Introduction to Algorithms April 2, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 18

Problem Set 5 Solutions

Reading: Chapters §18.1-18.2, 14.1-14.3, 33.1-33.3, Skip Lists Handout

There are four problems. Each problem is to be done on a separ ate sheet (or sheets) of paper.
Mark the top of each sheet with your name, the course number, the problem number, your recitation
section, the date, and the names of any students with whom you collaborated. As on previous
assignments, “give an algorithm” entails providing a description, proof, and runtime analysis.

Problem 5-1. Joining and Splitting 2-3-4 Trees

The JOIN operator takes as input two 2-3-4 trees, 77 and T3, and an element z such that for any
y1 € Ty and y, € T5, we have key[y:] < key[z] < key[ys]. As output JOIN returns a 2-3-4 tree T’
containing the node x and all the elements of T3 and 7.

The SpLIT operator is like an “inverse” JOIN: given a 2-3-4 tree T" and an element x € T, SPLIT
creates a tree 73 consisting of all elements in 7" — {z} whose keys are less than key[z], and a tree
T, consisting of all elements in 7" — {z} whose keys are greater than key|z].

In this problem, we will efficiently implement JOIN and SPLIT. For convenience, you may assume
that all elements have unique keys.

(@) Suppose that in every node x of the 2-3-4 tree there is a new field height[z] that stores
the height of the subtree rooted at . Show how to modify INSERT and DELETE to
maintain the height of each node while still running in O(log n) time. Remember that
all leaves in a 2-3-4 tree have the same depth.

Solution: Let leaf nodes have a height of 1 and internal nodes have height|z] =
1 + height[child(z)]. A node affected by INSERT or DELETE operations will simply
recalculate their height value by looking at the height of their children. In both
INSERT and DELETE, at most O(logn) nodes positions will be affected and each of
their height values can be updated in O(1) time. Therefore, the added calculation cost
of maintaining height fields is O(logn).

A slight caveat in using this method is that we must ensure that heights are calculated
from the bottom-up, otherwise there could be a case where a parent computes its
height from an out of date child. Fortunately, both INSERT and DELETE recursively
work from the bottom of the tree upward, so this is not an issue.

(b) Using part (a), give an O(1 + |h; — hy|)-time JOIN algorithm, where h; and h, are the
heights of the two input 2-3-4 trees.

(©

Handout 18: Problem Set 5 Solutions

Solution: Find the heights of 77 and 75. If Ay > hsy, find the node 2z with depth
hi1 — hg on the rightmost path of 77 and insert = into z. If z is full, it will be split
with a key floating up as in INSERT. Set the rightmost child of the node containing z
to be the root of 75. Now every leaf in the resulting 2-3-4 Tree has depth A4, and the
branching constraint is obeyed. The case for h; < ho is similar.

If hy = ho, merge the two root nodes along with z into a “fat” node, and split the node
if it is overloaded.

It takes O (1+|h1—h2|) time to find the node z and insert z into z, and O(1) time to join
the smaller tree to the larger tree. Therefore the total running time is O(1 + |k — hs|).

Give an O(logn)-time SPLIT algorithm. Your algorithm will take a 2-3-4 tree 7" and
key k as input. To write your SPLIT algorithm, you should take advantage of the
search path from 7°’s root to the node that would contain . This path will consist of a
set of keys {ki, ..., k, }. Consider the left and right subtrees of each key k; and their
relationship to k. You may use your JOIN procedure from part (b) in your solution.

Solution:

1. Initialize two empty trees 77 and 7.
2. Search for the element & in the tree T'.

3. If the search path at node k&; traverses right, INSERT k; into 77 and JOIN k;’s left
subtrees with 77.

4. If the search path at node k; traverses left, INSERT k; into 75 and JOIN k;’s right
subtrees with T5.

5. If k is found JOIN £’s left child with 77 and its right child with 7.

6. If a leaf node is encountered, insert any remaining elements into their appropriate
tree.

Let k; be some key less than k. Then k; will either: (1) be a node which the search
path turned right on, (2) be less than some node that the search path turned right on,
or (3) be a left child of £. In all three cases, k; will be INSERTed or JoINed into 7.
Similarly, any nodes greater than k& will be placed in 75.

The algorithm joins the subtrees as it walks down the 2-3-4 tree along the search
path. Therefore the height of subtrees never increases. In other words, we have
height[T;_1] > height[T;]. Searching for k takes O(logn) time. Let h; denote the
height of subtree T;. The running time for the iterative JOIN takes:

O+ i = b)) = O (1 +his = he)
) — O(m+ ho — hum)

= O(m+ logn).

Handout 18: Problem Set 5 Solutions

Since a 2-3-4 tree has at most 4 branches, the algorithm can join at most 3 subtrees
before the search path goes down 1 level in the 2-3-4 tree. Therefore, the number of
subtrees m joined is at most 3 times the depth of the key k. Therefore m = O(logn)
and the time complexity of the SpLIT operation is O(logn).

