D-Register Timing - I

Values determined
from slave latch

>top—

<tpp

—

D—D Q—>Q
Q
CLK —[>
CLK
D

tp5: maximum propagation delay, CLK -»Q
t,p: minimum contamination delay, CLK ->Q

tsetupt Setup time

P

»
<« »

P »
< »

>Ysetor > Thowo

Values determined
from master latch

guarantee that D has propagated through feedback path before master closes

thont hold time

guarantee master is closed and data is stable before allowing D to change

6.111 Fall 2004

Lecture 6, Slide 1

D-Register Timing - IT
Questions for register-based designs:

D Q . * qd ° how much time for useful work
_reg1 L reg2 (i.e. for combinational logic

delay)?

Y

CLK

does it help to guarantee a
minimum t.,?2 How about
_ 1, designing registers so that
CLK | ’ Yoo reg > THOLD,reg?

* D\

sty

what happens if CLK signal
doesn't arrive at the two
registers at exactly the same
time (a phenomenon known as
T2 = Yopregt + Tep1 < Yok = Ysetupregz “Clock skew™)?

Ti = Yeoregt * Tep.1 > THOLD, reg2

6.111 Fall 2004 Lecture 6, Slide 2

Sequential Circuit Timing

_ New
t
CD.R

1ns /\ 1 state
1'PD R 3ns P >

tsp = 20| Current ombinational
Tur = 2nS| state Logic

Y

JUT ecloeck—F
Inpuf OUTPU"'
Questions:
- Constraints on T,y for the logic? > 1ns
* Minimum clock period? > 10 ns (Tpp r*Tpp.L* Tsp)
- Setup, Hold times for Inputs? Ts = TppL *Tsp
Th=Tur-Teou

6.111 Fall 2004 Lecture 6, Slide 3

The Sequential always Block

- Edge-triggered circuits are described using a
sequential always block

Combinational

module combinational(a, b, sel,
out) ;
input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;

else out = b;

end
endmodule
a—1
out
b—0
sel

6.111 Fall 2004

Sequential

module sequential(a, b, sel,
clk, out);
input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk)
begin
if (sel) out <= a;
else out <= b;

end
endmodule
a—1
D Qp— out
b—O0
r>

Lecture 6, Slide 4

Importance of the Sensitivity List

- The use of posedge and negedge makes an always block
sequential (edge-triggered)

* Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear
module dff sync_clear(d, clearb, module dff async clear(d, clearb, clock, q);
clock, q):;) — _

) input d, clearb, clock;

input d, clearb, clock; output q;

output q; reg q;

reg dg;

always @ (posedge clock) always @ (negedge clearb or posedge clock)
begin begin

if (lclearb) q <= 1'b0; if (lclearb) g <= 1'b0;

else q <= d; else q <= d;
end end
endmodule endmodule

always block entered only at always block entered immediately
each positive clock edge when (active-low) clearb is asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

= Assign any signal or variable from only one always block, Be wary
of race conditions: always blocks execute in parallel

6.111 Fall 2004 Lecture 6, Slide 5

Simulation
* DFF with Synchronous Clear

il MAX+plus [- c:V\documents and settings\ananthalmy documents6.111\wverilogMecture5\dff_sync_clear - [dff_sync_clear.scf - Waveform Editor]

'ht Max+plus I File Edit View Mode Assign Utilities Options Window Help E
=== N LHRBEEL HEaE B REEE 8
[Ref |100.0ns <-|+| Tirme: |374.5ns Interval: |274 5ns &
A u'lDEI.Dns
25 | Name: Value: | 100]0ns 200.0ns /0 appfins 500, B00.0ns
= clock 1 T | / | \ / | | \
- o 0 | [
= clearh 1 \ |
Rl q 0 | L/
Q b
B < o >

i) MAX+plus Il - c:\documents and settings\ananthalmy documents\6.111\veriloghlecture5\dff_async_clear - [dff_async_clear.scf - Waveform Editor]

j'})é Méxtplus I File Edit Yiew Mode Assign Ubliies Options Window Help il

NEEa - - e onEBRL PR HER 2822 &
Iy | Ref. [4000ns [€[*] Time: [352 Tns | Interval: [47 9ns A
A rlltlDDDns =
5| hame; _Yalue: l QDD.IDns SDD.‘Dns 400{0ns EDD.‘Dns EDD.IDns YDD.IDns BDD.IDns QDD.IDns 1.C
= clock 0

o= 1 |
| [=clearh 0 1\ |
g-m i VAN |
B¢ \Clear happens on falling edge of clearb s

6.111 Fall 2004 Lecture 6, Slide 6

Blocking vs. Nonblocking Assignments

* Verilog supports two types of assignments within always blocks,
with subtly different behaviors.

* Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

begin
X = a | b; 1. Evaluate a | b, assign result to x
y=a’"b" c; 2. Evaluate a*b”c, assign resultto y
z = b & ~c; 3. Evaluate b&(~c), assign result to z
end

« Nonblocking assignment: all assignments deferred until all right-
hand sides have been evaluated (end of simulation timestep)

always @ (a or b or c)

begin
X <= a | b; 1. Evaluate a | b but defer assignment of x
y <= a ~ b " c; 2. Evaluate a*b”c but defer assignment of y
Z <= b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end 4. Assign x, y, and z with their new values

- Sometimes, as above, both produce the same result. Sometimes,

not!
6.111 Fall 2004 Lecture 6, Slide 7

Assignment Styles for Sequential Logic

Flip-Flop Based — ql 2215 ol out
Digital Delay S R D Q L E
Line |_> 3
clk —

- Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out):; module blocking(in, clk, out);
input in, clk; input in, clk;
output out; output out;
reg gl, g2, out; reg gl, g2, out;
always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= qgql; g2 = ql;
out <= g2; out = g2;
end end
endmodule endmodule

6.111 Fall 2004 Lecture 6, Slide 8

Use Nonblocking for Sequential Logic

always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
g2 <= ql; Q2 = ql;
out <= g2; out = g2;
end end
“At each rising clock edge, g1, g2, and out “At each rising clock edge, ql =
simultaneously receive the old values of in, After that, g2 = ql =in.
ql, and g2.” After that, out=g2 =gl = In.

Therefore out = in.”

ql q2 _ ql g2
in—D QF=—D Q=D Qf—out N ————|p Qf—+—— out

clk -r> |_> |_> clk _|_>

. Blocklng assignments do not reflect the intrinsic behavior of
multi-stage sequenflal logic

+ Guideline: use nonblocking assignments for
sequential always blocks

6.111 Fall 2004 Lecture 6, Slide 9

Simulation

*Non-blocking Simulation

ii# MAX+plus Il - c:\documents and settings\ananthalmy documents\6.111\verilogilecture5\nonblocking - [nonblocking.scf - Waveform Editor]
flgs MAx+plus 11 File Edit Wew Mode Assign Utlties Options Window Help il
ND=aa WeorEERL BAE EEa RAZE 50 O
ly | Ref [330.0ns [#[2] Time: [3045ns | Interval: [-593.4ns | A
A _
51| Mame: Walue: l 100.0ns 200.0ns 300.0ns 400.0ns 500.0ns B00.0ns 700.0ns 800.0ns
e clk T 1]]] L L
= in i |
= ol] |
Al i | |
&
B ot i |
b
< >

*Blocking Simulation

i MAX+plus Il - c:\documents and settingslananthaimy documents\6.111\veriloghlecture5\blocking - [blocking.scf - Waveform Editor]
""Ji MAx+plus 1T File Edit View Mode Assign Ubities Options Window Help = T
NelRa& & = e NoREESEL DR EER REEZ 28 ¢

Iy | Ref [1D00ns Time: [455 2ns | Interval: [355 2ns | &
A nWDD.Dns _
5 | Name: Walue: L 100i0ns 200.0ns 300.0ns 400.0ns 500.0ns B00.0ns 700.0ns 800.0ns 900.0ns

R T 1 7

EB= in 1 |

| gl 0 |

Rl 2 o |

<l

B o out a |

v
< >

6.111 Fall 2004 Lecture 6, Slide 10

Use Blocking for Combinational Logic

module blocking(a,b,c,x,vy):;

Blocking Behavior abc xy reeeeeen e _ fnpat a b o
. » i a = : output x,y;
(Given) Initial Condition | 110 11 b = =X reg x,y;
a changes; . : 1 @ (b)
always block triggered | 010 11 c - -y Ee‘gizs aorbdore
X = a & b; 01001 X =a&b;
y =x | c;
y =x | c; 01000 end
endmodule
Nonblocking Behavior abc xy | Deferred nodule nomblocking (a,b,c.x,y)
. " _ input a,b,c;
(Given) Initial Condition | 110 11 output x,y;
a changes; reg x,y;
always block triggered 01011 always @ (a or b or c)
X <= a & b; 010 11 [x<=0 begin
X <= a & b;
y <= x | c; 010 11 |x<=0,y<=1 y <= x| o
en
Assignment completion 010 01 cndmodule

- Nonblocking and blocking assignments will synthesize correctly. Will
both styles simulate correctly?

