon known as
“clock skew”)?

t2

t2 = tPD,reg1 + tPD,1 < tCLK - tSETUP,reg2

6.111 Fall 2004 Lecture 6, Slide 3

Sequential Circuit Timing

Questions:
• Constraints on TCD for the logic?

• Minimum clock period?

• Setup, Hold times for Inputs?

Combinational
Logic

Current
State

New
State

Input Output

Clock tCD,L = ?
tPD,L = 5ns

tCD,R = 1ns
tPD,R = 3ns
tS,R = 2ns
tH,R = 2ns

> 1 ns

> 10 ns (TPD,R+TPD,L+ TS,R)

TS = TPD,L +TS,R
TH = TH,R -TCD,L

6.111 Fall 2004 Lecture 6, Slide 4

The Sequential always Block
• Edge-triggered circuits are described using a

sequential always block

module combinational(a, b, sel,
out);

input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin
if (sel) out = a;
else out = b;

end

endmodule

module sequential(a, b, sel,
clk, out);

input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk)
begin
if (sel) out <= a;
else out <= b;

end

endmodule

Combinational Sequential

1

0

sel

out
a

b

1

0

sel

out
a

b
D Q

clk

6.111 Fall 2004 Lecture 6, Slide 5

Note: The following is incorrect syntax: always @ (clear or negedge clock)

If one signal in the sensitivity list uses posedge/negedge, then all signals must.

Assign any signal or variable from only one always block, Be wary
of race conditions: always blocks execute in parallel

Importance of the Sensitivity List
• The use of posedge and negedge makes an always block

sequential (edge-triggered)
• Unlike a combinational always block, the sensitivity list does

determine behavior for synthesis!

module dff_sync_clear(d, clearb,
clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock)
begin
if (!clearb) q <= 1'b0;
else q <= d;

end
endmodule

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear

module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;

always @ (negedge clearb or posedge clock)
begin
if (!clearb) q <= 1’b0;
else q <= d;

end
endmodule

always block entered only at
each positive clock edge

always block entered immediately
when (active-low) clearb is asserted

6.111 Fall 2004 Lecture 6, Slide 6

Simulation

tc-q Clear on Clock Edge

DFF with Synchronous Clear

Clear happens on falling edge of clearb

DFF with Asynchronous Clear

6.111 Fall 2004 Lecture 6, Slide 7

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

1. Evaluate a | b, assign result to x
2. Evaluate a^b^c, assign result to y
3. Evaluate b&(~c), assign result to z

Blocking vs. Nonblocking Assignments
• Verilog supports two types of assignments within always blocks,

with subtly different behaviors.
• Blocking assignment: evaluation and assignment are immediate

• Nonblocking assignment: all assignments deferred until all right-
hand sides have been evaluated (end of simulation timestep)

• Sometimes, as above, both produce the same result. Sometimes,
not!

always @ (a or b or c)
begin

x = a | b;
y = a ^ b ^ c;
z = b & ~c;

end

always @ (a or b or c)
begin

x <= a | b;
y <= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values

6.111 Fall 2004 Lecture 6, Slide 8

Assignment Styles for Sequential Logic

• Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 <= in;
q2 <= q1;
out <= q2;

end

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based
Digital Delay

Line

module blocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 = in;
q2 = q1;
out = q2;

end

endmodule

6.111 Fall 2004 Lecture 6, Slide 9

Use Nonblocking for Sequential Logic

always @ (posedge clk)
begin
q1 <= in;
q2 <= q1;
out <= q2;

end

always @ (posedge clk)
begin
q1 = in;
q2 = q1;
out = q2;

end

D Q D Q D Qin out
q1 q2

clk

D Qin out

clk

“At each rising clock edge, q1, q2, and out
simultaneously receive the old values of in,

q1, and q2.”

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in.
After that, out = q2 = q1 = in.
Therefore out = in.”

• Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

• Guideline: use nonblocking assignments for
sequential always blocks

q1 q2

6.111 Fall 2004 Lecture 6, Slide 10

Simulation
Non-blocking Simulation

Blocking Simulation

6.111 Fall 2004 Lecture 6, Slide 11

Use Blocking for Combinational Logic

• Nonblocking and blocking assignments will synthesize correctly. Will
both styles simulate correctly?

• Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it’s not elegant

• Guideline: use blocking assignments for combinational always
blocks

x <= a & b;

Assignment completion

(Given) Initial Condition
a changes;
always block triggered

a b c x y Deferred

1 1 0 1 1
0 1 0 1 1
0 1 0 1 1 x<=0
0 1 0 1 1 x<=0, y<=1
0 1 0 0 1

y <= x | c;

Nonblocking Behavior

x = a & b;

(Given) Initial Condition
a changes;
always block triggered

y = x | c;

Blocking Behavior a b c x y

1 1 0 1 1
0 1 0 1 1
0 1 0 0 1
0 1 0 0 0

module nonblocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c)
begin

x <= a & b;
y <= x | c;

end

endmodule

module blocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c)
begin

x = a & b;
y = x | c;

end

endmodule

a
b

c

x

y

6.111 Fall 2004 Lecture 6, Slide 12

Implementation for on/off button

module onoff(button,light);
input button;
output light;
reg light;
always @ (posedge button)
begin
light <= ~light;

end
endmodule

button

light

D Q

BUTTON

LIGHT

Q

6.111 Fall 2004 Lecture 6, Slide 13

Single-clock Synchronous Circuits

Single-clock Synchronous Discipline

• No combinational cycles

• Only care about value of combinational

circuits just before rising edge of

clock

• Period greater than every

combinational delay

• Change saved state after noise-

inducing logic transitions have

stopped!

We’ll use Flip Flops and Registers – groups of FFs sharing a clock

input – in a highly constrained way to build digital systems:

• Single clock signal shared among

all clocked devices

Does that

symbol

register?

6.111 Fall 2004 Lecture 6, Slide 14

Clocked circuit for on/off button
module onoff(clk,button,light);

input clk,button;
output light;
reg light;
always @ (posedge clk)
begin
if (button) light <= ~light;

end
endmodule

D QBUTTON LIGHT

CLK

0

1 Q
D

LE

CLK

LIGHT

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Does this work
with a 1Mhz
CLK?

6.111 Fall 2004 Lecture 6, Slide 15

Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee
setup and hold
times will be met!

When an asynchronous signal causes a setup/hold
violation...

Clock

Q

D

?

I II III

Transition is missed on
first clock cycle, but
caught on next clock
cycle.

Transition is caught on
first clock cycle.

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

6.111 Fall 2004 Lecture 6, Slide 16

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places
in the circuit, but what about metastability?

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

Clocked
Synchronous

System

6.111 Fall 2004 Lecture 6, Slide 17

Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable conditions

will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters(clock speed, device speeds, …)
• In 6.111, a pair of synchronization registers is sufficient

D Q
Complicated

Sequential Logic
System

Clock

D Q D Q

Likely to be
metastable
right after
sampling

Very unlikely to be
metastable for >1
clock cycle

Extremely unlikely to
be metastable for >2
clock cycle

6.111 Fall 2004 Lecture 6, Slide 18

Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n

6.111 Fall 2004 Lecture 6, Slide 19

Two Types of FSMs
Moore and Mealy FSMs are distinguished by their output

generation

outputs
yk = fk(S)

inputs
x0...xn

inputs
x0...xn

Moore FSM:

Mealy FSM:

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

6.111 Fall 2004 Lecture 6, Slide 20

On/off button done right!
• A level-to-pulse converter produces

a single-cycle pulse each time its
input goes high.

• In other words, it’s a synchronous
rising-edge detector.

• Sample uses:
– Buttons and switches pressed by humans

for arbitrary periods of time
– Single-cycle enable signals for counters

Level to
Pulse

Converter
L P

CLK

Whenever input L goes
from low to high...

