
6.111 Fall 2004 Lecture 5, Slide 1

Something We Can’t Build (Yet)

What if you were given the following design specification:

When the button is pushed:
1) Turn on the light if

it is off
2) Turn off the light if

it is on

The light should change
state within a second
of the button press

button light

What makes this circuit so different
from those we’ve discussed before?

1. “State” – i.e. the circuit has memory
2. The output was changed by a input

“event” (pushing a button) rather
than an input “value”

6.111 Fall 2004 Lecture 5, Slide 2

Digital State
One model of what we’d like to build

Plan: Build a Sequential Circuit with stored digital STATE –

• Memory stores CURRENT state, produced at output

• Combinational Logic computes

• NEXT state (from input, current state)

• OUTPUT bit (from input, current state)

• State changes on LOAD control input

Combinational

Logic

Current

State

New

State

Input Output

Memory

Device

LOAD

6.111 Fall 2004 Lecture 5, Slide 3

Storage: Using Feedback

IDEA: use positive feedback to maintain storage indefinitely.

Our logic gates are built to restore marginal signal levels, so

noise shouldn’t be a problem!

VIN
VOUT

Result: a bistable

storage element

Feedback constraint:

V
IN

= V
OUT

VTC for

inverter pair

VIN

VOUT Three solutions:

two end-points are stable

middle point is unstable

Not affected

by noise

We’ll get back to this!

6.111 Fall 2004 Lecture 5, Slide 4

Y

S

B

Settable Storage Element

It’s easy to build a settable storage element (called a latch)

using a lenient MUX:

0

1

G

0

0

1

1

D

--

--

0

1

QIN

0

1

--

--

QOUT

0

1

0

1

“state” signal

appears as both

input and output

Q follows D

Q stable

A

D

G

Q

Here’s a feedback path,

so it’s no longer a

combinational circuit.

6.111 Fall 2004 Lecture 5, Slide 5

New Device: D Latch

G

D Q

D

TPD

V1 V2

V2V1

TPD

G

Q

G=1:

Q follows D

G=0:

Q holds

G=1: Q Follows D, independently of Q’

G=0: Q Holds stable Q’, independently of D

Y

0

1

A

D

G

Q
Q’

BUT… A change in D or G

contaminates Q, hence Q’

… how can this possibly

work?

6.111 Fall 2004 Lecture 5, Slide 6

Dynamic Discipline for our latch:

D Stable

D-Latch timing

Y

0

1

A

D

G

Q

To reliably latch V2:

Q’

• Apply V2 to D, holding G=1

• After another TPD, Q’ & D both valid

for TPD; will hold Q=V2 independently

of G

• Set G=0, while Q’ & D hold Q=D

• After TPD, V2 appears at Q=Q’

• After another TPD, G=0 and Q’

are sufficient to hold Q=V2

independently of D

D

G

Q

V2

V2

TPD TPD

TSETUP THOLD

TPD

TSETUP = 2TPD: interval prior to G

transition for which D must be

stable & valid

THOLD = TPD: interval following G

transition for which D must be

stable & valid

6.111 Fall 2004 Lecture 5, Slide 7

NOR-based Set-Reset (SR) Flipflop

S
Q

R Q

S

R

Q

Q

Forbidden State

QRS Q

Q00 Q

101 0

010 1
011 0

Reset Hold Set SetReset

R

S

Q

Q
??

Flip-flop refers to a bi-stable element

6.111 Fall 2004 Lecture 5, Slide 8

Lets try using the D-Latch…

Combinational

Logic
G

D Q
Current

State

New

State

Input Output

Plan: Build a Sequential Circuit with one bit of STATE –

• Single latch holds CURRENT state

• Combinational Logic computes

• NEXT state (from input, current state)

• OUTPUT bit (from input, current state)

• State changes when G = 1 (briefly!)

What happens

when G=1?

6.111 Fall 2004 Lecture 5, Slide 9

Combinational Cycles

Combinational

Logic
G

D Q
Current

State

New

State

Input Output

When G=1, latch is Transparent…

… provides a combinational path from D to Q.

