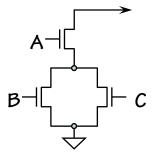
General CMOS gate recipe

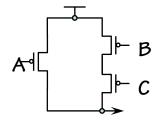
Step 1. Figure out pulldown network that does what you want, *e.g.*, $F = A^*(B+C)$ (What combination of inputs generates a low output)

Step 2. Walk the hierarchy replacing nfets with pfets, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pfet pullup network from Step 2 with nfet pulldown network from Step 1 to form fullycomplementary CMOS gate.

So, whats the big deal?

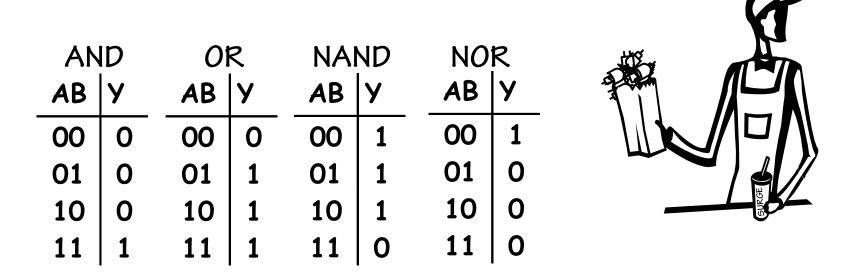




All

Basic Gate Repertoire

Are we sure we have all the gates we need? Just how many two-input gates are there?

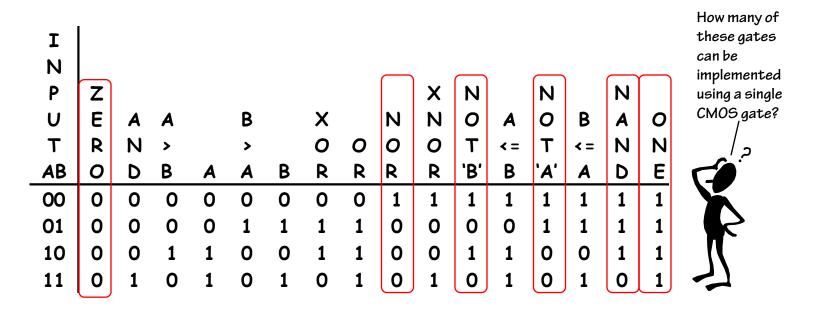


Hmmmm... all of these have 2-inputs (no surprise) ... each with 4 combinations, giving 2² output cases

How many ways are there of assigning 4 outputs? $\frac{2^2}{2} = 2^4 = 16$

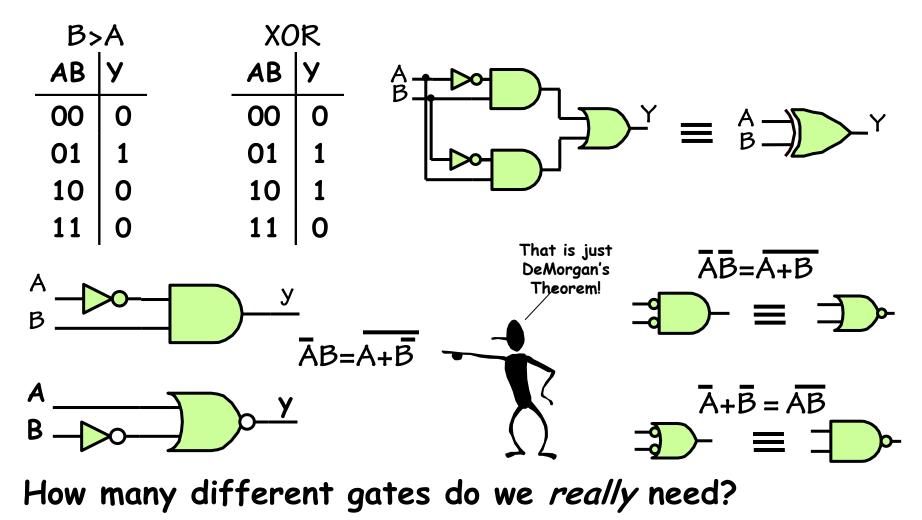
There are only so many gates

There are only 16 possible 2-input gates ... some we know already, others are just silly



CMOS gates are inverting; we can always respond positively to positive transitions by cascaded gates. But suppose our logic yielded cheap *positive* functions, while inverters were expensive... Fortunately, we can get by with a few basic gates...