Nonblocking assugnments do not reflect the intrinsic behavior of
multi-stage combinational logic

- While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it's not elegant

. gluidlfline: use blocking assignments for combinational always
ocks

6.111 Fall 2004 Lecture 6, Slide 11

Implementation for on/off button

< [

® O L O

modulle onoff(button, light);
input button;
output light;

button

light

reg light;
always @ (posedge button)
begin
light <= ~light; 1D Q LIGHT
end BUTTON —> Q—

endmodule

6.111 Fall 2004 Lecture 6, Slide 12

Single-clock Synchronous Circuits

We'll use Flip Flops and Registers - groups of FFs sharing a clock
input - in a highly constrained way to build digital systems:

Does that
o | o
g/& Single-clock Synchronous Discipline

*No combinational cycles

C\ *Single clock signal shared among
J all clocked devices

*Only care about value of combinational
circuits just before rising edge of

7 clock
C\ *Period greater than every
N -
combinational delay

*Change saved state after noise-
inducing logic transitions have
stopped!

6.111 Fall 2004 Lecture 6, Slide 13

Clocked circuit for on/off button

modulle onoff(clk,button, light);
input clk,button; .
output light; Does This work
reg light; CLK?
always @ (posedge clk) \\\ E
begin R &
1T (button) light <= ~light;
end
endmodule

—
[
®
X
X}
w)
_>\I—‘ O/
QO

BUTTON LE D Q > LIGHT
//q/FLK CLK N

SINGLE GLOBAL CLOCK LOAD-ENABLED REGISTER

6.111 Fall 2004 Lecture 6, Slide 14

Asynchronous Inputs in Sequential Systems

What about external signals?

e , Can't guarantee
r Sequential System setup and hold
2\ times will be met/
Clock

When an asynchronous signal causes a setup/hold
violation. ..

6.111 Fall 2004

Output is metastable

Transition is missed on

Transition is caught on

first clock cycle, but first clock cycle. for an indeterminate
caught on next clock ' amount of time.
cycle. Q: Which cases are problematic?

Lecture 6, Slide 15

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

T Sequential System
fo o D Q

AN

. Clocked
: Synchronous

Clock

This prevents the possibility of I and IT occurring in different places
in the circuit, but what about metastability?

6.111 Fall 2004 Lecture 6, Slide 16

Handling Metastability

Preventing metastability turns out to be an impossible problem

High gain of digital devices makes it likely that metastable conditions
will resolve themselves quickly

Solution to metastability: allow time for signals to stabilize

Likely to be Very unlikely to be Extremely unlikely to
metastable metastable for >1 be metastable for >2
right after clock cycle clock cycle

sampling \ \ /
T 1r l / Complicated
fo o D QHD QHP Q Sequential Logic
System

AN

Clock

How many registers are necessary?
Depends on many design parameters(clock speed, device speeds, ..)
In 6.111, a pair of synchronization registers is sufficient

6.111 Fall 2004 Lecture 6, Slide 17

Finite State Machines

Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized “"states” of operation

At each clock edge, combinational logic computes oufputs and
next state as a function of /nputs and present state

inputs
+

=), outpULS
+

next
State

present
state

CLK

6.111 Fall 2004 Lecture 6, Slide 18

Two Types of FSMs

Moore and Mealy FSMs are distinguished by their output
generation
Moore FSM:

next

. S+
INputs outputs
Xg---Xp n Y = fk(S)
CLK
present state S
Mealy FSM:
direct combinational path! outputs

. Vi = F.(S, Xg...X,)
inputs
Xg---Xp

6.111 Fall 2004 Lecture 6, Slide 19

On/off button done right!

- A level-to-pulse converter produces
a single-cycle pulse each time its
input goes high.

* In other words, it's a synchronous
rising-edge detector.

- Sample uses:

- Buttons and switches pressed by humans
for arbitrary periods of time

- Single-cycle enable signals for counters

Level to
—] L Pulse P
- Converter Ut P brod
_ ...outpu produces a
Whenever input L goes |_ single pulse, one clock

from low to high... CLK period wide.

