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D-Register Timing - I

CLK

D

Q
D QD

CLK

Q

<tPD

tPD: maximum propagation delay, CLK →Q

>tCD

tCD: minimum contamination delay, CLK →Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to change

Values determined 
from master latch

Values determined 
from slave latch
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D-Register Timing - II

CLK

t1

t1 = tCD,reg1 + tCD,1 > tHOLD,reg2

1D Q D Q

CLK

reg1 reg2

Questions for register-based designs:
• how much time for useful work  

(i.e. for combinational logic 
delay)?

• does it help to guarantee a 
minimum tCD?  How about  
designing registers so that

tCD,reg > tHOLD,reg?

• what happens if CLK signal 
doesn’t arrive at the two 
registers at exactly the same 
time (a phenomenon known as 
“clock skew”)?

t2

t2 = tPD,reg1 + tPD,1 < tCLK - tSETUP,reg2
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Sequential Circuit Timing

Questions:
• Constraints on TCD for the logic?

• Minimum clock period?

• Setup, Hold times for Inputs?

Combinational
Logic

Current
State

New
State

Input Output

Clock tCD,L = ?
tPD,L = 5ns

tCD,R = 1ns
tPD,R = 3ns
tS,R = 2ns
tH,R = 2ns

> 1 ns

> 10 ns (TPD,R+TPD,L+ TS,R)

TS = TPD,L +TS,R
TH = TH,R -TCD,L
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The Sequential always Block
• Edge-triggered circuits are described using a 

sequential always block

module combinational(a, b, sel,
out);

input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel) 
begin
if (sel) out = a;
else out = b;

end    

endmodule

module sequential(a, b, sel, 
clk, out);

input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk) 
begin
if (sel) out <= a;
else out <= b;

end    

endmodule

Combinational Sequential

1

0

sel

out
a

b

1

0

sel

out
a

b
D Q

clk
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Note: The following is incorrect syntax: always @ (clear or negedge clock)

If one signal in the sensitivity list uses posedge/negedge, then all signals must.

Assign any signal or variable from only one always block, Be wary 
of race conditions: always blocks execute in parallel

Importance of the Sensitivity List
• The use of posedge and negedge makes an always block 

sequential (edge-triggered)
• Unlike a combinational always block, the sensitivity list does

determine behavior for synthesis! 

module dff_sync_clear(d, clearb, 
clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock) 
begin
if (!clearb) q <= 1'b0;
else q <= d; 

end
endmodule

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear

module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;

always @ (negedge clearb or posedge clock) 
begin
if (!clearb) q <= 1’b0;
else q <= d;

end
endmodule

always block entered only at 
each positive clock edge

always block entered immediately 
when (active-low) clearb is asserted
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Simulation

tc-q Clear on Clock Edge

DFF with Synchronous Clear

Clear happens on falling edge of clearb

DFF with Asynchronous Clear
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1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

1. Evaluate a | b, assign result to x
2. Evaluate a^b^c, assign result to y
3. Evaluate b&(~c), assign result to z

Blocking vs. Nonblocking Assignments
• Verilog supports two types of assignments within always blocks, 

with subtly different behaviors.
• Blocking assignment: evaluation and assignment are immediate

• Nonblocking assignment: all assignments deferred until all right-
hand sides have been evaluated (end of simulation timestep)

• Sometimes, as above, both produce the same result. Sometimes, 
not!

always @ (a or b or c)
begin

x = a | b;
y = a ^ b ^ c;
z = b & ~c;

end

always @ (a or b or c)
begin

x <= a | b;
y <= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values
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Assignment Styles for Sequential Logic

• Will nonblocking and blocking assignments both 
produce the desired result?

module nonblocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk) 
begin
q1 <= in;
q2 <= q1;
out <= q2;

end    

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based 
Digital Delay 

Line

module blocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk) 
begin
q1 = in;
q2 = q1;
out = q2;

end    

endmodule
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Use Nonblocking for Sequential Logic

always @ (posedge clk) 
begin
q1 <= in;
q2 <= q1;
out <= q2;

end

always @ (posedge clk) 
begin
q1 = in;
q2 = q1;
out = q2;

end    

D Q D Q D Qin out
q1 q2

clk

D Qin out

clk

“At each rising clock edge, q1, q2, and out
simultaneously receive the old values of in, 

q1, and q2.”