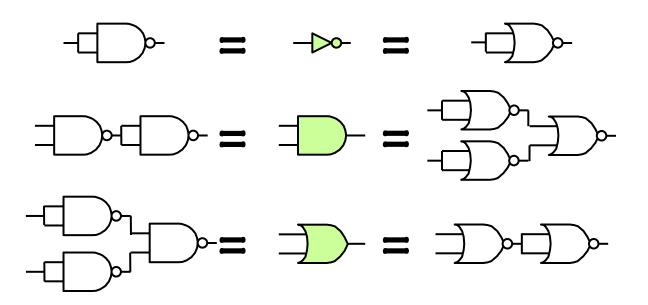
AND, OR, and NOT are sufficient... (cf Boolean Expressions):



6.111 Fall 2004

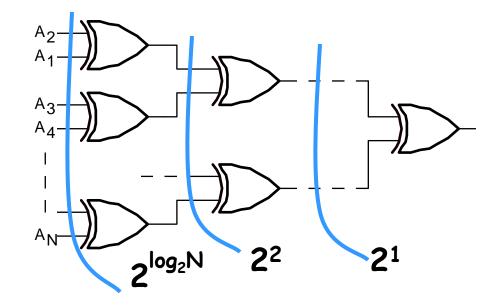
One will do!

NANDs and NORs are <u>universal</u>:



Ah!, but what if we want more than 2 inputs?

I think that I shall never see a circuit lovely as...



N-input TREE has O(<u>log N</u>) levels...

Signal propagation takes O($\log N$) gate delays.

Question: Can EVERY N-Input Boolean function be implemented as a tree of 2-input gates?

Here's a Design Approach

Truth Table

С	В	A	У
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

-it's systematic! -it works! -it's easy! -are we done yet??? Write out our functional spec as a truth table
Write down a Boolean expression for every '1' in the output

 $Y = \overline{CB}A + \overline{C}BA + CB\overline{A} + CBA$

3) Wire up the gates, call it a day, and declare success!

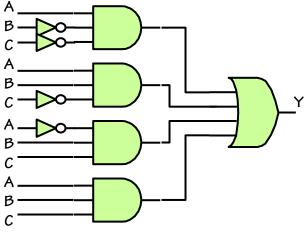
This approach will always give us Boolean expressions in a particular form: SUM-OF-PRODUCTS

6.111 Fall 2004

Straightforward Synthesis

We can implement SUM-OF-PRODUCTS with just three levels of logic.

INVERTERS/AND/OR



Propagation delay --No more than "3" gate delays (well, it's actually O(log N) gate delays)

Logic Simplification

Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag. **BOOLEAN ALGEBRA:**

OR rules: Commutative: Associative: Complements: Absorption:

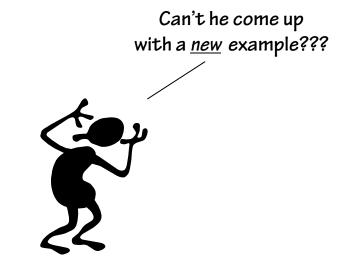
Reduction: DeMorgan's Law:

a + 1 = 1, a + 0 = a, a + a = aAND rules: a1 = a, a0 = 0, aa = aa + b = b + a, ab = ba(a + b) + c = a + (b + c), (ab)c = a(bc)Distributive: a(b+c) = ab + ac, a + bc = (a+b)(a+c) $a + \overline{a} = 1$, $a\overline{a} = 0$ $a+ab=a, a+\overline{a}b=a+b$ a(a+b) = a, $a(\overline{a}+b) = ab$ $ab+\overline{a}b=b$, $(a+b)(\overline{a}+b)=b$ $\overline{a} + \overline{b} = \overline{ab}$. $\overline{ab} = \overline{a+b}$