Can’t work without tricky timing constrants on G=1 pulse:

• Must fit within contamination delay of logic

• Must accommodate latch setup, hold times

Want to signal an INSTANT, not an INTERVAL…

Looks like a stupid

Approach to me…

1

6.111 Fall 2004 Lecture 5, Slide 10

Edge-triggered D-Register

G

D Q

G

D Q D QD

CLK

Q D

CLK

Q
master slave

Observations:

only one latch “transparent” at any time:

master closed when slave is open

slave closed when master is open

→ no combinational path through flip flop

Q only changes shortly after 0 →1

transition of CLK, so flip flop appears

to be “triggered” by rising edge of CLK

The gate of this

latch is open when

the clock is low

The gate of this

latch is open when

the clock is high

What does

that one do?
0

1

0

1

S

D

G

Q

(the feedback path in one of the master or slave latches is always active)

Transitions mark
instants, not intervals

6.111 Fall 2004 Lecture 5, Slide 11

D-Register Waveforms

G

D Q

G

D Q D QD

CLK

Q D

CLK

Q
master slave

D

CLK

Q

master closed

slave open

slave closed

master open

6.111 Fall 2004 Lecture 5, Slide 12

Um, about that hold time…

G

D Q

G

D QD Q
master slave

CLK

Consider HOLD TIME requirement for slave:

• Negative (1 →0) clock transition → slave freezes data:

• SHOULD be no output glitch, since master held constant data; BUT

• master output contaminated by change in G input!

• HOLD TIME of slave not met, UNLESS we assume sufficient
contamination delay in the path to its D input!

Accumulated tCD thru inverter, G → Q path of master must cover
slave tHOLD for this design to work!

The master’s contamination

delay must meet the hold

time of the slave

6.111 Fall 2004 Lecture 5, Slide 13

D-Register Timing - I

CLK

D

Q
D QD

CLK

Q

<tPD

tPD: maximum propagation delay, CLK →Q

>tCD

tCD: minimum contamination delay, CLK →Q

>tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master closes

>tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to change

Values determined
from master latch

Values determined
from slave latch

6.111 Fall 2004 Lecture 5, Slide 14

D-Register Timing - II

CLK

t1

t1 = tCD,reg1 + tCD,1 > tHOLD,reg2

1D Q D Q

CLK

reg1 reg2

Questions for register-based designs:
• how much time for useful work

(i.e. for combinational logic
delay)?

• does it help to guarantee a
minimum tCD? How about
designing registers so that

tCD,reg > tHOLD,reg?

• what happens if CLK signal
doesn’t arrive at the two
registers at exactly the same
time (a phenomenon known as
“clock skew”)?

t2

t2 = tPD,reg1 + tPD,1 < tCLK - tSETUP,reg2

6.111 Fall 2004 Lecture 5, Slide 15

Sequential Circuit Timing

Questions:
• Constraints on TCD for the logic?

• Minimum clock period?

• Setup, Hold times for Inputs?

Combinational
Logic

Current
State

New
State

Input Output

Clock tCD,L = ?
tPD,L = 5ns

tCD,R = 1ns
tPD,R = 3ns
tS,R = 2ns
tH,R = 2ns

> 1 ns

> 10 ns (TPD,R+TPD,L+ TS,R)

TS = TPD,L +TS,R
TH = TH,R -TCD,L

This is a simple Finite State Machine … more on next time!

6.111 Fall 2004 Lecture 5, Slide 16

The Sequential always Block
• Edge-triggered circuits are described using a

sequential always block

module combinational(a, b, sel,
out);

input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin
if (sel) out = a;
else out = b;

end

endmodule

module sequential(a, b, sel,
clk, out);

input a, b;
input sel, clk;
output out;
reg out;

always @ (posedge clk)
begin
if (sel) out <= a;
else out <= b;

end

endmodule

Combinational Sequential

1

0

sel

out
a

b

1

0

sel

out
a

b
D Q

clk

6.111 Fall 2004 Lecture 5, Slide 17

Note: The following is incorrect syntax: always @ (clear or negedge clock)

If one signal in the sensitivity list uses posedge/negedge, then all signals must.