“At each rising clock edge, q1 = in. 
After that, q2 = q1 = in. 
After that, out = q2 = q1 = in. 
Therefore out = in.”

• Blocking assignments do not reflect the intrinsic behavior of 
multi-stage sequential logic

• Guideline: use nonblocking assignments for 
sequential always blocks

q1 q2
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Simulation
Non-blocking Simulation

Blocking Simulation
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Use Blocking for Combinational Logic

• Nonblocking and blocking assignments will synthesize correctly. Will 
both styles simulate correctly?

• Nonblocking assignments do not reflect the intrinsic behavior of 
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly 
(expand the sensitivity list), it’s not elegant

• Guideline: use blocking assignments for combinational always
blocks

x <= a & b;

Assignment completion

(Given) Initial Condition
a changes; 
always block triggered

a b c x y      Deferred

1 1 0  1 1
0 1 0  1 1
0 1 0  1 1    x<=0
0 1 0  1 1    x<=0, y<=1
0 1 0  0 1

y <= x | c;

Nonblocking Behavior

x = a & b;

(Given) Initial Condition
a changes; 
always block triggered

y = x | c;

Blocking Behavior a b c x y

1 1 0  1 1
0 1 0  1 1
0 1 0  0 1
0 1 0  0 0

module nonblocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c) 
begin

x <= a & b;
y <= x | c;

end    

endmodule

module blocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c) 
begin

x = a & b;
y = x | c;

end    

endmodule

a
b

c

x

y
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Implementation for on/off button

module onoff(button,light);
input button;
output light;
reg light;
always @ (posedge button)
begin
light <= ~light;

end
endmodule

button

light

D Q

BUTTON

LIGHT

Q
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Single-clock Synchronous Circuits

Single-clock Synchronous Discipline

• No combinational cycles

• Only care about value of combinational 

circuits just before rising edge of 

clock

• Period greater than every

combinational delay

• Change saved state after noise-

inducing logic transitions have 

stopped!

We’ll use Flip Flops and Registers – groups of FFs sharing a clock 

input – in a highly constrained way to build digital systems:

• Single clock signal shared among 

all clocked devices

Does that

symbol

register?
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Clocked circuit for on/off button
module onoff(clk,button,light);

input clk,button;
output light;
reg light;
always @ (posedge clk)
begin
if (button) light <= ~light;

end
endmodule

D QBUTTON LIGHT

CLK

0

1 Q
D

LE

CLK

LIGHT

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK

Does this work 
with a 1Mhz 
CLK?
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Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee 
setup and hold 
times will be met!

When an asynchronous signal causes a setup/hold 
violation...

Clock

Q

D

?

I II III

Transition is missed on 
first clock cycle, but 
caught on next clock 
cycle.

Transition is caught  on 
first clock cycle.

Output is metastable
for an indeterminate 
amount of time.

Q: Which cases are problematic?
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Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens 
simultaneously within the same circuit.

Idea: ensure that external signals directly feed 
exactly one flip-flop

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places 
in the circuit, but what about metastability?

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

Clocked  
Synchronous 

System
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Handling Metastability
• Preventing metastability turns out to be an impossible problem
• High gain of digital devices makes it likely that metastable conditions 

will resolve themselves quickly
• Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
• Depends on many design parameters(clock speed, device speeds, …)
• In 6.111, a pair of synchronization registers is sufficient

D Q
Complicated 

Sequential Logic 
System

Clock

D Q D Q

Likely to be 
metastable
right after 
sampling

Very unlikely to be 
metastable for >1 
clock cycle

Extremely unlikely to 
be metastable for >2 
clock cycle
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Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for 
sequential circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and 
next state as a function of inputs and present state

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n
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Two Types of FSMs
Moore and Mealy FSMs are distinguished by their output 

generation

outputs
yk = fk(S)

inputs
x0...xn

inputs
x0...xn

Moore FSM:

Mealy FSM:

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!
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On/off button done right!
• A level-to-pulse converter produces 

a single-cycle pulse each time its 
input goes high.

