
Introduction to Algorithms April 16, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 21

Problem Set 6 Solutions
This problem set is due in recitation on Friday, April 16.

Reading: Chapter 15, Chapter 17, 16.1-16.3, 22.1-22.2, Chapter 23

There are four problems. Each problem is to be done on a separate sheet (or sheets) of paper.
Mark the top of each sheet with your name, the course number, the problem number, your recitation
section, the date, and the names of any students with whom you collaborated. As on previous
assignments, “give an algorithm” entails providing a description, proof, and runtime analysis.

Problem 6-1. Danny’s Daemon

Suppose there are � bins containing a total of � balls, where ��� � . Initially, � of the bins contain
one ball and the other ��� � bins are empty. Sitting on top of the bins is a daemon who rearranges
the balls by a series of moves. Each move, the daemon will select a bin ��� containing 	
� balls, and
redistribute each ball to a unique bin. In other words, the bin ��� will lose all 	�� balls and 	
� other
bins will each gain exactly one ball. We define the cost of this move to be 	
� . The total number of
balls in the system remains constant, i.e. ������	
� .

(a) Define an infinite sequence of moves such that after some finite start-up period the
cost of each move is ����� ��� . Hint: Your solution may be exactly ��� ��� �"!$#�% � !$#
�$& .
Solution: The daemon can maintain a set of 	 bins of distinct heights ! through 	 .
On each move the daemon will empty the bin with 	 balls and redistribute 	 � ! balls
to each of the partially filled bins and place the remaining ball in an empty bin. The
cost of this move will always be 	 . Since the system has � balls, we have the following
inequality: '(�*),+
-/. �

	0�1	2�"!$�� . �
	435�6	 � ��� . 7

Solving the inequality we have:� ! � � !8�:9��� . 	 .
� !8� � !8�:9���

By setting 	 to the largest integer within the range, the cost of each move with this
scheme is ��� ��� �;!$#<% � !$#
�<& .

2 Handout 21: Problem Set 6 Solutions

(b) Prove that the amortized cost of a move is at most � � � � & . Hint: Consider a potential
function in which a bin with 	 � balls contributes ������� 7	� 	 � ��

� , where
 is a constant
of your choice and is the same for all bins.

Solution: Let the potential of each bin be �5�1	 � � � ������� 7	� 	
� ��

� , for some
 to be
determined. It is clear that the potential of the system equals 0 initially and is always
non-negative. Consider a move that redistribtes 	 � balls to 	
� bins, among which � of
them already contains at least
 balls. It follows that �
 . � .
The cost of moving the bin is 	
� . The change in potential is � ��������� 7	� 	 � ��

� . We
consider the two cases:

1. 	�� .
 . The cost of moving is 	
� and the change in potential is � . Therefore the
amortized cost of the move is:�

��� � � � ��� � � ������ 	��4���
.
 ���
.
 � �

2. 	�� ��
 . The cost of moving is 	
� and the change in potential is � � � 	
� ��
 � .
Therefore the amortized cost of the move is:�

��� � � � ��� � � ������ 	
�4��� � � 	�� ��
 �
.
 ���
.
 � �

By setting
 � � � , we have
 ��� ��� � � � . Therefore, the amortized cost is at most� � � �,& .
Problem 6-2. Cutting Wood

Your favorite sawmill charges by length to cut each board of lumber. For example, to make one
cut anywhere on an 8 ft. board of lumber costs $8. The cost of cutting a single board of wood into
smaller boards will depend on the order of the cuts.

As input, you are given a board of length � marked with 	 locations to cut. The input to part (b)
represents the following board:

14 ft

29 ft.

4 ft. . 19 ft. 27 ft.

