
Introduction to Algorithms April 21, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Quiz 2 Solutions

Quiz 2 Solutions
� Do not open this quiz booklet until you are directed to do so. Read all the instructions first.
� When the quiz begins, write your name on every page of this quiz booklet.
� The quiz contains four multi-part problems. You have 120 minutes to earn 120 points.
� This quiz booklet contains 18 pages, including this one. An extra sheet of scratch paper is

attached.
� This quiz is closed book. You may use one handwritten A4 or

������ ���
	�	 � � crib sheet. No
calculators or programmable devices are permitted.

� Write your solutions in the space provided. Extra scratch paper may be provided if you need
more room, although your answer should fit in the given space.

� Do not waste time and paper re-deriving facts that we have studied. It is sufficient to cite
known results.

� Do not spend too much time on any one problem. Read them all through first, and attack
them in the order that allows you to make the most progress. Generally, a problem’s point
value is an indication of how much time to spend on it.

� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

� Good luck!

Problem Points Grade Initials

1 30

2 35

3 25

4 30

Total 120

Name: Solutions
Circle your recitation:

Brian 11 Brian 12 Jen 12 Jen 1 Brian 2

6.046J/18.410J Quiz 2 Solutions Name 2

Problem 1. True or False, and Justify [30 points] (7 parts)

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(a) T F [4 points] A 2-3-4 tree is special case of a B-tree where leaves can have differ-
ent depths.

Solution: False. In a 2-3-4 tree, all leaves have the same depth.

(b) T F [4 points] Searching on a skip list takes expected ���������
	�� time, but could take
 ��	�� time with non-zero probability.

Solution: True. A skip list could be of any height or be a simple linked list,
depending on its random choices.

6.046J/18.410J Quiz 2 Solutions Name 3

(c) T F [4 points] To determine whether two binary search trees on the same set of keys
have identical tree structures, one could perform an inorder tree walk on both and
compare the output lists.

Solution: False. An inorder tree walk will simply output the elements of a tree
in sorted order. Thus, an inorder tree walk on any binary search tree of the same
elements will produce the same output.

(d) T F [4 points] In an undirected weighted graph with distinct edge weights, both the
lightest and the second lightest edge are in some MST.

Solution: True. First, since the edge weights are distinct there is only a single
MST. Let � � and � � be the lightest and second lightest edge. In Kruskal’s algo-
rithm, � � is always the first edge added. Since � � cannot possibly create a cycle,
it will necessarily be the next edge added by Kruskal’s algorithm. So, by the
correctness of Kruskal, the two lightest edges are always in the MST.

6.046J/18.410J Quiz 2 Solutions Name 4

(e) T F [5 points] Dijkstra’s algorithm works correctly on graphs with negative-weight
edges, as long as there are no negative-weight cycles.

Solution: False. Consider the directed graph
� � �������	��
��

and
 �
�����	����
���
����

. Let � � ��� � � 	 , � � ��
 � ���
and � �
�� � �����

. Dijkstra
will first add the edge

���
to the shortest path tree. However, the shortest path

tree would be � ������
���
���� .

(f) T F [5 points] In a graph � � � ���
 � , suppose that each edge ����
 has an
integer weight � � � � such that 	! � � � � 	 . Then there is a an " �$# ��� � 	�� -time
algorithm to find a minimum spanning tree in � .

Solution: True. Run Kruskal using Counting sort. Sorting edges will
take % �&#(' 	�� � % �$# � . The remainder of Kruskal’s algorithm will take
% �$#*) �$# � 	 � � time, which is " �$# �����
	�� .

6.046J/18.410J Quiz 2 Solutions Name 5

(g) T F [4 points] In the comparison model, there is an

 �&# � ���
	�� lower bound on

performing # UNION and FIND-SET operations in any disjoint-set data structure
storing 	 total elements.

Solution: False. Using the Union-Find data structure from class, we can per-
form # operations on a set of initial size 	 in � �&#*) �&# � 	�� � .

6.046J/18.410J Quiz 2 Solutions Name 6

Problem 2. Short Answer [35 points] (3 parts)

Give brief, but complete, answers to the following questions.