Assign any signal or variable from only one always block, Be wary
of race conditions: always blocks execute in parallel

Importance of the Sensitivity List
• The use of posedge and negedge makes an always block

sequential (edge-triggered)
• Unlike a combinational always block, the sensitivity list does

determine behavior for synthesis!

module dff_sync_clear(d, clearb,
clock, q);
input d, clearb, clock;
output q;
reg q;
always @ (posedge clock)
begin
if (!clearb) q <= 1'b0;
else q <= d;

end
endmodule

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear

module dff_async_clear(d, clearb, clock, q);
input d, clearb, clock;
output q;
reg q;

always @ (negedge clearb or posedge clock)
begin
if (!clearb) q <= 1’b0;
else q <= d;

end
endmodule

always block entered only at
each positive clock edge

always block entered immediately
when (active-low) clearb is asserted

6.111 Fall 2004 Lecture 5, Slide 18

Simulation

tc-q Clear on Clock Edge

DFF with Synchronous Clear

Clear happens on falling edge of clearb

DFF with Asynchronous Clear

6.111 Fall 2004 Lecture 5, Slide 19

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

1. Evaluate a | b, assign result to x
2. Evaluate a^b^c, assign result to y
3. Evaluate b&(~c), assign result to z

Blocking vs. Nonblocking Assignments
• Verilog supports two types of assignments within always blocks,

with subtly different behaviors.
• Blocking assignment: evaluation and assignment are immediate

• Nonblocking assignment: all assignments deferred until all right-
hand sides have been evaluated (end of simulation timestep)

• Sometimes, as above, both produce the same result. Sometimes,
not!

always @ (a or b or c)
begin

x = a | b;
y = a ^ b ^ c;
z = b & ~c;

end

always @ (a or b or c)
begin

x <= a | b;
y <= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values

6.111 Fall 2004 Lecture 5, Slide 20

Assignment Styles for Sequential Logic

• Will nonblocking and blocking assignments both
produce the desired result?

module nonblocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 <= in;
q2 <= q1;
out <= q2;

end

endmodule

D Q D Q D Qin out
q1 q2

clk

Flip-Flop Based
Digital Delay

Line

module blocking(in, clk, out);
input in, clk;
output out;
reg q1, q2, out;

always @ (posedge clk)
begin
q1 = in;
q2 = q1;
out = q2;

end

endmodule

6.111 Fall 2004 Lecture 5, Slide 21

Use Nonblocking for Sequential Logic

always @ (posedge clk)
begin
q1 <= in;
q2 <= q1;
out <= q2;

end

always @ (posedge clk)
begin
q1 = in;
q2 = q1;
out = q2;

end

D Q D Q D Qin out
q1 q2

clk

D Qin out

clk

“At each rising clock edge, q1, q2, and out
simultaneously receive the old values of in,

q1, and q2.”

“At each rising clock edge, q1 = in.
After that, q2 = q1 = in.
After that, out = q2 = q1 = in.
Therefore out = in.”

• Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic

• Guideline: use nonblocking assignments for
sequential always blocks

q1 q2

6.111 Fall 2004 Lecture 5, Slide 22

Simulation
Non-blocking Simulation

Blocking Simulation

6.111 Fall 2004 Lecture 5, Slide 23

Use Blocking for Combinational Logic

• Nonblocking and blocking assignments will synthesize correctly. Will
both styles simulate correctly?

• Nonblocking assignments do not reflect the intrinsic behavior of
multi-stage combinational logic

• While nonblocking assignments can be hacked to simulate correctly
(expand the sensitivity list), it’s not elegant

• Guideline: use blocking assignments for combinational always
blocks

x <= a & b;

Assignment completion

(Given) Initial Condition
a changes;
always block triggered

a b c x y Deferred

1 1 0 1 1
0 1 0 1 1
0 1 0 1 1 x<=0
0 1 0 1 1 x<=0, y<=1
0 1 0 0 1

y <= x | c;

Nonblocking Behavior

x = a & b;

(Given) Initial Condition
a changes;
always block triggered

y = x | c;

Blocking Behavior a b c x y

1 1 0 1 1
0 1 0 1 1
0 1 0 0 1
0 1 0 0 0

module nonblocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c)
begin

x <= a & b;
y <= x | c;

end

endmodule

module blocking(a,b,c,x,y);
input a,b,c;
output x,y;
reg x,y;

always @ (a or b or c)
begin

x = a & b;
y = x | c;

end

endmodule

a
b

c

x

y

6.111 Fall 2004 Lecture 5, Slide 24

Implementation for on/off button

module onoff(button,light);
input button;
output light;
reg light;
always @ (posedge button)
begin
light <= ~light;

end
endmodule

button

light

D Q

BUTTON

LIGHT

Q