...output P produces a
single pulse, one clock

period wide.

6.111 Fall 2004 Lecture 6, Slide 21

State Transition Diagrams
• Block diagram of desired system:

• State transition diagram is a useful FSM representation and
design aid

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1
High input,

Waiting for fall

D Q
Level to
Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

L=1

This is the output that results from
this state. (Moore or Mealy?)

L=0

P = 0

11

Binary values of states

L=0 L=0

L=1

L=1

“if L=0 at the clock edge,
then stay in state 00.”

“if L=1 at the clock edge,
then jump to state 01.”

D Q

CLK

6.111 Fall 2004 Lecture 6, Slide 22

Logic Derivation for a Moore FSM

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1L=0

1
0
1
0
1
0
L

In

0
0
1
1
0
0
P

Out

1
0
1
0
1
0

S0
+

1
0
1
0
0
0

S1
+

1
1
0
0
0
0
S1

Next
State

Curren
t State

1
1
1
1

0
0
S0

• Combinational logic may be derived using Karnaugh maps

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

S

n

S+X1101
X0000
10110100

X1111
X0000
10110100

S1S0
L

S1S0
L

for S1
+:

for S0
+:

011
X00
10

S1
for P:

L P

S0

S1
+ = LS0

S0
+ = L

S1
+ = LS0

S0
+ = L

P = S1S0P = S1S0

Transition diagram is readily converted to a
state transition table (just a truth table)

6.111 Fall 2004 Lecture 6, Slide 23

Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse
converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1
+ = LS0

S0
+ = L

S1
+ = LS0

S0
+ = L P = S1S0P = S1S0

D Q

S0

S1

CLK

S0
+

S1
+

L P
Q

Q

6.111 Fall 2004 Lecture 6, Slide 24

Design of a Mealy Level-to-Pulse

• Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

0
Input is low

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

direct combinational path!

1
Input is high

P

L

State

Clock

1. When L=1 and S=0, this output is
asserted immediately and until the

state transition occurs (or L changes).

2. After the transition to S=1 and as long
as L remains at 1, this output is asserted.

L=1 | P=1

L=0 | P=0
L=1 | P=0

L=0 | P=0

Output transitions
immediately.

State transitions at the
clock edge.

1
2

6.111 Fall 2004 Lecture 6, Slide 25

Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse
converter:

1
0
1
0
L

In

0
0
1
0
P

Out

1
0
1
0
S+

Next
State

Pres.
State

1
1

0
0
S

D Q
S

CLK

S+

L

P

Q
S

• FSM’s state simply remembers the previous value of L
• Circuit benefits from the Mealy FSM’s implicit single-

cycle assertion of outputs during state transitions

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0L=0 | P=0

6.111 Fall 2004 Lecture 6, Slide 26

Moore/Mealy Trade-Offs

• Remember that the difference is in the output:
– Moore outputs are based on state only
– Mealy outputs are based on state and input
– Therefore, Mealy outputs generally occur one cycle earlier than

a Moore:

P

L

State

Clock

• Compared to a Moore FSM, a Mealy FSM might...
– Be more difficult to conceptualize and design
– Have fewer states

P

L

State[0]

Clock

Moore: delayed assertion of P Mealy: immediate assertion of P

6.111 Fall 2004 Lecture 6, Slide 27

FSM Timing Requirements

• Timing requirements for FSM are identical to any
generic sequential system with feedback

T > Tpd,reg + Tpd,logic + Tsu Tcd,reg + Tcd,logic > Thold

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n nTpd,reg

Tsu

Tpd,logic

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n nTcd,reg

Thold

T

Tcd,logic

Minimum Clock Period Minimum Delay

6.111 Fall 2004 Lecture 6, Slide 28

Summary
• Use blocking assignments for combinational
always blocks

• Use non-blocking assignments for sequential
always blocks

• Synchronous design methodology usually
used in digital circuits
– Single global clocks to all sequential elements
– Sequential elements almost always of edge-

triggered flavor (design with latches can be
tricky)

