
Introduction to Algorithms February 24, 2004
Massachusetts Institute of Technology 6.046J/18.410J
Professors Erik Demaine and Shafi Goldwasser Handout 8

Problem Set 2

This problem set is due in class on Tuesday, February 24.

Reading: Chapters
�
5.1-5.3, 7, 9

There are four problems. Each problem is to be done on a separate sheet (or sheets) of paper.
Mark the top of each sheet with your name, the course number, the problem number, your recitation
section, the date, and the names of any students with whom you collaborated.

You will often be called upon to “give an algorithm” to solve a certain problem. Giving an
algorithm entails:

1. A description of the algorithm in English and, if helpful, pseudocode.

2. A proof (or argument) of the correctness of the algorithm.

3. An analysis of the running time of the algorithm.

It is also suggested that you include at least one worked example or diagram to show more
precisely how your algorithm works. Remember, your goal is to communicate. Graders will be
instructed to take off points for convoluted and obtuse descriptions. If you cannot solve a problem,
give a brief summary of any partial results.

Problem 2-1. Fuzzy Sorting of Intervals (Extra Credit)

Consider the sorting problem where all the numbers are not known exactly. Instead, for each
number, you know an interval on the real line to which it belongs. That is, you are given �
closed intervals of the form �������
	��� where ������	�� . Assume that no interval contains any other
interval. That is, if ��������� then 	
����	�� . You are asked to fuzzy-sort these intervals, i.e., produce a
permutation ����������� � ! !"!"����#�$ of the intervals, such that for all % , there exists a &��(')�����+*,�
	���*�� satisfying
& �-��&.�/�1020203�4&
.

Suppose that each interval is guaranteed to overlap at least 5�687 other intervals. Give an 9;:��=<?>A@ # BDC
algorithm to fuzzy-sort � intervals with 5 degrees of overlap. Thus, if 5FEHGI:�7 C , the algorithm
runs in 98:��=<J>�@K� C time, and if 5LEMG�:�� C , the algorithm runs in 9;:�� C time.

Solution:
Overview:
We adopt a divide-and-conquer strategy similar to Quicksort. For each call of our algorithm
FUZZY SORT, we pick an interval as our “pivot” and partition the intervals into two groups: a
group of intervals to the left of the pivot and a group to the right. We call FUZZY SORT recursively

2 Handout 8: Problem Set 2

on each group until the size of the group is at most 5 , in which case the group will be sorted with
a procedure in 98:�5 C time.

The invariant of the algorithm will be that each set � of intervals can be split into three groups—
left, middle, and right—satisfying the following properties:

1.The left group is the “smallest” group. In other words, any interval in the left group can be
listed before any interval in the middle group or right group in the sorted output.

2.The right group is the “largest” group. In other words, any interval in the right group can be
listed after any interval in the middle group or left group in the sorted output.

3.Every pair of intervals in the left group overlap each other.

4.Every interval in the middle group overlaps at least 5 6 7 other intervals (not necessarily from
the middle group).

5.Every pair of intervals in the right group overlap each other.

Algorithm Description:
The algorithm is based on Deterministic Quicksort. We consider the left endpoints of all the
intervals and pick the median in 98: � C time. We pick the corresponding interval as our pivot and
partition the intervals according to the left endpoints. This divides the original problem into two
subproblems, namely the left subproblem and the right subproblem, each with size � # ��� .

Since all the intervals in the left subproblem have left endpoints smaller than the pivot, all of
them can be listed before the pivot in the output. Similarly, all the intervals in the right group can
be listed after the pivot in the output. As a result, FUZZY SORT is recursively called on the left
subproblem and the right subproblem independently. Combining the two sorted results along with
the pivot will take 9;:�� C time.

We argue that the invariant is preserved by the recursive calls. Recall that the invariant states that
the set of intervals can be partitioned into three groups with aforementioned properties. Initially,
the invariant holds because the left and right groups are empty and the middle group consists of the
entire set of intervals. Now assume that the invariant holds for the set � of intervals on a subsequent
call of FUZZY SORT. By induction hypothesis, � can be partitioned into ��� �����;�	��
 which are the
desired left, middle and right groups respectively. We argue that after the partitioning of � , the
invariant is perserved for both the left subproblem and the right subproblem. Here we consider the
left subproblem.

Let ��� be the set of intervals of the left subproblem. Consider the following two cases:

1.The pivot is in ��� . We set ����� E���� �����
� E�� �	����� E�� . We have the left, right and middle
groups with the desired properties.

2.The pivot is not in ��� . This implies ��������� . Let � be the set of intervals in ��� that overlap
the pivot. We set ����� E���� �����
� E��������� and ����� E������ : ����"! ���
 C . We also have the left,
right and middle groups with the desired properties.

Handout 8: Problem Set 2 3

Therefore, the invariant holds for the left subproblem. Similarly, the invariant holds for the right
subproblem as well.