(a) [10 points] We wish to define a universal hash family � � ��� � ��� � ����� � where� � ��� �
	��
���
and

����
���� ��� � 	 � . Complete the following table to make � universal.
The function

� � has already been defined for you:
� 	 �

� � 0 0 1� �
���

Solution:
We need to ensure that none of the three pairs � � ��	 � , � � ��� � or � 	 ��� � collide with more
than 	�� � probability. Since

�
and

	
already collide once, we must have that

� � � � ����� � � 	 � and
��� � � �������� � 	 � . Then they will collide with probability 	���� . The value

�
can collide with each of

�
and

	
exactly once, so we can have

� � � � � ��� � � � � and� � � 	 � ��� � � � � . One valid solution is:
� 	 �

� � 0 0 1� � 0 1 0���
0 1 1

6.046J/18.410J Quiz 2 Solutions Name 7

(b) [10 points] Suppose that you are given a set
��� � ��� � ������� ����� � of 	 points in two

dimensions. Give an % ��	 � ��� 	�� -time algorithm to detect whether any three points are
collinear, that is, whether any three points lie on a common line. You may assume that
you have a subroutine that computes in % � 	 � time whether three given points

� �
	 �
�
are oriented clockwise, oriented counterclockwise, or collinear, as shown in the figure
below. (Such an “orientation test” subroutine was given in lecture.) You may not use
hashing.

collinear

	

�

	

�

�

�
�

	
�

clockwise counterclockwise

Solution:
for each point � :

Use the orientation test as a comparator to sort the other 	 � 	 points radially with respect to � .
If any two points are collinear with respect to � , return True.

return False

As shown in class, we will use the clockwise/counterclockwise/collinear test as a
less/greater/equal comparator. We can sort the points with respect to a given � in
% � 	 ��� � 	�� time. If any triplet is collinear, it will be detected and the loop will halt.
Since we loop through every possible � , this algorithm will take % ��	 � � ��� 	�� time.

6.046J/18.410J Quiz 2 Solutions Name 8

(c) [15 points] You are given three bags of steel pipes, denoted
�

,
�

and

, such that
each bag contains 	 pieces of pipe with lengths in the range � � ��� 	�� . You may assume
that each piece of pipe has a unique integer length. You may attach a single pipe� � � to a single pipe

	 � � and to a single pipe
� �
 to produce a pipe with length� ' 	 ' � .

Give an % ��	 ����� 	 � -time algorithm to determine both:
� Every possible length that may be obtained by attaching a triplet of pipes from

�
,�

and

.
� The number of triplets that could be attached to produce a given length.

Solution:
Represent

�
,
�

and

as polynomials of degree
� 	 as follows:

� � � � � ����� ' ���
	 ' ����� ' ����� ��� � � � � ��
�� ' ��
�	 ' ����� ' ��
�� ��
 � � � � ����� ' ����	 ' ����� ' ����� �

Multiply
�

,
�

, and

in time � ��	 �����
	 � using the FFT to obtain a coefficient repre-
sentation ��� � � � ������� � � � � . In other words � � � � � ��� '�� � � '�� � � � ' ����� '�� � � �

� �
. Each

triplet
� � ��	�� �����

will account for one term � ��� �
! � ��" � � ���$#%
! �#%��" � �'& . Therefore, � &
will be the number of such pairs

� � ' 	�� ' �(� � # .

6.046J/18.410J Quiz 2 Solutions Name 9

Problem 3. Amortized Stack Analysis [25 points] (2 parts)

Recall the standard implementation of a stack in an array. A stack pointer stores the address of the
top element of the stack. The PUSH � � � operation increments the stack pointer, then stores a new
element � at the top of the stack. The POP operation returns the element at the top of the stack,
then decrements the stack pointer.

In this problem, we wish to implement a stack on a computer with a small amount of fast memory
and a large amount of slow disk space. The disk space is partitioned into

�
-element clusters called

pages. The computer can read or write individual elements in memory, but can read or write only
entire pages on disk. Reading or writing an element in memory takes ��� 	 � time while reading or
writing a page on disk takes ��� � � time.

Consider a stack that stores the top page of the stack array in memory and the remainder on disk,
as in the following diagram:

�������
�������
�������
��������������
�������
�������
��������������
�������
�������
��������������
�������
�������
�������	�	�	�	
	�	�	�	

�
�
�

�
�
�
�������
�������
�������
�������
�
�
�

�
�
�

�������
���������������������

Stack PointerPage in Memory

Pages on Disk

In this diagram, each page has
� � � words. Whenever the stack pointer crosses a page boundary

(indicated by the thick lines) there is a disk operation that incurs � � � � cost.

6.046J/18.410J Quiz 2 Solutions Name 10

(a) [10 points] What is the worst-case running time to perform 	 stack operations us-
ing this implementation? Express your solution in terms of 	 and

�
throughout this

problem.