Handout 21: Problem Set 6 Solutions 3

(a) Give an algorithm that, given an input length � of wood and a set of 	 desired cut
points along the wood, will produce a cutting order with minimal cost in � �1	���� time,
for some constant � .
Solution: For this problem, we let the values of the 	 cuts be ��� !������ 	
	 . Let ��� 7 	 � 7and ��� 	 ��!�	 � � . Then the board is partitioned into 	 ��! regions, where region
<�
goes from ��� - � !�	 to ��� - 	 and has length ��� - 	 � ��� - � !�	 . The overlapping subproblems
part is easy to see. The key to using dynamic programming is to notice that at any
point in a solution, you have a set of boards, each of which is the union of consecutive
subregions.
Let ��� - � � 	 be the cost of optimally cutting the region consisting of
$� �
 ���,+ � ����� �
�� .Then we can recursively define ��� - � � 	 as follows:

��� - � � 	 � ��� � 	 � ��� - � !�	
� �������� '�� � � ��� - � 	�	4����� 	 �"! � � 	 �
The first term in this expression is the cost of making a cut in region
<� �
 ���,+ � ����� �
�� ,and the second is the cost of the recursive solution.
We use the following algorithm, which fills in the table, one diagonal at a time. We
use the notational conventions mentioned above:

CUT � n � k � ���*! � ����� 	�	 ���� 7 	 � 7��� 	 �;!�	!� n
for i � ! to k �;!��� - � - 	"� 7for # - $"$ � ! to 	

for i � ! to k �;! � diff
j � i � diff��� - � � 	!� � ��� � 	 � ��� - � !�	 ��� �%��� ���

'�� � � ��� - � 	�	
�&��� 	2�"! � � 	 �
Each of � �1	 3 � cells in the table is defined by � � 	 � other cells, so the running time of
this algorithm is � � 	(' � .

(b) Suppose you have a 29 ft. board and you want to cut it at points 4, 14, 19, and 27 ft.
from the left end. Use your solution from part (a) to determine the minimal cutting
cost and illustrate the execution of your algorithm.

Solution:

1 2 3 4 5

1 0 14 33 54 68
2 x 0 15 36 50
3 x x 0 13 25
4 x x x 0 10
5 x x x x 0

The cost of the optimal solution is $68. The optimal cutting order is ! % � % � !*) � �,+ .

4 Handout 21: Problem Set 6 Solutions

(c) Paul Bunyan suggests: Always cut a piece as close as possible to the center. Does this
produce an optimal solution? Why or why not?

Solution: This does not work. Consider a ! 7
7 ft. board with cuts at %) � � 7 and
� ! .

The Paul Bunyan heuristic says make cuts in the order
� 7	� %) � � ! . This has cost � 7
7 .However if you cut in the order %,) � � ! � � 7 , the cost is ! ���

. In fact in this case, the
heuristic yields the worst possible solution.

Problem 6-3. Minimum Spanning Tree in the Plane

Consider the problem of finding the minimum spanning tree connecting � distinct points in the
plane, where the distance between two points is the ordinary Euclidean distance. In this prob-
lem we assume the distances between all pairs of points are distinct. For each of the following
procedures, either argue that it constructs the minimum spanning tree of the � points or give a
counterexample.

(a) Sort the points in order of their � -coordinate. (You may assume without loss of gen-
erality that all points have distinct � -coordinates; this can be achieved if necessary by
rotating the axes slightly.) Let ���0+ � � 3 � ����� � � � � be the sorted sequence of points. For
each point � � , � . - . � , connect � � with its closest neighbor among �0+ � ����� � � ��� + .

Solution: This procedure does not work. Notice that in the figure below we must use
the line segment ��� + � � 3 � . However, using the segment �	��+ � � ' � would yield a smaller
spanning tree. Therefore, this procedure does not produce a MST.

Handout 21: Problem Set 6 Solutions 5

p

p

1

2

3

x

y
>90

o

p

p p

ppp

1

2 3

4

Separating Line

(a) (b)

(b) Draw an arbitrary straight line that separates the set of points into two parts of equal
or nearly equal size (i.e. within one). (Assume that this line is chosen so it doesn’t
intersect any of the points.) Recursively find the minimum spanning tree of each
part, then connect them with the minimum-length line segment connecting some point
in one part with some point in the other (i.e. connect the two parts in the cheapest
possible manner).