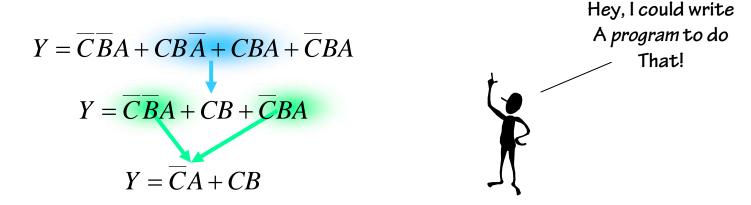
Boolean Minimization:

An Algebraic Approach

Lets (again!) simplify $Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA}$ Using the identity $\alpha A + \alpha \overline{A} = \alpha$

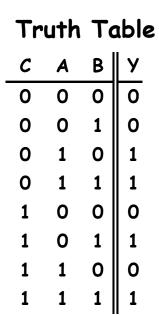


For any expression α and variable A:



Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see

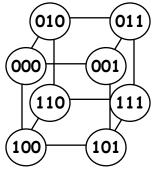


potential reductions easily.

Here's the layout of a 3-variable K-map filled in with the values from our truth table:

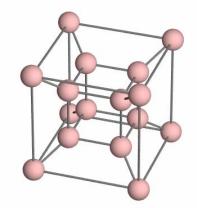
C\AB	00	01	11	10
0	0	0	1	1
1	0	1	1	0

It's cyclic. The left edge is adjacent to the right edge. (It's really just a flattened out cube).



On to Hyperspace

4-variable K-map for a multipurpose logic gate:

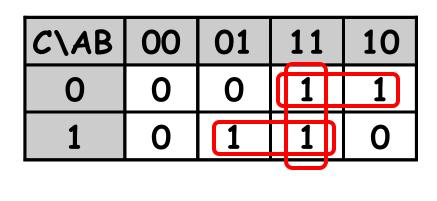


	AxB	if CD = 00	\AB CD\	00	01	11	10
	A + B	if CD = 01	00	0	0	1	0
$\mathbf{Y} = \mathbf{Y}$	B B	if CD = 10	01	0	1	1	1
			11	0	1	0	1
	(A ⊕ B	if $CD = 11$	10	1	0	0	1

Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

Finding Subcubes

We can identify clusters of "irrelevent" variables by circling adjacent subcubes of 1s. A subcube is just a lower dimensional cube.





The best strategy is generally a greedy one.

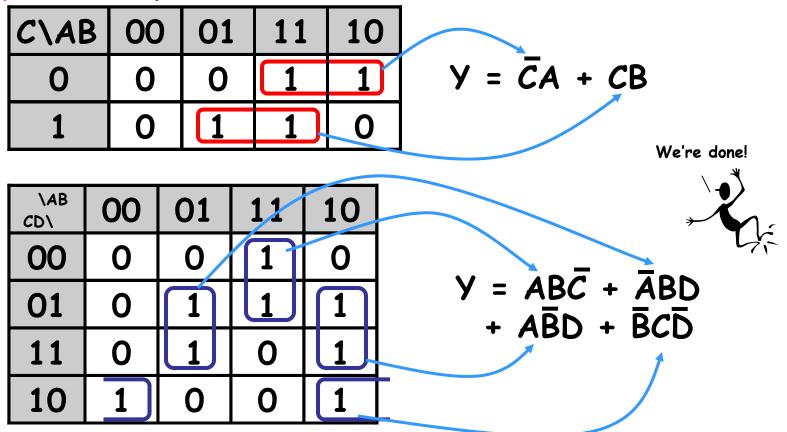
- Circle the largest N-dimensional subcube $(2^N \text{ adjacent } 1's)$

4x4, 4x2, 4x1, 2x2, 2x1, 1x1

- Continue circling the largest remaining subcubes (even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

Write Down Equations

Write down a product term for the portion of each cluster/subcube that is invariant. You only need to include enough terms so that all the 1's are covered. Result: a minimal sum of products expression for the truth table.