• In other words, it’s a synchronous 
rising-edge detector.

• Sample uses:
– Buttons and switches pressed by humans 

for arbitrary periods of time
– Single-cycle enable signals for counters

Level to
Pulse

Converter
L P

CLK

Whenever input L goes 
from low to high...

...output P produces a 
single pulse, one clock 

period wide.
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State Transition Diagrams
• Block diagram of desired system:

• State transition diagram is a useful FSM representation and 
design aid

00
Low input, 

Waiting for rise
P = 0

01
Edge Detected!

P = 1
High input,

Waiting for fall

D Q
Level to
Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

L=1

This is the output that results from 
this state. (Moore or Mealy?)

L=0

P = 0

11

Binary values of states

L=0 L=0

L=1

L=1

“if L=0 at the clock edge, 
then stay in state 00.”

“if L=1 at the clock edge, 
then jump to state 01.”

D Q

CLK



6.111 Fall 2004 Lecture 6, Slide 22

Logic Derivation for a Moore FSM

00
Low input, 

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1L=0

1
0
1
0
1
0
L

In

0
0
1
1
0
0
P

Out

1
0
1
0
1
0

S0
+

1
0
1
0
0
0

S1
+

1
1
0
0
0
0
S1

Next  
State

Curren
t State

1
1
1
1

0
0
S0

• Combinational logic may be derived using Karnaugh maps

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

S

n

S+X1101
X0000
10110100

X1111
X0000
10110100

S1S0
L

S1S0
L

for S1
+:

for S0
+:

011
X00
10

S1
for P:

L P

S0

S1
+ = LS0

S0
+ = L

S1
+ = LS0

S0
+ = L

P = S1S0P = S1S0

Transition diagram is readily converted to a 
state transition table (just a truth table)
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Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse 
converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1
+ = LS0

S0
+ = L

S1
+ = LS0

S0
+ = L P = S1S0P = S1S0

D Q

S0

S1

CLK

S0
+

S1
+

L P
Q

Q
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Design of a Mealy Level-to-Pulse

• Since outputs are determined by state and inputs, Mealy FSMs
may need fewer states than Moore FSM implementations

0
Input is low

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

direct combinational path!

1
Input is high

P

L

State

Clock

1. When L=1 and S=0, this output is 
asserted immediately and until the 

state transition occurs (or L changes).

2. After the transition to S=1 and as long 
as L remains at 1, this output is asserted.

L=1 | P=1

L=0 | P=0
L=1 | P=0

L=0 | P=0

Output transitions 
immediately.

State transitions at the 
clock edge.

1
2
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Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse 
converter:

1
0
1
0
L

In

0
0
1
0
P

Out

1
0
1
0
S+

Next  
State

Pres. 
State

1
1

0
0
S

D Q
S

CLK

S+

L

P

Q
S

• FSM’s state simply remembers the previous value of L
• Circuit benefits from the Mealy FSM’s implicit single-

cycle assertion of outputs during state transitions

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0L=0 | P=0
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Moore/Mealy Trade-Offs

• Remember that the difference is in the output:
– Moore outputs are based on state only
– Mealy outputs are based on state and input
– Therefore, Mealy outputs generally occur one cycle earlier than 

a Moore:

P

L

State

Clock

• Compared to a Moore FSM, a Mealy FSM might...
– Be more difficult to conceptualize and design
– Have fewer states

P

L

State[0]

Clock

Moore: delayed assertion of P Mealy: immediate assertion of P
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FSM Timing Requirements

• Timing requirements for FSM are identical to any 
generic sequential system with feedback

T > Tpd,reg + Tpd,logic + Tsu Tcd,reg + Tcd,logic > Thold

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n nTpd,reg

Tsu

Tpd,logic

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n nTcd,reg

Thold

T

Tcd,logic

Minimum Clock Period Minimum Delay
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Summary
• Use blocking assignments for combinational 
always blocks

• Use non-blocking assignments for sequential 
always blocks

• Synchronous design methodology usually 
used in digital circuits
– Single global clocks to all sequential elements
– Sequential elements almost always of edge-

triggered flavor (design with latches can be 
tricky)


