
6.111 Fall 2004 Lecture 3, Slide 1

General CMOS gate recipe

Step 1. Figure out pulldown network that
does what you want, e.g., F = A*(B+C)
(What combination of inputs

generates a low output)

A

B C

Step 2. Walk the hierarchy replacing nfets
with pfets, series subnets with parallel
subnets, and parallel subnets with series
subnets

A
B

C

So, whats the big
deal?

Step 3. Combine pfet pullup network
from Step 2 with nfet pulldown
network from Step 1 to form fully-
complementary CMOS gate.

A
B

C

A

B C

6.111 Fall 2004 Lecture 3, Slide 2

Basic Gate Repertoire
Are we sure we have all the gates we need?
Just how many two-input gates are there?

AB Y
00 0
01 0
10 0
11 1

AND

AB Y
00 0
01 1
10 1
11 1

OR

AB Y
00 1
01 1
10 1
11 0

NAND
AB Y
00 1
01 0
10 0
11 0

NOR

S
U

R
G

E

2 = 24 = 16
2

2

Hmmmm… all of these have 2-inputs (no surprise)
… each with 4 combinations, giving 22 output cases

How many ways are there of assigning 4 outputs? __________

6.111 Fall 2004 Lecture 3, Slide 3

There are only so many gates

There are only 16 possible 2-input gates
… some we know already, others are just silly

I
N
P
U
T
AB

Z
E
R
O

A
N
D

A
>
B

A

B
>
A

B

X
O
R

O
R

N
O
R

X
N
O
R

N
O
T
‘B’

A
<=
B

N
O
T
‘A’

B
<=
A

N
A
N
D

O
N
E

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

How many of

these gates

can be

implemented

using a single

CMOS gate?

CMOS gates are inverting; we can always respond positively to
positive transitions by cascaded gates. But suppose our logic
yielded cheap positive functions, while inverters were expensive…

6.111 Fall 2004 Lecture 3, Slide 4

Fortunately, we can get by with a few basic gates…

How many different gates do we really need?

AB Y
00 0
01 1
10 0
11 0

B>A

A

B
y

AB Y
00 0
01 1
10 1
11 0

XOR

A
B

Y

AND, OR, and NOT are sufficient… (cf Boolean Expressions):

A
B

y
AB=A+B

That is just
DeMorgan’s
Theorem!

AB=A+B

A+B = AB

A
B

Y

6.111 Fall 2004 Lecture 3, Slide 5

One will do!

NANDs and NORs are universal:

Ah!, but what if we want more than 2 inputs?

=

=

=

=

=

=

6.111 Fall 2004 Lecture 3, Slide 6

I think that I shall never see
a circuit lovely as...

A1

A2

A4

A3

AN

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

Question: Can EVERY N-Input Boolean function be
implemented as a tree of 2-input gates?

log N

log N

2122
2log2N

6.111 Fall 2004 Lecture 3, Slide 7

Here’s a Design Approach
1) Write out our functional spec as

a truth table
2) Write down a Boolean expression

for every ‘1’ in the output

3) Wire up the gates, call it a day,
and declare success!

This approach will always give us
Boolean expressions in a
particular form:

SUM-OF-PRODUCTS

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

-it’s systematic!

-it works!

-it’s easy!

-are we done yet???

CBAACBBACABCY +++=

6.111 Fall 2004 Lecture 3, Slide 8

Straightforward Synthesis
We can implement

SUM-OF-PRODUCTS
with just three levels of
logic.

INVERTERS/AND/OR

Propagation delay --
No more than “3” gate delays
(well, it’s actually O(log N) gate delays)

A

B

C

A

B

C

A

B

C

A

B

C

Y

6.111 Fall 2004 Lecture 3, Slide 9

Logic Simplification
Can we implement the same function with fewer gates? Before

trying we’ll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: a + 1 = 1, a + 0 = a, a + a = a

AND rules: a1 = a, aO = 0, aa = a

Commutative: a + b = b + a, ab = ba

Associative: (a + b) + c = a + (b + c), (ab)c = a(bc)

Distributive: a(b+c) = ab + ac, a + bc = (a+b)(a+c)

Complements:

Absorption:

Reduction:

DeMorgan’s Law:

0=,1=+ aaaa
babaaaaba +=+,=+
abbaaabaa =)+(,=)+(

bbababbaab =)+)(+(,=+
babaabba +=,=+

6.111 Fall 2004 Lecture 3, Slide 10

Boolean Minimization:
An Algebraic Approach

BACCBAACBABCY +++=

Lets (again!) simplify

Using the identity

ααα =+ AA

BACCBAACBABCY +++=

CBACY +=

BACCBABCY ++=

Can’t he come up

with a new example???

For any expression α and variable A:
Hey, I could write

A program to do

That!

6.111 Fall 2004 Lecture 3, Slide 11

Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right
edge. (It’s really just a flattened out cube).

C\AB 00 01 11 10
0 0 0 1 1
1 0 1 1 0

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled
in with the values from our truth table:

K-Map: a truth table arranged so that terms which differ by
exactly one variable are adjacent to one another so we can see

potential reductions easily.

C A B Y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Truth Table

Why did he
shade that
row Gray?