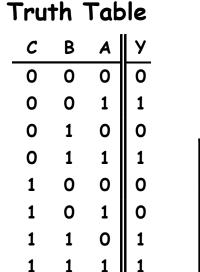


Recap: K-map Minimization

- 1) Copy truth table into K-Map
- 2) Identify subcubes,

selecting the largest available subcube at each step, even if it involves some overlap with previous cubes, until all ones are covered. (Try: 4x4, 2x4 and 4x2, 1x4 and 4x1, 2x2, 2x1 and 1x2, finally 1x1)

3) Write down the minimal SOP realization



JARGON: The circled terms are called *implicants*. An implicant not completely contained in another implicant is called a *prime implicant*.

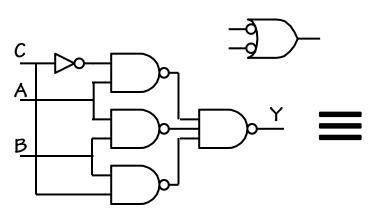
C\BA	00	01	11	10
0	0	1	1	0
1	0	0	1	1

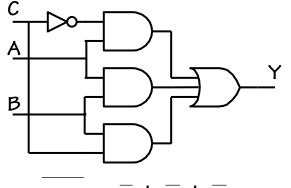
$$Y = \overline{C}A + CB$$

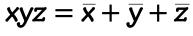
Practical SOP Implementation

• NAND-NAND $\overline{AB}=\overline{A}+\overline{B}$

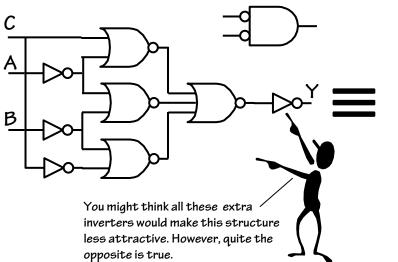
"Pushing Bubbles"