6.111 Fall 2004 Lecture 6, Slide 20

State Transition Diagrams

» Block diagram of desired system:

Synchronizer Edge Detector
: Level to
unsynchronized
user input b v g . FUE "
L S FSM
CLK

- State transition diagram is a useful FSM representation and
design aid

“if L=1 at the clock edge, —— =1
then jump to state 01.”

L=1 Binary values of states

11
High input,
Waiting for fall
P=0

/ This is the output that results from

this state. (Moore or Mealy?)

01
Edge Detected!

P=1

Low input,
Waiting for rise

P=0

“if L=0 at the clock edge,
then stay in state 00.”

6.111 Fall 2004 Lecture 6, Slide 21

Transition diagram is readily converted to a

Logic Derivation for a Moore FSM

state transition table (just a truth table)

L=1

L=1

11

Low input,

High input,

Waiting for rise Waiting for fall

Combinational logic may be derived using Karnaugh maps

s,s, fOr S;™

L

00 01 11 10

o)
1

0

0

0

X

0

1

1

X

L

S+

== Comb. '—ln-bD Flip- Q

Logic

Flops

+.
5.5 for Sy*:

CLK=>
LN\ 00 01 11 10
oo 0.0 X S
1171717 S;" = LS,
S, =L

6.111 Fall 2004

Curren In Next out
t State State
S Seli|sr syl P
O 0|0} O 0 0
O 01|11 0 1 0
m» o 1/o0flo0 o 1
0O 1|1 1 1 1
1 1 (0] O 0 0
1 1|1 1 1 0
y 4
Cormb. mm. for P:
Logic S1
So\ 0 1
0]1]0:X
P=S,S, 1]1:0

Lecture 6, Slide 22

Moore Level-to-Pulse Converter

next

AT state . AR y 4

Comb. =mmmp OULPULS
Logic Y = i (S)

present state S

Moore FSM circuit implementation of level-to-pulse

converter:
SO+ D SO
CLK> Q
) Q
|__J ST _| s,
_> Q

6.111 Fall 2004 Lecture 6, Slide 23

Design of a Mealy Level-to-Pulse

direct combinational path! y 4
Ay . Ay

Comb.
Logic cLkull Flops]
S

- Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

1. When L=1 and S=0, this output is
asserted immediately and until the

state transition occurs (or L changes). S“

L=0 | P=0

Output transitions
immediately.

State transitions at the
clock edge.

2. After the transition to S=1 and as long
as L remains at 1, this output is asserted.

6.111 Fall 2004 Lecture 6, Slide 24

Mealy Level-to-Pulse Converter

Pres. Next

State Ji State Out
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 0

Mealy FSM circuit implementation of level-to-pulse

converter: : 5

S* S

Ol O

D
CLK —>

S
FSM's state simply remembers the previous value of L

Circuit benefits from the Mealy FSM's implicit single-
cycle assertion of outputs during state transitions

6.111 Fall 2004 Lecture 6, Slide 25

Moore/Mealy Trade-Offs

- Remember that the difference is in the output:
- Moore outputs are based on state only
- Mealy outputs are based on state and input

- Therefore, Mealy outputs generally occur one cycle earlier than
a Moore:

Moore: delayed assertion of P Mealy: immediate assertion of P

L
P

Clock Clock

State[0] State

- Compared to a Moore FSM, a Mealy FSM might...
- Be more difficult to conceptualize and design
- Have fewer states

6.111 Fall 2004 Lecture 6, Slide 26

FSM Timing Requirements

- Timing requirements for FSM are identical to any
generic sequential system with feedback

Minimum Clock Period Minimum Delay

inputs outputs inputs outputs
+ + + +
present next present ‘s next
state state state Y state

_CLK CLK > < FIOPS e 70
L\
- T -
T> Tpd,reg t Tpd,logic + Tsu Tcd,reg T Tcd,logic > Thold

6.111 Fall 2004 Lecture 6, Slide 27

Summary

+ Use blocking assignments for combinational
always blocks

* Use non-blocking assignments for sequential
always blocks

+ Synchronous design methodology usually
used in digital circuits
- Single global clocks to all sequential elements

- Sequential elements almost always of edge-
triggered flavor (design with latches can be
tricky)

6.111 Fall 2004 Lecture 6, Slide 28

