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General CMOS gate recipe

Step 1.  Figure out pulldown network that 
does what you want, e.g., F = A*(B+C)
(What combination of inputs

generates a low output)

A

B C

Step 2.  Walk the hierarchy replacing nfets 
with pfets, series subnets with parallel 
subnets, and parallel subnets with series 
subnets

A
B

C

So, whats the big 
deal?

Step 3.  Combine pfet pullup network 
from Step 2 with nfet pulldown
network from Step 1 to form fully-
complementary CMOS gate.

A
B

C

A

B C
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Basic Gate Repertoire
Are we sure we have all the gates we need?
Just how many two-input gates are there?

AB Y
00 0
01 0
10 0
11 1

AND

AB Y
00 0
01 1
10 1
11 1

OR

AB Y
00 1
01 1
10 1
11 0

NAND
AB Y
00 1
01 0
10 0
11 0

NOR

S
U

R
G

E

2   = 24 = 16
2

2

Hmmmm… all of these have 2-inputs (no surprise)
… each with 4 combinations, giving 22 output cases

How many ways are there of assigning 4 outputs? __________
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There are only so many gates

There are only 16 possible 2-input gates
… some we know already, others are just silly
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B
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B 

 
 
N 
O 
T 
‘A’ 

 
 
 
B
<=
A 

 
 
N 
A 
N 
D 

 
 
 
O 
N 
E 

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

 
 

How many of 

these gates 

can be 

implemented 

using a single 

CMOS gate?

CMOS gates are inverting; we can always respond positively to 
positive transitions by cascaded gates.  But suppose our logic 
yielded cheap positive functions, while inverters were expensive…
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Fortunately, we can get by with a few basic gates…

How many different gates do we really need?

AB Y
00 0
01 1
10 0
11 0

B>A

A

B
y

AB Y 
00 0 
01 1 
10 1 
11 0 

 

XOR

A
B

Y

AND, OR, and NOT are sufficient… (cf Boolean Expressions):

A
B

y
AB=A+B

That is just
DeMorgan’s
Theorem!

AB=A+B

A+B = AB

A
B

Y
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One will do!

NANDs and NORs are universal:

Ah!, but what if we want more than 2 inputs?

=

=

=

=

=

=
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I think that I shall never see
a circuit lovely as...

A1

A2

A4

A3

AN

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _______ ) gate delays.

Question: Can EVERY N-Input Boolean function be 
implemented as a tree of 2-input gates?

log N

log N

2122
2log2N
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Here’s a Design Approach
1) Write out our functional spec as 

a truth table
2) Write down a Boolean expression 

for every ‘1’ in the output

3) Wire up the gates, call it a day, 
and declare success!

This approach will always give us 
Boolean expressions in a 
particular form: 

SUM-OF-PRODUCTS

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

-it’s systematic!

-it works!

-it’s easy!

-are we done yet???

CBAACBBACABCY +++=
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Straightforward Synthesis
We can implement 

SUM-OF-PRODUCTS
with just three levels of
logic.

INVERTERS/AND/OR

Propagation delay --
No more than “3” gate delays
(well, it’s actually O(log N) gate delays)

A

B

C

A

B

C

A

B

C

A

B

C

Y
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Logic Simplification
Can we implement the same function with fewer gates? Before 

trying we’ll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: a + 1 = 1,  a + 0 = a,  a + a = a

AND rules: a1 = a,  aO = 0,  aa = a

Commutative: a + b = b + a,  ab = ba

Associative: (a + b) + c = a + (b + c),  (ab)c = a(bc)

Distributive: a(b+c) = ab + ac,  a + bc = (a+b)(a+c)

Complements:

Absorption:

Reduction:

DeMorgan’s Law:

0=,1=+ aaaa
babaaaaba +=+,=+
abbaaabaa =)+(,=)+(

bbababbaab =)+)(+(,=+
babaabba +=,=+
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Boolean Minimization:
An Algebraic Approach

BACCBAACBABCY +++=

Lets (again!) simplify

Using the identity

ααα =+ AA

BACCBAACBABCY +++=

CBACY +=

BACCBABCY ++=

Can’t he come up

with a new example???

For any expression α and variable A:
Hey, I could write

A program to do

That!
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Karnaugh Maps: A Geometric Approach

It’s cyclic. The left edge is adjacent to the right
edge. (It’s really just a flattened out cube). 

C\AB 00 01 11 10 
0 0 0 1 1 
1 0 1 1 0 

 

 

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map filled 
in with the values from our truth table:

K-Map: a truth table arranged so that terms which differ by 
exactly one variable are adjacent to one another so we can see 

potential  reductions easily.

C A B Y 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 

 

Truth Table

Why did he
shade that
row Gray?
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On to Hyperspace
4-variable K-map for a multipurpose logic gate:

Again it’s cyclic. The left edge is adjacent to the right edge,
and the top is adjacent to the bottom.

   \AB
 CD\ 00 01 11 10
00 0 0 1 0
01 0 1 1 1
11 0 1 0 1
10 1 0 0 1⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=⊕

=

=+

=×

=

11

10

01

00

CDifBA

CDifB

CDifBA

CDifBA

Y



6.111 Fall 2004 Lecture 3, Slide 13

Finding Subcubes
We can identify clusters of “irrelevent” variables by circling 

adjacent subcubes of 1s. A subcube is just a lower 
dimensional cube.