Solution: Consider the alternating sequence

PUSH, PUSH, POP, POP
�����

occurring at a page boundary. The second PUSH requires writing the first word of the
next page, and the second POP requires reading in the previous page again.
Thus, 	 operations can make ��� 	 � disk accesses, taking a total of ����	 � � time.

6.046J/18.410J Quiz 2 Solutions Name 11

(b) [15 points] Suppose you are allowed to store two stack pages in memory. Implement
PUSH and POP so that the amortized running time for any stack operation is % � 	 � . You
may assume that you have % � 	 � extra memory for bookkeeping.

Solution:
Keep the page currently needed in memory, as in part (a), but also keep the previously
used page. Keep a bit marking which of the two pages in memory has been least
recently used (LRU). Whenever a new page must be read in, save the LRU page to
disk if modified, and read in the new page. When executing many PUSH operations,
memory will first be

� � (only one page valid), then
� � � � (while doing the � � ' 	 � st

through � � � � th pushes), then
� � � � , and then

� � ��� .
The stack pointer will point to the top of any fresh page read from disk. In other words,
there is

�
data and

�
free space available in memory for our stack operations. We must

either perform
�

PUSH or
�

POP operations before the next page must be read.
Therefore each disk access must be preceded by

�
stack operations. Using the ac-

counting method, pay 	�� � th of our disk access cost, i.e. ��� 	 � for every stack opera-
tion. After

�
stack operations, we will have accumulated ��� � � value that can pay for

any necessary disk accesses. Therefore, stack operations have a ��� 	 � amortized cost.

6.046J/18.410J Quiz 2 Solutions Name 12

Problem 4. Package Shipping [30 points] (3 parts)

You work for a small manufacturing company and have recently been placed in charge of shipping
items from the factory, where they are produced, to the warehouse, where they are stored. Every
day the factory produces 	 items which we number from 1 to 	 in the order that they arrive at the
loading dock to be shipped out. As the items arrive at the loading dock over the course of the day
they must be packaged up into boxes and shipped out. Items are boxed up in contiguous groups
according to their arrival order; for example, items 	

�������
might be placed in the first box, items� ����� 	 � in the second, and 	�	

������� �
in the third.

Items have two attributes, value and weight, and you know in advance the values � � ����� � � and
weights � � ����� � � of the 	 items. There are two types of shipping options available to you:

Limited-Value Boxes: One of your shipping companies offers insurance on boxes and hence
requires that any box shipped through them must contain no more than

�
units of value. Therefore,

if you pack items into such a “limited-value” box, you can place as much weight in the box as you
like, as long as the total value in the box is at most

�
.

Limited-Weight Boxes: Another of your shipping companies lacks the machinery to lift heavy
boxes, and hence requires that any box shipped through them must contain no more than � units
of weight. Therefore, if you pack items into such a “limited-weight” box, you can place as much
value in the box as you like, as long as the total weight inside the box is at most � .

Please assume that every individual item has a value at most
�

and a weight at most � . You may
choose different shipping options for different boxes. Your job is to determine the optimal way to
partition the sequence of items into boxes with specified shipping options, so that shipping costs
are minimized.

6.046J/18.410J Quiz 2 Solutions Name 13

(a) [10 points] Suppose limited-value and limited-weight boxes each cost $1 to ship.
Describe an % � 	 � greedy algorithm that can determine a minimum-cost set of boxes
to use for shipping the 	 items. Justify why your algorithm produces an optimal
solution.

Solution:
We use a greedy algorithm that always attempts to pack the largest possible prefix
of the remaining items that still fits into some box, either limited-value or limited-
weight. The algorithm scans over the items in sequence, maintaining a running count
of the total value and total weight of the items encountered thus far. As long as the
running value count is at most

�
or the running weight count is at most � , the items

encountered thus far can be successfully packed into some type of box. Otherwise, if
we reach a item � whose value and weight would cause our counts to exceed

�
and

� , then prior to processing item � we first package up the items scanned thus far (up
to item � �) into an appropriate box and zero out both counters. Since the algorithm
spends only a constant amount of work on each item, its running time is % � 	�� .
Why does the greedy algorithm generate an optimal solution (minimizing the total
number of boxes)? Suppose that it did not, and that there exists an optimal solution
different from the greedy solution that uses fewer boxes. Consider, among all optimal
solutions, one which agrees with the greedy solution in a maximal prefix of its boxes.
Let us now examine the sequence of boxes produced by both solutions, and consider
the first box where the greedy and optimal solutions differ. The greedy box includes
items � ����� � and the optimal box includes items � ������� , where

