
Introduction to Algorithms March 10, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Quiz 1

Quiz 1
� Do not open this quiz booklet until you are directed to do so. Read all the instructions first.
� When the quiz begins, write your name on every page of this quiz booklet.
� The quiz contains five multi-part problems. You have 120 minutes to earn 120 points.
� This quiz booklet contains 14 pages, including this one. An extra sheet of scratch paper is

attached. Please detach it before turning in your quiz.
� This quiz is closed book. You may use one handwritten A4 or

������ ���
	�	 � � crib sheet. No
calculators or programmable devices are permitted.

� Write your solutions in the space provided. Extra scratch paper may be provided if you need
more room, although your answer should fit in the given space.

� Do not waste time and paper re-deriving facts that we have studied. It is sufficient to cite
known results.

� Do not spend too much time on any one problem. Read them all through first, and attack
them in the order that allows you to make the most progress. Generally, a problem’s point
value is an indication of how much time to spend on it.

� Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

� Good luck!

Problem Points Grade Initials

1 20

2 15

3 30

4 25

5 30

Total 120

Name: Solutions
Circle your recitation:

Brian 11 Brian 12 Jen 12 Jen 1 Brian 2

6.046J/18.410J Quiz 1 Name 2

Problem 1. Recurrences [20 points] (5 parts)

For each of the following algorithms in parts (a)-(c), provide a recurrence relation and give an
asymptotically tight (�������) bound. For parts (d)-(e), just provide an asymptotically tight bound.
Justify your answer by naming the particular case of the Master Method, by iterating the recur-
rences, using the substitution method, or using Akra-Bazzi.

Example: [0 points] BINARY SEARCH

Recurrence: ���
	��
������	����������
Solution by iteration:

����	���������	����������������
� �"!$#%& ')(���*�,+.-�/�	0�1����+2-�/�	��

(a) [4 points] MERGE SORT

Solution: Recurrence: ����	����3�$����	��4�����5���
	�� .����	��
�3����	6+2-�/�	�� by part 2 of the Master Method.

(b) [4 points] KARATSUBA INTEGER MULTIPLICATION

(The Divide and Conquer algorithm from Lecture 2 and Problem Set 1-4.)

Solution: Recurrence: ����	����*7�����	��4�����5���
	������	��
�3����	 � �"!98;: � by part 1 of the Master Method.

6.046J/18.410J Quiz 1 Name 3

(c) [4 points] DETERMINISTIC SELECT (Code provided on the last page of this exam.)

Solution: Recurrence: ����	���� ���
	�������� ������	�� 	�� ��������	��
Using a recursion tree method, depicted in Figure 1, we deduce that:

����	����
�	 � �"!�
 #%&

')(�
�	�� �
&
	���1�*����	��

n n

n/5

n/25 7n/50

7n/10

7n/50 49n/100

9n/10

81n/100

(9^3)n/10^3

Figure 1: Recursion tree for Deterministic Select

6.046J/18.410J Quiz 1 Name 4

(d) [4 points] � �
	���� �;� �
	����4����	 :
.

Solution:����	��
�3����	 : � by part 3 of the Master Method.

(e) [4 points] � �
	����1�;� �
	���� ��� � � 	 .

Solution: ����	��
�*� � � 	6+.-�/
	�� by part 2 of the Master Method.

6.046J/18.410J Quiz 1 Name 5

Problem 2. True or False, and Justify [15 points] (5 parts)

Circle T or F for each of the following statements, and briefly explain why. The better your
argument, the higher your grade, but be brief. Your justification is worth more points than your
true-or-false designation.

(a) T F [3 points] RADIX SORT works correctly if we sort each individual digit with
HEAPSORT instead of COUNTING SORT.

Solution: False. HEAPSORT is not stable. If the first ��� 	 digits are sorted in
RADIX SORT, sorting the � th digit using stable COUNTING SORT won’t change
the order of two items wiht the same � th digit. This cannot be guaranteed with
HEAPSORT

(b) T F [3 points] The following array � is a Min-Heap:

	 	�	 7 	 � 	���� � 	�� 	 7 � �
Solution: True. ��� �����	��
 ���
� ����
 ��� �����	��
 ���
� ��� � 	
 �

6.046J/18.410J Quiz 1 Name 6

(c) T F [3 points] RADIX-SORT can be used to sort 	 elements with integer keys in the
range from 1 to 	�� � #�� in � ��	�� ��	��9� time.

Solution: True. By using base 	 representations, each COUNTING-SORT takes
� ��	�� time, and there are a total of +.-4/ # 	�� � #�� �	� ��	�� digits, for a runtime of
� ��	�� ��	��9� time.

(d) T F [3 points] There is an
 ��	6+.-4/ 	�� lower bound to build a Min-Heap of size ����	��
in the comparison model.

Solution: False. Using the BUILD HEAP procedure from CLRS, we can build a
new heap in ���
	�� time.

(e) T F [3 points] If we only assume that all buckets have the same size, BUCKET SORT

runs in � �
	�� -time on average independent of the input distribution.