6.111 Fall 2004 Lecture 3, Slide 12

On to Hyperspace
4-variable K-map for a multipurpose logic gate:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

 \AB
 CD\ 00 01 11 10
00 0 0 1 0
01 0 1 1 1
11 0 1 0 1
10 1 0 0 1⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=⊕

=

=+

=×

=

11

10

01

00

CDifBA

CDifB

CDifBA

CDifBA

Y

6.111 Fall 2004 Lecture 3, Slide 13

Finding Subcubes
We can identify clusters of “irrelevent” variables by circling

adjacent subcubes of 1s. A subcube is just a lower
dimensional cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes

(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

 \AB
 CD\ 00 01 11 10
00 0 0 1 0
01 0 1 1 1
11 0 1 0 1
10 1 0 0 1

C\AB 00 01 11 10
0 0 0 1 1
1 0 1 1 0

6.111 Fall 2004 Lecture 3, Slide 14

Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

C\AB 00 01 11 10
0 0 0 1 1
1 0 1 1 0

Y = CA + CB

 \AB
 CD\ 00 01 11 10
00 0 0 1 0
01 0 1 1 1
11 0 1 0 1
10 1 0 0 1

Y = ABC + ABD
+ ABD + BCD

We’re done!

6.111 Fall 2004 Lecture 3, Slide 15

Recap: K-map Minimization
1) Copy truth table into K-Map
2) Identify subcubes,

selecting the largest available subcube at each step, even if
it involves some overlap with previous cubes, until all ones are
covered. (Try: 4x4, 2x4 and 4x2, 1x4 and 4x1, 2x2, 2x1 and
1x2, finally 1x1)

3) Write down the minimal SOP realization

C\BA 00 01 11 10
0 0 1 1 0
1 0 0 1 1

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

CBACY +=

JARGON: The circled terms are called implicants. An

implicant not completely contained in another

implicant is called a prime implicant.

JARGON: The circled terms are called implicants. An

implicant not completely contained in another

implicant is called a prime implicant.

6.111 Fall 2004 Lecture 3, Slide 16

AB=A+B

Practical SOP Implementation
• NAND-NAND

• NOR-NOR

C

A

B

Y

C

A

B

Y

≡
C

A

B

Y

zyxxyz ++=

≡
C

A

B

Y

yxyx =+

C

A

B

Y

C

A

B

Y

AB=A+B “Pushing Bubbles”

You might think all these extra

inverters would make this structure

less attractive. However, quite the

opposite is true.

6.111 Fall 2004 Lecture 3, Slide 17

PALs: Programmable Array Logic
User-programmable ANDs Fixed ORs

Another approach to structured
logic design is Programmable
Array Logic (PAL). These were
once popular off-the-shelf
devices. They basically replaced
TTL gates in the ‘80s and fueled
the minicomputer revolution.

PALs have a programmable
decoder (AND plane) with fixed
selector logic (OR plane). These
devices were useful for
implementing large fan-in gates
and SOP logic expressions. They
are purchased as unprogrammed
chips and configured in the field
using an inexpensive programmer.

6.111 Fall 2004 Lecture 3, Slide 18

Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

S = ABC + ABC + ABC + ABC

Co = ABC + ABC + ABC + ABC

FA

A B

Co Ci

S

Can simplify the carry out easily enough, eg...

Co = BC + AB + AC

But, the sum, S, doesn’t have a simple sum-of-products
implementation even though it can be implemented using only
two 2-input XOR gates.

Full Adder

C/AB 00 01 11 10

0 0 0 1 0

1 0 1 1 1

C/AB 00 01 11 10

0 0 1 0 1

1 1 0 1 0

S

CO

6.111 Fall 2004 Lecture 3, Slide 19

Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B
C
A

Y

A

B

C

0

1

schematic Gate
symbol

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

0
1
0
1
S

0
1
0
1
S

0
1
0
1
S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree

6.111 Fall 2004 Lecture 3, Slide 20

Systematic Implementation of
Combinational Logic

Consider implementation of some
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

6.111 Fall 2004 Lecture 3, Slide 21

General Table Lookup Synthesis

MUX
Logic

A B

Fn(A,B)

Generalizing:
In theory, we can build any 1-output combinational
logic block with multiplexers.

For an N-input function we need a _____ input mux.

BIG Multiplexers?
How about 10-input function? 20-input?

AB Fn(A,B)
00 0
01 1
10 1
11 0

2N

Muxes are UNIVERSAL!

In future technologies

muxes might be the

“natural gate”.

Muxes are UNIVERSAL!

In future technologies

muxes might be the

“natural gate”.

0

1

0

1

S

1

0

A

Y A Y
=

0

1

0

1

S

0

B

A

Y

0

1

0

1

S

B

1

A

Y

=

=

A

B
Y

A

B
Y

0

1

0

1

S

B

B

A

Y

What does

that one do?

6.111 Fall 2004 Lecture 3, Slide 22

A Mux’s Guts

Hmmm, by sharing the decoder part of the logic MUXs
could be adapted to make lookup tables with any number
of outputs

I00

I01

I10

I11

A
B
A
B
A
B
A
B

Y

Decoder Selector Multiplexers
can be constructed
into two sections:

A DECODER that
identifies the

desired input,and

a SELECTOR that
enables that input
onto the output.

A decoder
generates
all possible
product

terms for
a set of
inputs

0

1

2

3

6.111 Fall 2004 Lecture 3, Slide 23

Using Memory as a Programmable Logic Device

Ro
w

A
dd

re
ss

 D
ec

od
er

Col.
1

Col.
2

Col.
3

Col.
2M

Row 1

Row 2

Row 2N

Column Multiplexor
M

N

2M+N INPUTS bit lines word lines

memory
cell

(one bit)

F(INPUTS)

6.111 Fall 2004 Lecture 3, Slide 24

FPGA Logic Block