Problem 5-2. AVL Trees

An AVL treeis a binary search tree that is height balanced: for each node z, the heights of the left
and right subtrees of z differ by at most 1. Height is defined to be the length of the longest path
from a node to any leaf in the tree rooted at that node. To implement an AVL tree, we maintain an
extra field in each node: h[z] is the height of node z. As for any other binary search tree 7', we

assume that root[T] points to the root node.

(@)

(b)

Prove that an AVL tree with n nodes has height O(logn). (Hint: Prove that in an AVL
tree of height h, there are at least F}, nodes, where F}, is the hth Fibonacci number.)

Solution: Let 7T'(h) be the minimum number of nodes in a height balanced tree of
height . We proceed by induction. For the base cases note that 7'(1) > T'(0) > 1,
thus 7'(1) > Fy and T'(0) > Fy. Now assume that T'(h') > Fj, forall b’ < h.

The root node in an AVL-tree of height A will have two children: one with height
h — 1, and the other with height at least ~ — 2. The minimum number of nodes in an
AVL-tree of height i can therefore be bounded in terms of T'(h — 1) and T'(h — 2),
i.e. we have T'(h) > T'(h — 1) + T'(h — 2). By induction hypothesis, this implies
T(h) 2 Fh—l + Fh—2 = Fh-

From this and the fact that F}, > 1.6", it follows that an AVL tree with »n nodes and
height 4 must satisfy n > 1.6" i.e. h = O(logn).

To insert into an AVL tree, a node is first placed in the appropriate place in binary
search tree order. After this insertion, the tree may no longer be height balanced.
Specifically, the heights of the left and right children of some node may differ by 2.
Describe a procedure BALANCE(x), which takes a subtree rooted at = whose left
and right children are height balanced and have heights that differ by at most 2, i.e.,
|h[right[z]] — A[left[z]]| < 2, and alters the subtree rooted at = to be height balanced.
(Hint: Use rotations.)

Solution: After an insertion into an AVL tree, two generic situations may arise that
lead to an unbalanced tree. Without loss of generality, these figures show only the
situations when the right subtree of node A has larger height than the left subtree. The
large rectangles «, 3, v, and § represent subtrees having the heights shown. Figures 1
and 2 illustrate how to balance the tree using 1 or 2 locations.

Handout 18: Problem Set 5 Solutions

-— S —
=
2

h+1:> }[O‘ }Iﬁ h+1
,, ! |

Figure 2: Unbalanced AVL tree — Case 2

Handout 18: Problem Set 5 Solutions

Here is pseudo-code for BALANCE. The procedures RIGHT-ROTATE and LEFT-ROTATE
perform the corresponding tree rotations described in Section 13.2 and return the root
of the subtree after the rotation.

BALANCE(x)

1 if |height(left[z]) — height(right[z])| <1

2 thenreturnz

3 esaif height(left[z]) > height(right|x])
4 then y «+ left[z]

5 if height(left[y]) > height(right[y])
6 then LEFT-ROTATE(y)
7 return RIGHT-ROTATE(x)
8 ese y <« rightz]

9 if height(left[y]) > height(right[y])
0 then RIGHT-ROTATE(y)

1 return LEFT-ROTATE(x)

(c) Using part (b), describe a recursive procedure AVL-INSERT(x,z), which takes a
node xz within an AVL tree and a newly created node z (whose key has already
been filled in), and adds z to the subtree rooted at z, maintaining the property that
x is the root of an AVL tree. As in TREE-INSERT from Section 12.3 in CLRS, as-
sume that key[z] has already been filled in and that left[z] = NIL and right[z] = NIL;
also assume that h[z] = 0. Thus, to insert the node z into the AVL tree 7', we call
AVL-INSERT (root[T], z).

Solution: The pseudo-code for INSERT is as follows. The idea is to recursively call
INSERT on the proper subtree, and then call BALANCE to maintain the balance.

INSERT (2, 2)
1 ifz=nil
2 then height[z] < 0
3 return z
4 if keylz] < keyls]
5 then y < INSERT (l€ft]z], 2)
6 left[z] « y
7 parent(y| «+ x
8 height[z] « height[y] + 1
9 else y « INSERT(right[z], 2)
10 rightjz] < y
11 parent(y| « x
12 height[z] < height[y] + 1

13 1z < BALANCE(z)
14 returnz

6 Handout 18: Problem Set 5 Solutions

(d) Show that AVL-INSERT, run on an n-node AVL tree, takes O(logn) time and per-
forms O(1) rotations.

Solution: The height of the AVL tree is O(logn). Therefore the insertion and update
of the height field take O(logn) time. In addition, the BALANCE operation in part b)
decreases the height of the originally unbalanced tree by 1 after the rotation. There-
fore, it will not cause any proporgation of rotations to the rest of the tree. Therefore,
AVL-INSERT takes O(logn) time to insert the node, and performs O(1) rotations.