Solution: False. By picking an input distribution that overloaded a single bucket,
you could force BUCKET SORT to run in the worst-case time of it’s subroutine
sorting algorithm (� �
	 � � for INSERTION SORT).

6.046J/18.410J Quiz 1 Name 7

Problem 3. Short Answer [30 points] (3 parts)

Give brief, but complete, answers to the following questions.

(a) [5 points] Describe the difference between average-case and worst-case analysis of
algorithms, and give an example of an algorithm whose average-case running time is
different from its worst-case running time.

Solution: An average-case analysis assumes some distribution over the inputs (e.g.,
uniform), and computes the expected (average) running time of an algorithm subject
to that distribution. A worst-case analysis considers those inputs which force an al-
gorithm to run for the longest amount of time, and computes the running time under
those inputs. QUICKSORT has a worst-case running time of ����	 � � (on an already-
sorted or reverse-sorted array), but has an average-case running time of ���
	6+.-�/�	��
(assuming all input permutations are equally likely).

6.046J/18.410J Quiz 1 Name 8

(b) [10 points] Suppose you are given an array � of size 	 that either contains all zeros
or ��	��47 zeros and 	��47 ones in some arbitrary order. Your problem is to determine
whether � contains any ones.

1. Give an exact lower bound in terms of 	 (not using asymptotic notation) on the
worst-case running time of any deterministic algorithm that solves this problem.

2. Give a randomized algorithm that runs in � � 	 � -time and gives the right answer
with probability at least 	 ��7 .

3. Give a randomized algorithm that runs in � � 	 � -time and gives the right answer
with probability at least ��� � .

Solution:
1. Any correct deterministic algorithm must look at �$	��476� 	 entries, because if it

didn’t, it could see all zeros even when there was a one somewhere.

2. Pick a random location. If it is a 1, output “has ones”. Otherwise, output “doesn’t
have ones”. Clearly the algorithm runs in � � 	 � time. If the array is all zeros, it is
always correct.
However if the array contains 	 �47 ones, the algorithm may make a mistake. Since
there are 	��47 ones, you will select a 1 value at random and correctly output “has
ones” with probability 	 �47 .

3. Pick two random locations. The correctness and � � 	 � runtime are identical as
above. Again, if the array is all zeros, the algorithm is always correct.
A mistake arises if the array contains ones, but the algorithm picks two zeros.
Picking a single zero occurs with probability ���47 , and picking two zeros indepen-
dently occurs with probability � �4�47 � � � ��� � . Therefore, the probability that the
algorithm is correct is 	 ���
��� � � � ��� � .

6.046J/18.410J Quiz 1 Name 9

(c) [15 points] A k-multiset is a set of 	 elements in which � distinct elements each
appear exactly 	���� times. For example, � 	���	�� � � � � 7 � 7 � � � � � � � ��� is a sorted � -multiset
of size 	 � 	�� . Give an � �
	6+.-�/��)� -time algorithm to sort a � -multiset of size 	 . For
convenience, you may assume that 	0�*�

&
and � �3��� for some �
	�� .

Solution: On the � -multiset
 , do the following:

1. Use DETERMINISTIC SELECT to find the median ��� of
 .

2. Partition
 around ��� .

3. Since there are 	���� values equal to ��� , the partition may not split the set exactly
in half. Extract all values equal to ��� from both sides of the partition and add
them to the “lighter” of the two sublists.

4. Recurse on each subproblem if it has size greater than 	���� .

Each level of recursion will split the set
 into two subproblems of size
���� in � ��	��
time. This algorithm will halt with subproblems of size 	���� . Since 	���� � 	���� � , this
algorithm will recurse exactly � �3+2-�/�� levels before halting on sublist leaves of size
exactly 	���� .
Consider the “least” leaf produced by our partitions. It will contain the 	���� least
elements of the array, which all happen to be the same value. Similarly, the next
“least” leaf will contain the next 	���� least elements, which are also all the same value.
Inductively, we can see that each 	���� -sized leaf is homogeneous. After �5� +2-�/��
levels of recursion, the algorithm can just output its leafs in order.
� ��	�� work is done on each level of recursion and there are +.-�/�� levels of recursion,
so this algorithm takes � �
	6+.-�/��)� total time.

6.046J/18.410J Quiz 1 Name 10

Problem 4. Gaagle’s Cappuccino Machine [25 points] (1 parts)

You’ve been hired by the high-tech start-up Gaagle to find an ideal location for their new cap-
puccino machine. Gaagle’s offices are arranged at various points along a single long corridor.
Gaagle wishes to minimize the total distance walked by all their employees. You may assume the
following:

� Each employee visits the cappuccino machine exactly the same number of times each day.
� Gaagle has an odd number of employees.

Describe where you should place the cappuccino machine and prove that it is optimal.