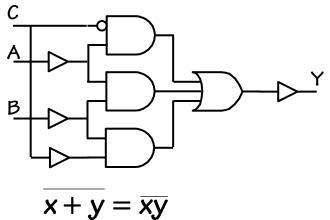




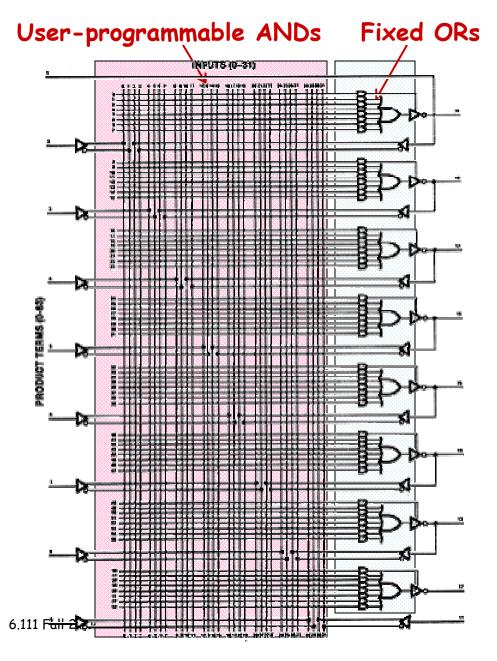


 $\overline{A}\overline{B}=\overline{A+B}$



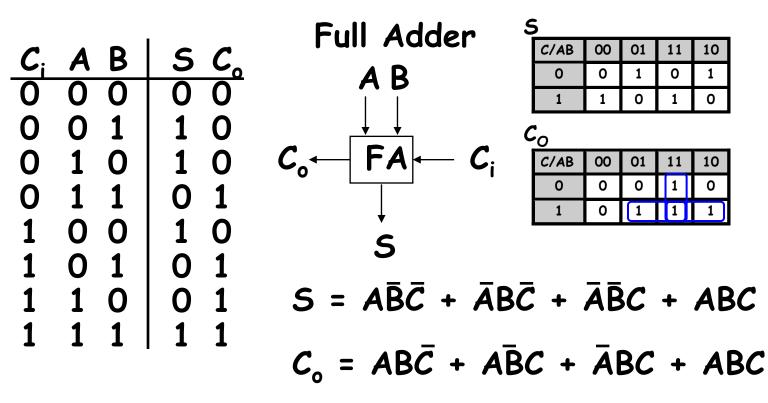


PALs: Programmable Array Logic



Another approach to structured logic design is Programmable Array Logic (PAL). These were once popular off-the-shelf devices. They basically replaced TTL gates in the '80s and fueled the minicomputer revolution.

PALs have a programmable decoder (AND plane) with fixed selector logic (OR plane). These devices were useful for implementing large fan-in gates and SOP logic expressions. They are purchased as unprogrammed chips and configured in the field using an inexpensive programmer.

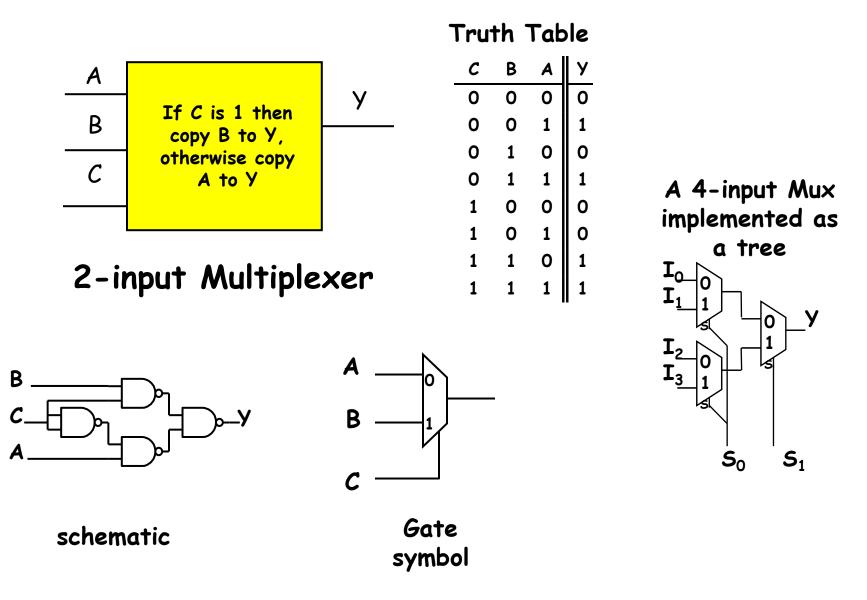


Can simplify the carry out easily enough, eg...

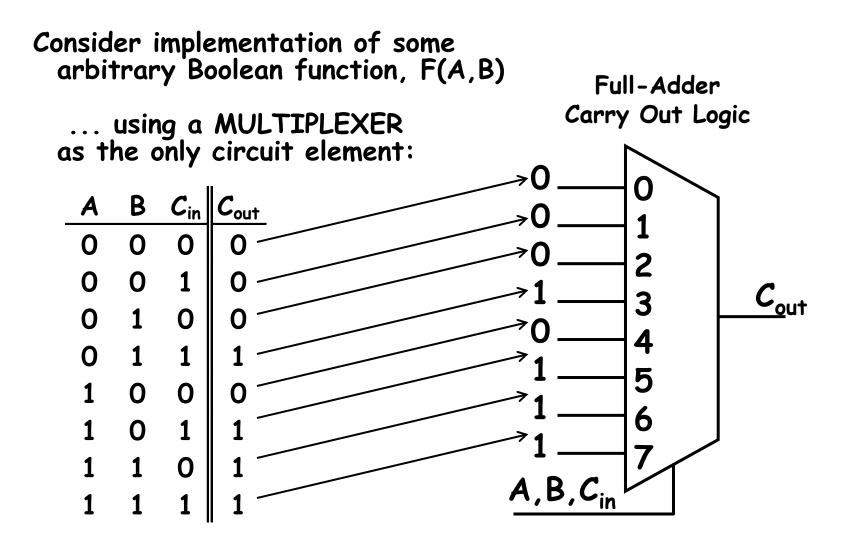
 $C_{o} = BC + AB + AC$

But, the sum, S, doesn't have a simple sum-of-products implementation even though it can be implemented using only two 2-input XOR gates. 6.111 Fall 2004 Lecture 3, Slide 18