The best strategy is generally a greedy one.
- Circle the largest N-dimensional subcube (2N adjacent 1’s)

4x4, 4x2, 4x1, 2x2, 2x1, 1x1
- Continue circling the largest remaining subcubes

(even if they overlap previous ones)
- Circle smaller and smaller subcubes until no 1s are left.

   \AB
 CD\ 00 01 11 10
00 0 0 1 0
01 0 1 1 1
11 0 1 0 1
10 1 0 0 1

C\AB 00 01 11 10
0 0 0 1 1
1 0 1 1 0
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Write Down Equations
Write down a product term for the portion of each
cluster/subcube that is invariant. You only need to include
enough terms so that all the 1’s are covered. Result: a minimal
sum of products expression for the truth table.

C\AB 00 01 11 10
0 0 0 1 1
1 0 1 1 0

Y = CA + CB

   \AB
 CD\ 00 01 11 10
00 0 0 1 0
01 0 1 1 1
11 0 1 0 1
10 1 0 0 1

Y = ABC + ABD
+ ABD + BCD

We’re done!
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Recap: K-map Minimization
1) Copy truth table into K-Map
2) Identify subcubes, 

selecting the largest available subcube at each step, even if 
it involves some overlap with previous cubes, until all ones are
covered. (Try: 4x4, 2x4 and 4x2, 1x4 and 4x1, 2x2, 2x1 and 
1x2, finally 1x1)

3) Write down the minimal SOP realization

C\BA 00 01 11 10 
0 0 1 1 0 
1 0 0 1 1 

 

 

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table

CBACY +=

JARGON: The circled terms are called implicants.  An 

implicant not completely contained in another 

implicant is called a prime implicant. 

JARGON: The circled terms are called implicants.  An 

implicant not completely contained in another 

implicant is called a prime implicant. 
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AB=A+B

Practical SOP Implementation
• NAND-NAND

• NOR-NOR

C

A

B

Y

C

A

B

Y

≡
C

A

B

Y

zyxxyz ++=

≡
C

A

B

Y

yxyx =+

C

A

B

Y

C

A

B

Y

AB=A+B “Pushing Bubbles”

You might think all these  extra 

inverters would make this structure 

less attractive. However, quite the 

opposite is true.
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PALs: Programmable Array Logic
User-programmable ANDs Fixed ORs

Another approach to structured 
logic design is Programmable 
Array Logic (PAL). These were 
once popular off-the-shelf 
devices. They basically replaced 
TTL gates in the ‘80s and fueled 
the minicomputer revolution. 

PALs have a programmable 
decoder (AND plane) with fixed 
selector logic (OR plane). These 
devices were useful for 
implementing large fan-in gates 
and SOP logic expressions. They 
are purchased as unprogrammed
chips and configured in the field 
using an inexpensive programmer.
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Logic that defies SOP simplification

Ci
0
0
0
0
1
1
1
1

A
0
0
1
1
0
0
1
1

B
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Co
0
0
0
1
0
1
1
1

S = ABC + ABC + ABC + ABC

Co = ABC + ABC + ABC + ABC

FA

A B

Co Ci

S

Can simplify the carry out easily enough, eg...

Co = BC + AB + AC

But, the sum, S, doesn’t have a simple sum-of-products 
implementation even though it can be implemented using only 
two 2-input XOR gates.

Full Adder

C/AB 00 01 11 10 

0 0 0 1 0 

1 0 1 1 1 
 

 

C/AB 00 01 11 10 

0 0 1 0 1 

1 1 0 1 0 
 

 

S

CO
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Logic Synthesis Using MUXes

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B
C
A

Y

A

B

C

0

1

schematic Gate
symbol

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table

0
1
0
1
S

0
1
0
1
S

0
1
0
1
S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
implemented as

a tree
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Systematic Implementation of
Combinational Logic

Consider implementation of some 
arbitrary Boolean function, F(A,B)

... using a MULTIPLEXER
as the only circuit element:

A B Cin Cout 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

 

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1
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General Table Lookup Synthesis

MUX
Logic

A B

Fn(A,B)

Generalizing:
In theory, we can build any 1-output combinational
logic block with multiplexers.

For an N-input function we need a _____ input  mux.

BIG Multiplexers?
How about 10-input function?  20-input?

AB Fn(A,B)
00 0 
01 1 
10 1 
11 0 

 

2N

Muxes are UNIVERSAL!

In future technologies

muxes might be the

“natural gate”.

Muxes are UNIVERSAL!

In future technologies

muxes might be the

“natural gate”.

0

1

0

1

S

1

0

A

Y A            Y
=

0

1

0

1

S

0

B

A

Y

0

1

0

1

S

B

1

A

Y

=

=

A

B
Y

A

B
Y

0

1

0

1

S

B

B

A

Y

What does 

that one do?
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A Mux’s Guts

Hmmm, by sharing the decoder part of the logic MUXs
could be adapted to make lookup tables with any number 
of outputs

I00

I01

I10

I11

A
B
A
B
A
B
A
B

Y

Decoder Selector Multiplexers
can be constructed
into two sections:

A DECODER that
identifies the

desired input,and

a SELECTOR that 
enables that input
onto the output.

A decoder
generates
all possible
product

terms for
a set of
inputs

0

1

2

3
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Using Memory as a Programmable Logic Device

Ro
w 

A
dd

re
ss

 D
ec

od
er

Col.
1

Col.
2

Col.
3

Col.
2M

Row 1

Row 2

Row 2N

Column Multiplexor
M

N

2M+N INPUTS bit lines word lines

memory
cell

(one bit)

F(INPUTS)
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FPGA Logic Block


