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Problem Set 3

Reading: Chapters
�
8.1-8.3, 31.1-31.5, 31.7-31.8

There are four problems. Each problem is to be done on a separate sheet (or sheets) of paper.
Mark the top of each sheet with your name, the course number, the problem number, your recitation
section, the date, and the names of any students with whom you collaborated.

You will often be called upon to “give an algorithm” to solve a certain problem. Giving an
algorithm entails:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. A proof (or argument) of the correctness of the algorithm.

3. An analysis of the running time of the algorithm.

It is also suggested that you include at least one worked example or diagram to show more
precisely how your algorithm works. Remember, your goal is to communicate. Graders will be
instructed to take off points for convoluted and obtuse descriptions. If you cannot solve a problem,
give a brief summary of any partial results.

Problem 3-1. Min and Max

Suppose we wish to find both the minimum and maximum values in an array of � distinct elements.
To individually find either the minimum or maximum, there is clearly a ����� lower bound on
comparisons, since we must compare every element at least once. We can save a comparison by
first scanning for the minimum, removing it, then scanning for the maximum. This takes a total of� ���	� comparisons.

Based on this observation, prove the following statement true or false:

“It takes at least
� �
��� comparisons, for some constant � , to find both the minimum and the

maximum in an array of � distinct elements.”

Problem 3-2. Monotone Priority Queues

A “monotone priority queue” (MPQ) is a data structure that supports the following operations:


 MIN( � ) - Returns the minimum element in � . The minimum of a new, empty MPQ is
initially ��� . Otherwise, the minimum of an empty MPQ is the last element deleted.

 INSERT( ����� ) - Inserts � into � given that ��� MIN ����� . If ��� MIN ����� , then the MPQ is not
modified.
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 DELETE-MIN( � ) - If � is empty, returns the minimum. Otherwise, removes and returns the
minimum from � . If the queue is empty after the operation, the last deleted value remains
the minimum. In other words, the minimum value is monotonically increasing and does not
reset when the MPQ is empty.

For this problem, assume that � is an integer in the range ��� ����� for some fixed integer value � .

(a) Implement a monotone priority queue that takes � �	��

����� � -time to perform � op-
erations starting with an empty data structure.

(b) Give an implementation of a monotone priority queue that takes � ������� � time to
perform � total operations. Hint: Use an idea from COUNTING-SORT .

(c) 6.046 student Ben K. Bitdiddle has invented a MPQ that operates on any totally or-
dered set, rather than just integers in the range ��� ����� . A total ordering defines a �
relation for all pairs of elelments in a set.

Ben claims that his MPQ can perform � operations in � �	��

����

����� � -time. Ben’s
classmate Alyssa P. Hacker quickly dismisses his claim as impossible. Explain who is
correct and prove why.

Problem 3-3. Operations on Elliptic Curves

Throughout this problem we will be discussing operations on elliptic curve points. You do not
need to know any specifics about elliptic curves or their operations. The basic operand will be
points denoted by bold capital letters, for example P.

You are given a subroutine ADD which can add points, for example ADD(P,Q) = P + Q. You may
assume that ADD runs in � � � � -time, where P has an � -bit representation.

Multiplying an elliptic curve point P by a scalar � is equivalent to adding P to itself ��� � � � times.
That is,

�
P = P + P, � P = P + P + P, etc. By this definition, ( � P + � P) = ��������� P = ( � P + � P).

(a) Suppose you are given a � -bit integer � and a point P as inputs. Give a � ��� � � � -time
scalar multiplication algorithm that computes � P using only calls to ADD.

(b) Give an � ���!� � -time scalar multiplication algorithm.

(c) Ben K. Bitdiddle, notices that his solution to part (b) always makes between � and
� �

calls to ADD. He thinks he can improve on this and writes a point doubling procedure
DOUBLE that runs in � � � � time. The output of DOUBLE(P) is

�
P.

Rewrite your solution to part (b) using DOUBLE. What are the new upper and lower
bounds on the runtime? What is the expected number of calls to ADD if � is chosen
uniformly at random from "#� � �%$ � ?

(d) Ben gets the idea to pre-compute the values P,
�
P, � P, &'&'& , � �)( ��� � P and store them in

an array * such that *+��,	�!-., P. Suppose you naively fill in the array * in � ��� �)( � -time
by repeated point addition. Give an � �0/ �( � -time scalar multiplication algorithm. You
may assume that 1 divides �2� � � � and may use both DOUBLE and ADD in your code.
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(e) Give a value of 1 such that the algorithm in part (d) runs in � � � � � . Include both the
time it takes to fill * and compute � P, i.e. � ��� ��( � / �( � .

Problem 3-4. Man on the Moon

Alyssa ( * ) wishes to determine whether her � -bit string � is the same as Ben’s (
�

) � -bit string�
. Unfortunately, Ben lives on the moon and communication costs are very high. Ben devises a

scheme to determine with high probability whether or not � - � , while minimizing communica-
tion. Let ��� and

� � denote the , th bits of � and
�
’s respective representations:

1. * picks a prime � such that ��� �	� � � �
� .
2. * defines a � -degree polynomial over �
� , denoted � � � � - ��� /����� ��� � � �
� ����� .
3. * picks a random ������� and computes � � � � , and sends � � � � , � , and � to

�
.

4.
�

defines a � -degree polynomial over �
� , denoted
� � � ��- ��� /����� � � � � ��� ����� .

5.
�

computes
� � � � and accepts if � � � � - � � � � .

(a) Given that a � -degree polynomial can have at most � roots, if � �- � what is the
maximum probability that Ben accepts?

(b) Give an explicit upper bound (in terms of � ) on the number of bits transmitted in this
scheme. Do not give an asymptotic upper bound, but rather an actual function, e.g.! �
� instead of � ���"� � .

Alyssa suggests a second scheme:

1.Repeat � times:

(a) * picks a prime � uniformly at random from the range � � �$#�� .
(b) * sends � and �%�&� �'��� � to

�
.

(c)
�

rejects if � � � �'��� ���- �(�&� ����� � .
2.
�

accepts if � � � �'��� ��- �(�)� ����� � for all steps.

(c) Assume that there are * primes less than # , that is ����+ �,� � � & &'& �-�/. �0#�� , and
that �%1 .���
+ ��� � -324.�5 � / . If �-�- � , give an upper bound on the probability, in terms
of � and * , that �%�&� �'�6� � - � � � �'�6� � for all � rounds. You will need to use the
Chinese Remainder Theorem.

(d) Using the the Prime number theorem in CLRS Section 31.8, upper bound the proba-
bility of failing all � rounds of the protocol in terms of � and # ?