We next claim that a problem of size at most 5 can be solved in linear time. Suppose we have a set
of at most 5 intervals. By the invariant, the intervals can be partitioned into three groups. There
are two cases. If the middle group is empty, then a valid sorting is to list the left group in arbitrary
order followed by the right group in arbitrary order. If the middle group has at least one interval,
then that interval overlaps every other interval by Condition 2 (because there are only 5L6�7 other
intervals). Therefore the sorting is again easy: list all intervals overlapping the left endpoint of the
interval, then list the interval, then list all intervals overlapping the right endpoint of the interval.

Therefore we can cut the recursion tree when we get to problems of size at most 5 , so the depth is
G�:�<J@ :����A5 C C , so the running time is 98: �=<?@ :���� 5 C�C .

Problem 2-2. Randomized Quicksort Variants

Regularly, RANDOMIZED QUICKSORT selects a single pivot element uniformly at random. In this
problem you will analyze two possible modifications to this choice of pivot.

(a) For an integer parameter ��� 7 , the HYBRID RANDOMIZED QUICKSORT algorithm
uses regular RANDOMIZED QUICKSORT whenever ����� , but uses INSERTION SORT

whenever � �	� . Analyze the expected running time of HYBRID RANDOMIZED QUICKSORT

in terms of � and � . For what values of � does the algorithm run in 98: �=<?@K� C time?

Solution:
Let � � represent a sublist of size � '1� 7��
��� created by a RANDOMIZED QUICKSORT

pivot. The sublist � � will be a leaf in the RANDOMIZED QUICKSORT recursion. We
can find the runtime contribution of INSERTION SORT by tallying the expected work
done over all sublist leaves.
Since the pivot was chosen uniformly at random, all resulting sublist lengths in the
range � 7����D� are equally likely and �;�� � �� � E������ . If the expected size of an arbitrary
� � is ����� , then we expect there to be ��� :������ C E��,����� sublist leaves in the recursion
tree. Each leaf of size � takes time &�� � to process, therefore the contribution of work
done by INSERTION SORT is :�� ����� C�� & :������ C � E &.������� E 9;:���� C .
Now we wish to find the expected contribution of work by RANDOMIZED QUICKSORT .
If INSERTION sort were not called on the leaves of expected size ����� , RANDOMIZED QUICKSORT

would have continued for an expected 9;:�<J>�@�� C more levels. Thus, the hybrid scheme
yields an expected 98: <?>�@ � 6 <?>A@�� C EM9;:�<?>A@ # � C recursion depth. At each level of re-
cursion we perform 98: � C work, so total expected contribution of RANDOMIZED QUICKSORT

is 98: �=<?>�@ # �3C .
Thus the total amount of work done by the algorithm is 9;:������1�=<J>�@ # � C . If �4E
7 , this is just regular QUICKSORT , so takes time 9;:��=<J>�@ � C . If � E � , this is just
INSERTION SORT and takes time 98:�� � C .

4 Handout 8: Problem Set 2

In the CAUTIOUS RANDOMIZED QUICKSORT algorithm, the pivot is chosen by repeatedly select-
ing random candidate pivots and stopping only once a “good” pivot is found. A pivot is good if it
partitions an array of � elements into two subarrays each with at least ����� elements. To determine
whether a pivot is good, CAUTIOUS RANDOMIZED QUICKSORT runs the PARTITION subroutine,
computes the split, and if the split is not good it undoes the actions made by PARTITION in linear
time.

(b) What is the probability of selecting a good pivot after a single trial?

Solution: The probability of selecting a good pivot is 7 ��� , because there are �����
elements that produce partitions of size at least ����� .

(c) What is the maximum recursion depth of CAUTIOUS RANDOMIZED QUICKSORT?

Solution: Because this algorithm always produce a subproblem of size at most � ����� ,
the maximum depth is 98: <?>�@��� � C E498:�<J>�@K� C .

(d) What is the expected running time of CAUTIOUS RANDOMIZED QUICKSORT?

Solution: Testing whether a pivot is good takes 9;:�� C time. On each level of recur-
sion, the expected number of random selections until a good pivot is found is three.
So, the expected amount of work done on each recursive level is 98: � C and the depth
of the recursion is 98: <?>�@ � C . Therefore, this algorithm still has an 98:��=<J>�@K� C expected
runtime.

If an adversary controls the random choices, they can force you to always choose a
bad pivot. If you didn’t keep track of previously chosen pivots, they could force you
to run forever. However if you mark prior choices, they can force you to select at most
� ����� points on each level of recursion. Testing each pivot takes 9;:�� C time, so your
algorithm would perform 9;:�� � C work on each level and thus run in time 98:�� � C .

Problem 2-3. In-Place Median

You are given a DVD-ROM storing � values and wish to find the median. Since the disk is read-
only, you cannot swap or move elements. Your computer has 98: <?>�@ � C read/write memory, so you
can’t simply copy the DVD into memory. Give an 9;:��=<?>A@K� C expected-time algorithm to find the
median without writing to disk.