Problem 5-3. Order Statistics in Skip Lists

In this problem we implement the order statistics operations RANK and SEARCH-BY-RANK in a
skip list. For a node z in a skip list L, RANK (z, L) gives the rank of = among the elements in the
list. SEARCH-BY-RANK (k, L) is the inverse of RANK. It returns the £-th element in the skip list
L. If no such node exists, it returns nil.

In this problem we assume that all elements in the skip list have distinct key values. Denote the
top level of the skip list as level 1. You may assume a skip list L has a variable L.depth that stores
the number of levelsin L.

(a) Show how you would augment the skip list data structure so that RANK and SEARCH-BY-RANK
can be implemented with O(logn) time complexity.

Solution: Add an attribute span[z, i| for each node x at each level 4, which indicates
the number of elements “spanned” by the pointer at = to the next element at level ;.
Specifically, if the rank of x is r, and the element y following x at level ¢ has rank r,,
then span(z,i] is r, — r,. If z is the end of the list, then span[z, 7] is 0.

(b) Modify SEARCH, INSERT and DELETE so that the operations run in O(logn) time
with the augmented data structure.

Solution:
Search: No change is needed.

Insert: Insert the element as before. In addition, for each element p; = prev|z, 1],
calculate its rank r;, which can be obtained by summing up the total span traversed
up to p;. For each level 7, we update the values of span|z,i] and span|p;,i], by the
following formula in order:

span[z,i| <« span|p;,i] — (r1 — 1;)
span|p;,i] < 1T —1;+1

Handout 18: Problem Set 5 Solutions

(©)

The expected running time is the same as the original INSERT, which is O(logn).

Delete: Delete the element as before. For each previous element p; = prev|z, i] of =
at each level 7, we update the values span|p;, i], by the following formula:

span|p;, i) < span|p;,i] + span[z,i] + 1

The expected running time is the same as the original DELETE, which is O(logn).

Give O(logn) implementations for RANK and SEARCH-BY-RANK.

Solution:
RANK (x, L):
1 y« L
2 r+0
3 level +1
4 whilelevel < L.depth
5 while key[next|y, level]] < key[z]
6 r < 1+ spanly, level]
7 y < nextl|y, level]
8 ify=xreturnr
9 else level < level +1
0

10 return null

In the procedure RANK, the loop invariant is r = rank(y), which holds just before en-
tering the loop. Inside the loop, whenever r gets increased, the pointer y jumps ahead
to the element with exactly the same distance. Therefore the invariant is preserved. If
z is in the skip list, the procedure returns » when y = =, so it returns the rank of z.
Otherwise, the procedure cannot find y and returns null. The running time is the same
as SEARCH, which is O(logn) expected time.

SEARCH-BY-RANK (k, [):
y<« L
r<k
level + 1
whiler > 0
if level > L.depth return null
if spanly, level] < r
r <1 — spanly, level]
y < nextly, level]
else level < level + 1
returny

O OWoo~NOOULD WON -

[EEN

8 Handout 18: Problem Set 5 Solutions

The procedure SEARCH-BY-RANK search for the element and keeps track of total
span sum during the process. The invariant is r + rank(y) = kand r > 0. The
invariant is preserved in the loop because whenever r decreased, the pointer i jumps
forward by the same amount. The program exits the loop when r = 0, so it follows
that rank(y) = k. Therefore the program returns y as the queried element. The
analysis of running time is the similar to SEARCH, which is O(log n) expected time.

Problem 5-4. Convex Layers

Given a set () of points in the plane, we define the convex layers of () inductively. The first convex
layer of) consists of those points in () that are vertices of CH(Q). For i > 1, define @); to consist
of the points of () with all points in convex layers 1,2, ...,7 — 1 removed. Then the ith convex
layer of @ is CH(Q®;) if Q; # 0 and is undefined otherwise.

(@) Give an O(n?)-time algorithm to find the convex layers of a set on n points. Hint:
Refer to CLRS chapter 33.3.

Solution: Jarvis’s march to find each convex layer. If there are £ convex layers and
the 4th layer contains /; points, the total running time is

O(nl; + nly + -+ -+ nly) = O(n?) ,

since ¢, I; = n.

(b) Suppose we are given an unsorted array of n real values A. Let the array B contain
the values of A in descending sorted order. Give a linear time algorithm to convert
A to a set of points @, such that each convex layer @; can be translated to B[] in
constant time. In other words, give a linear time reduction from the sorting problem
to the convex layer problem.

Solution: We reduce sorting to computing the convex layers by showing that given a
set of » numbers to sort, we can construct in linear time a set of points whose convex
layers can be interpreted in linear time to give the numbers in sorted order. Given
A we put three points into set ¢ for each A[j]: (0,0), (4,0), and (0, A[j]). Q has n
convex layers, where @); is a triangle with vertices (0,0), (n + 4 — 1,0), and (0, BJ[i]).
Thus, it is trivial to convert a given convex layer its corresponding sorted value.

This gives a lower bound on the time to find convex layers. If we could determine
convex layers in o(nlogn) time, then we could sort in o(nlogn) time. Therefore,
finding convex layers takes Q(n logn) time.