Solution:
Suppose Gaagle’s employees occupy offices ��� � ��������� � # � . Considering a particular placement � ,
let’s consider the sets � � ���

& � �
&
	

� � and � � ���
& � �

&
�
� � would result in the employees having

to walk: %
������� ��� ���

&
� � %

������� ���
&
���,�

Suppose � is the median office location � � . For convenience let � ��� ��� � ��� � . If we changed �
to be � ��� � , it would result in each of the �
	 � 	 �9��� person in � and the person at � � having to walk
an additional � distance. Each of the ��	 � 	 �9�4� people in � would have to walk � less distance.
Thus, moving the machine from the median results in a net gain of � distance walked.
The same argument holds if we move � to � �! � . Therefore, since a move in either direction
necessarily increases the total distance walked, placing the cappuccino machine at the median is
optimal.

6.046J/18.410J Quiz 1 Name 11

Problem 5. Perfect Powers [30 points] (4 parts)

A perfect power is an integer � , for which there exist integers � 	�� and � 	�� such that � ����� .
In this problem, you will come up with a fast algorithm that on input � , outputs � and � such that
� ����� . If no such values exist, your algorithm will output null.

If you are unable to answer one part of the problem, you may assume its results for the other parts.
Take care not to confuse the input lengths with the input values.

(a) [3 points] Let � be an 	 -bit integer. If � ����� , prove that �	� � 	�� .
Solution: First, since � is a 	 -bit integer �
	 	 +2-�/
� ��� +.-4/�� � . Since �
� 	 ��� ,
then �	� ��� +2-�/�� � 	�� .

(b) [5 points] Give an � ��	 � +2-�/
	�� -time algorithm that on inputs � and � , computes ��� .
Assume that � � � � #

and that multiplying an 	 -bit integer by an � -bit integer takes
� ��	�� � time.

Solution:
EXPONENT(� � �):
1 ��� +.-4/�� ��� is a � -bit integer: � � 	 ��� � ����� � (
2 ��� � ��� ��� ��� and ��� � 	
3 for ��� �
� 	 downto 	 :
4 ��� � �!� �"� ����# �%$&$&$ # �('*) (.
5 if �	�

&
� 	 �+���,� �-� �-� ����# �.$&$&$ # �

6 return �

This code performs � multiplications, where � � �*+2-�/�� � +2-�/
	�� . Because �	� � ��� # � ,
each multiplication is of two integers less than 	 bits long. Each multiplication thus
takes � �
	 � � time, so the overall algorithm takes � �
	 � +.-4/�	�� time.

6.046J/18.410J Quiz 1 Name 12

(c) [12 points] On inputs � and � , where � is an 	 -bit integer and � � 	 , give an
� ��	 : +2-�/�	�� -time algorithm to find � such that � � ��� . That is, find the �

���
integer

root of � , � � ��
� . If no such � exists, return null.

Solution:
Initial Values for � and

�
:�"� �

� �
�
�

ROOT(� � � � � � �):� � � � � � �9���� � EXPONENT � � � �;�
if � � ��� � return

�

elseif � � � � � return null
elseif � �

�
� � ROOT(� � � � � � �)

elseif � �
	
� � ROOT(� � � � � � �)

If � exists, it must be in the range � � � �
�
 . Suppose such a � exists. We can

BINARY SEARCH for � by selecting a midpoint
�

of the range � � � �
 and com-
puting

� � using our � ��	 � +.-�/�	�� -time algorithm from part (b). If � � �
	
� � , then

clearly �	� � � � �
 . Similarly, if � � �
�
� � , then �	� � � � �
 . If � does not exist,

then the binary search will halt and return null after � � � � � .
This BINARY SEARCH is over a range with size at most � �

� ��� � . It will perform
at most �
+.-�/ � �3	�� queries, which each take � ��	 � +.-�/
	�� time, for a total runtime of
� ��	 : +2-�/�	�� .

6.046J/18.410J Quiz 1 Name 13

(d) [10 points] Given a 	 -bit integer � , give an � ��	�� +2-�/
	�� -time algorithm to deter-
mine whether � is a perfect power. If � is not a perfect power, return null.
Solution:
PERFECT POWER SEARCH(�):	 � +.-�/ �

for ��� �1� to 	 :
BINARY-SEARCH for a � � � � � �

�
 such that � � ��� � � .
If successful, return �
� � �;�

return null.

We can exhaustively test every one of 	 possible � values using our method in part (c).
Each call takes � �
	 : +2-�/
	�� time, so the entire search will take � ��	 � +.-�/
	�� total time.

SCRATCH PAPER

DETERMINISTICSELECT(� � 	 � �)
1 Divide the elements of the input array � into groups of � elements.
2 Find median of each group of 5 elements and put them in array � .
3 Call DETERMINISTICSELECT(� � 	���� � 	�� 	��) to find median of the medians, � .
4 Partition the input array around � into � � containing � elements � �

and � � containing 	 � �
� 	 elements 	 � .
5 If � � � � 	 , then return � .
6 Else if �
� � , DETERMINISTICSELECT(� � � � � �).
7 Else if �

�
� , DETERMINISTICSELECT(� � � 	 ���
� 	�� � ��� � � 	 �).