Solution:

Handout 8: Problem Set 2 5

IN-PLACE-MEDIAN(Array �):
1 �������	��
�3����� �������
2 � ������� ����������� �������
3 while :���������� ����� C :
4 �2��� �!� number of elements in � with values in �"�#���L�$� ����� �
5 Select a random % ' � 7��$� �&�'�"� .
6 Let (be the % th element in � among those with value in �)�����L�*� ����� � .
7 �K��� �,+-���.� number of elements in � with values at most (
8 if : � �&� �,+-��� � ����� C then � �����/�0(else �#�����1(
9 return �#���

This code first counts the number of elements between the �#��� and � ����� values. Then it selects a
random element between those values, denoted (. The algorithm then counts the values between
�#��� and (. If (is less than the median, we continue with �#���2�	(. Otherwise, we continue with
� �����/�0(.

Each iteration performs 98: � C work. Let us call an iteration successful if it reduces the number
of candidates to at most � ��3 of its original size. The probability of any given iteration being
successful is at least : 7 6	� 0 : 7 ��3 C C E�7 ��� . Therefore, the expected number of trials up to and
including a successfull iteration is at most 2, and since <J>�@5476&8 � successful iterations are required
for termination, we have 9;:�<?>A@K� C expected iterations.

Problem 2-4. Clothing Store

You decide to open a “Short’n’Tall” clothing store, catering only to very short and very tall people.
As part of market research, you measure � people who arrive at times � ���"! ! !"����# . Their heights are
the positive numbers � �.� ! !"!"�$� # . (Person � arrives at time ��� and has height � � .) Neither the arrival
times nor the heights are sorted.

(a) You decide that your store will only sell clothing to the top and bottom : 7 ��� C th of the
population. You wish to separate out the tallest ����� th people and the shortest ����� th
people. Give an 9;:�� C -time algorithm to find both of these groups.

Solution: Run the linear time SELECT algorithm to find the ����� th highest and lowest
order statistics. The two groups can then be separated out in 98: � C time.

After a lawsuit from the Association of Average People, you decide to make custom clothes for
people of all heights. Suppose that the amount of material to clothe a person is proportional to
their height. If 9 #�;:�< � � E>= , then = units of material can clothe all � people. Unfortunately you
have only = ��� units of material on hand.

6 Handout 8: Problem Set 2

You decide to clothe as many people as possible, but give priority to those who arrived first. As a
result, everyone under the weighted median will get their clothes. A weighted median is an index
� such that: �

��� ��������	 � � �
=
� ��� 5

�
�
� ��	�����* ���(� =

�
(b) Give an algorithm to compute the weighted median of � elements in 9;:��=<J@K� C worst-

case time.

Solution: We first sort the � elements in increasing order by �D� . Then we scan the
array of sorted ��� ’s, starting with the smallest element and accumulating � � values as
we scan until the total exceeds = ��� . The last element, � � , whose � � value caused
the total to exceed = ��� , is the weighted median. Notice that the total weight of all
elements smaller than � � is less than = ��� , because � � was the first element that caused
the total weight to exceed = ��� . Similarly, the total weight of all elements larger than
� � is also less than = ��� , because the total weight of all the other elements exceeds
= ��� .
The sorting phase can be done in 9;:��=<?@K� C worst-case running time (using Merge Sort
or Heapsort), and the scanning phase takes 98: � C time. The total worst-case running
time is therefore 9;:��=<J@K� C .

(c) Give an algorithm to compute the weighted median in GI: � C worst-case time.

Solution:
We find the weighted median in 98: � C worst-case time using the 9;:�� C deterministic
median algorithm. The algorithm works by first finding the actual median � � of the
� elements, and partitioning around it. It then computes the total weights of the two
halves. If the weights of the two halves are each less than = ��� , then the weighted
median is (E � � . Otherwise, the weighted median should be in the half with total
weight exceeding = ��� . The total weight of the “light” half is lumped to � � , and the
search continues on the half that weighs more than = ��� . The sketch of the code for
the algorithm follows.

1 Find the median � � of � �.�
���2� ! ! ! �
��#
2 Partition around � �
3 Compute � � E 9 �������	 � � and ��� E.9 ��������	 � �
4 if � � � = ��� and ��� � = ���
5 then return � �
6 if � � � = ���
7 then Change � � to � � �����
8 Recurse on the elements � � �
9 else Change � � to � � ��� �

10 Recurse on the elements � � �

Handout 8: Problem Set 2 7

The recurrence for the worst-case running time of the algorithm is �L:�� C E � : ����� C �
9;:�� C , since there is only one recursive call on half the number of elements, and all the
extra work can be done in 98: � C time. The solution of the recurrence is �L:�� C E498:�� C .