Logic Synthesis Using MUXes

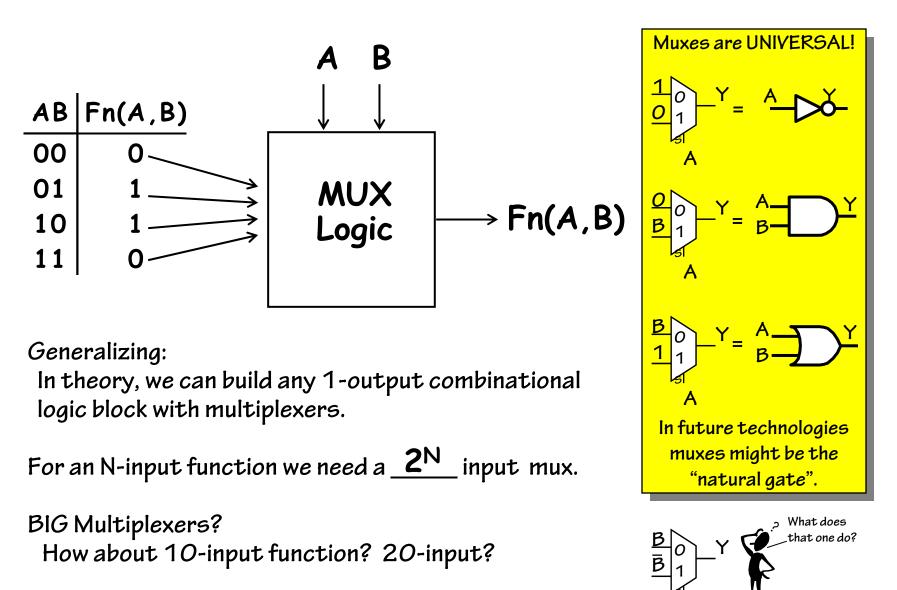


Systematic Implementation of Combinational Logic



6.111 Fall 2004

General Table Lookup Synthesis



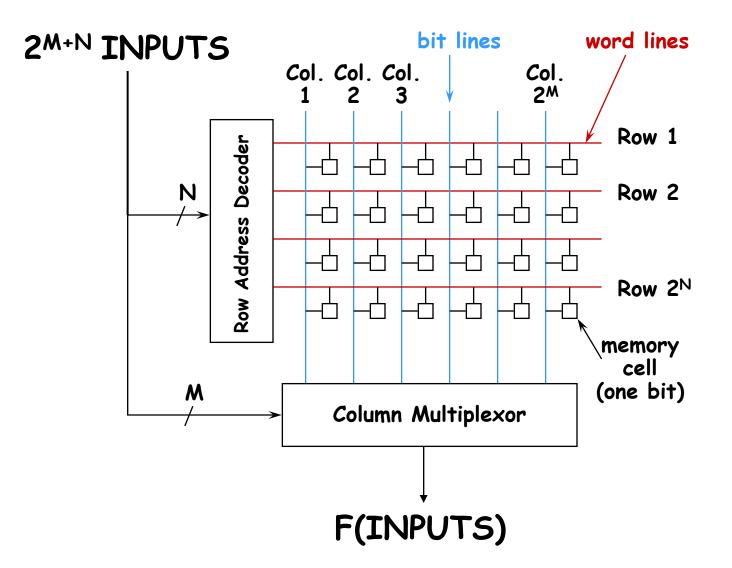
Α

A Mux's Guts



Hmmm, by sharing the decoder part of the logic MUXs could be adapted to make lookup tables with any number of outputs

Using Memory as a Programmable Logic Device



FPGA Logic Block