Solution: This procedure does not work. Notice that in the figure above if we follow
the method suggested with the choice of line as in figure, then ��� + � � 3 � � ��� ' � ����� � ���,+ � �����or �	� + � � 3 � � ��� ' � ����� � ��� 3 � � ' � would be the tree output by the algorithm. Clearly the tree�	� + � ��� � � �	� + � � 3 � � ��� 3 � � ' � is a MST.

(c) Begin with each point as an isolated tree with no line segments. Consider each seg-
ment � in decreasing order by length. If the segment � connects two distinct trees, add
it to the set of segments in the current spanning forest, and merge the trees together. If
the segment � connects two points � � � in the same tree of the forest, add this segment

6 Handout 21: Problem Set 6 Solutions

to the spanning forest while removing the longest segment on the path between � and
� in the tree.

Solution:
This procedure correctly outputs the MST. We argue that it works as follows:

First, the algorithm clearly gives some spanning tree. It starts with all the points in
isolated “trees” and when each segment is added it maintains the “tree” property.

Proof by Contradiction:

Assume that the algorithm does not give an MST. Then there exists segment(s) in a
MST that are not in the spanning tree of the algorithm (if the spanning tree contained
every segment of an MST then to not be an MST it must contain more segments and
would not be a tree). Let ��� � � � be the smallest segment in the MST and not in the
spanning tree of the algorithm.

Separate the MST graph about this segment so that we separate the points into two
graphs, � and � , and segment ��� � � � is the only segment that crosses the cut (we can
do this because the graph is a tree).

Now, I claim that segment ��� � � � is light for this cut. (If it were not, then we could
choose a smaller segment, and remove ��� � � � and obtain a smaller MST).

Finally, consider the running of the algorithm presented. At some point, segment��� � � � is removed (since we are assuming the algorithm doesn’t work). In order to
remove ��� � � � we must be adding an segment � � � � � and we must have found that��� � � � is the largest segment on the path from � to � . But this is impossible. We have
two cases:

1. Assume that � � � � � does not cross the cut, � � � � � . Then for ��� � � � to be on the path
from � to � then there must exist another segment � � � #
� on that path which crosses
our cut, so � � � #4� must be larger (we assume unique weights) and the algorithm
would remove it and not ��� � � � . (Contradicting the removal of ��� � � � .)

2. Assume that � � � � � crosses the cut. Then � � � � � crosses the cut and � � � � � must be
larger than ��� � � � (since ��� � � � is light for the cut). But this is impossible since we
are examining segments in decreasing order.

Thus, our assumptions must be false. Therefore the algorithm produces an MST.

Problem 6-4. Shortest Paths

(a) We are given a directed graph
� � ��� � � � on which each edge ��� � � �	� �

has an
associated value
 ��� � � � , which is a real number in the range 7 .
 ��� � � � . ! that
represents the reliability of a communication channel from vertex � to vertex � . We
interpret
 ��� � � � as the probability that the channel from � to � will not fail, and we
assume that these probabilities are independent. Give an efficient algorithm to find the
most reliable path between two given vertices.

Handout 21: Problem Set 6 Solutions 7

Solution: To find the most reliable path between � and
 , run Dijkstra’s algorithm with
edge weights � ��� � � � � �������
 ��� � � � to find shortest paths from � in � � � � � ���	� � �
time. The most reliable path is the shortest path from � to
 , and that path’s reliability
is the product of the reliabilities of its edges.
Here’s why this method works. Because the probabilities are independent, the proba-
bility that a path will not fail is the product of the probabilities that its edges will not
fail. We want to find a path from � to
 such that
���
�� �������
 ��� � � � is maximized. This is
equivalent to maximizing ����� �
���
�� �������
 ��� � � � � � ����
�� ������� �����
 ��� � � � , which is in turn
equivalent to minimizing ����
�� ������� �������
 ��� � � � . (Note:
 ��� � � � can be 0, and ����� 7is undefined. So in this algorithm, define ����� 7 � ��� .) Thus if we assign weights
� ��� � � � � �������
 ��� � � � , we have a shortest-path problem.
Since ����� ! = 0, ����� ��� 7 for 7 � ��� ! , and we have defined ����� 7 � ��� , all the
weights � are nonnegative, and we can use Dijkstra’s algorithm to find the shortest
paths from � in � � � � � ����� � � time.