��� � (since the greedy
algorithm always places the maximum possible number of items into a box). In the
optimal solution, let us now remove items

� ' 	 ����� � from the boxes in which they
currently reside and place them in the box we are considering, so now it contains the
same set of items as the corresponding greedy box. In so doing, we clearly still have a
feasible packing of items into boxes and since the number of boxes has not changed,
this must still be an optimal solution; however, it now agrees with the greedy solu-
tion in one more box, contradicting the fact that we started with an optimal solution
agreeing maximally with the greedy solution.

6.046J/18.410J Quiz 2 Solutions Name 14

(b) [20 points] Suppose limited-value boxes cost $

��

and limited-weight boxes cost
$

 � . Give an % � 	 � � algorithm that can determine the minimum cost required to ship

the 	 items, and briefly justify its correctness.

Solution:
We use dynamic programming. Let

� � � � denote the optimal cost for packing just items
� ����� 	 into boxes. We compute the sequence of subproblem solutions

� � 	 � ������� � 	 � in
reverse order as follows (we take

� � 	 ' 	 � � �
as a base case). For every item � , let� � � � be the largest item index such that � � ' � � # � '

����� ' ����� ��� � , and let � � � � be
the largest item index such that � � ' � � # � '

����� ' ��	 � ��� � . We can compute
� � � �

and � � � � for a item � by scanning forward from � and maintaining a running count
of the total value and weight from item � onward. Applying this to every item, we
can compute

� � � � and � � � � for all items in % ��	 � � time. We can now easily compute
solutions to our DP subproblems via the following formula:

� � � � ��

��� � � � � � � � ' 	 � '
�� ��� � � � � � ' 	 � '
 � �
The two cases above correspond to the decision of whether or not to use a limited-
value or limited-weight box as the first box when packing items � ����� 	 in sequence.
Regardless of the type of box we select, we clearly want to place as many items as
possible in that box — this follows from the greedy proof above. The DP algorithm
requires only % � 	 � time after computing the

� � � � ’s and � � � � ’s, which requires % � 	 � �
time.
Some student suggested a greedy solution in this part: find the largest prefices for each
the limited-value box and limited-weight box, and choose the option that results in the
lowest cost per item. However, this greedy strategy does not give an optimal solution
in the following example.
Suppose � � � � � � � ��
�� � �

and

 � � �

. Consider the 5 items with the following
� � � � � � � values:

� � � � � � � � � � � � � � � � � � � 	 � 	 � � � 	 � � �
The greedy algorithm will pick VLB, WLB and VLB in the above order, costing a
total of $9. On the other hand, the optimal solution should choose a WLB followed by
a VLB, with a total cost of $7. Therefore, the greedy algorithm does not always give
an optimal solution.

6.046J/18.410J Quiz 2 Solutions Name 15

(c) [3 points] (Extra Credit) Can you reduce the running time of the algorithm from
(b) to % � 	 � ?
Solution:
We can speed up the algorithm above by computing the

� � � � ’s and � � � � ’s in % ��	��
total time. Note that

� � � � and � � � � are both monotonically non-decreasing functions
of � . Therefore, as we scan forward for � � 	 ����� 	 , the values of

� � � � and � � � � can
only move forward as well. The following pseudocode illustrates how we can exploit
this monotonicity to speed up the total computation:

1
� � � ��� �

, � "�� ��� � ����� �	� �
2 � � � ��� �

, � "
� ��� � � ��� � �
� �
3 for ��� 	 to 	 :
4

� � � �
� � � � � 	 � , � "
� ���$� ����� �	� ��"�� ���$� ����� �
� � ��� �

5 � � � ��� � � � � 	 � , � "
� ��� � � ��� � ����� "
� ��� � � ��� � � � � ��� �
6 while � "
� ���$� ����� � ' ����� ��� # �

�
:

7
� � � �
� � � � � ' 	 , � "�� ���$� ����� �	� � "
� ���$� ����� � ' � ��� ���

8 while � "
� ��� � � ��� � � ' � 	 � � � # � � :
9 � � � ��� � � � � ' 	 , � "�� ��� � � ��� � ��� � "
� ��� � � ��� � � ' � 	 � ���

SCRATCH PAPER

SCRATCH PAPER

SCRATCH PAPER