(b) Let
� � � � � � � be a weighted, directed graph with weight function � � �"! � 7	� ! � ����� � # �for some nonnegative integer

#
. Modify Dijkstra’s algorithm to compute the shortest

paths from a given source vertex � in � � # � � � � time.

Solution: Observe that if a shortest-path estimate is not � , then it’s at most �%$ �&$ �!$� # . Why? In order to have # � � 	'� � , we must have relaxed an edge ��� � � � with# � ��	(� � . By induction, we can show that if we relax ��� � � � , then # � � 	 is at most the
number of edges on a path from � to � times the maximum edge weight. Since any
acyclic path has at most $ �)$ � ! edges and the maximum edge weight is

#
, we see

that #!� � 	 . �%$ �&$ � !$� # . Note also that #!� � 	 must also be an integer, unless it is � .
We also observe that in Dijkstra’s algorithm, the values returned by the EXTRACT-MIN

calls are monotonically increasing over time. Why? After we do our initial $ �)$
INSERT operations, we never do another. The only other way that a key value can
change is by a DECREASE-KEY operation. Since edge weights are nonnegative, when
we relax an edge ��� � � � , we have that # � ��	 . #!� � 	 . Since � is the minimum vertex that
we just extracted, we know that any other vertex we extract later has a key value that
is at least # � � 	 .
When keys are known to be integers in the range 0 to 	 and the key values extracted
are monotonically increasing over time, we can use a Monotone Priority Queue (MPQ
from Problem Set 3) to implement � INSERT, EXTRACT-MIN , and DECREASE-KEY

operations in � � � �6	 � time, with some minor modifications.
Here’s how: We use an array, say ��� 7 ��� 	�	 , where ��� � 	 is a linked list of each element
whose key is

�
. Think of ��� � 	 as a bucket for all elements with key

�
. We implement

each bucket by a circular, doubly linked list with a sentinel, so that we can insert into
or delete from each bucket in � ��!$� time. We perform the MPQ operations as follows:
* INSERT: To insert an element with key

�
, just insert it into the linked list in ��� � 	 .

Time: � ��!$� per INSERT.

8 Handout 21: Problem Set 6 Solutions

* EXTRACT-MIN: We maintain an index min of the value of the smallest key ex-
tracted. Initially, min is 7 . To find the smallest key, look in ���min 	 and, if this
list is nonempty, use any element in it, removing the element from the list and
returning it to the caller. Otherwise, we rely on the monotonicity property (and
that there is no INCREASE-KEY operation) and increment min until we either find
a list ���min 	 that is nonempty (using any element in ���min 	 as before) or we run
off the end of the array � (in which case the MPQ is empty).
Since there are at most � INSERT operations, there are at most � elements in
the min-priority queue. We increment min at most 	 times, and we remove and
return some element at most � times. Thus, the total time over all EXTRACT-MIN

operations is � � � �6	 � .
* DECREASE-KEY: To decrease the key of an element from

�
to - , first check

whether - . �
, flagging an error if not. Otherwise, we remove the element from

its list ��� � 	 in � ��!$� time and insert it into the list ��� - 	 in � ��!$� time. Time: � ��!$�
per DECREASE-KEY .

To apply a MPQ to Dijkstra’s algorithm, we need to let 	 � � $ � $ � !$� # , and we also
need a separate list for keys with value � . The number of operations � is � � ���� � (since there are $ �&$ INSERT and $ �)$ EXTRACT-MIN operations and at most $ � $
DECREASE-KEY operations), and so the total time is � � � � � � � # � � � ��� # � � � .

