Problem Set 1

This problem set is due at the beginning of class on Thursday, February 13, 2003.

Each problem is to be done on a separate sheet (or sheets) of paper. Mark the top of each sheet with your name, 6.046J/18.410J, the problem number, your recitation section, the date, and the names of any students with whom you collaborated.

Problem 1-1. Asymptotic notation

Rank the following functions by order of growth; that is, find an arrangement \(g_1, g_2, \ldots, g_{30} \) of the functions satisfying \(g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30}) \). Partition your list into equivalence classes such that \(f(n) \) and \(g(n) \) are in the same class if and only if \(f(n) = \Theta(g(n)) \). You don’t need to show your work for this problem only, just give us the list.

\[
\begin{array}{cccccccc}
 n^2 & n^{2\log n} & n^2 + 2^{100}n & |n| & n^n & 2^{2n} \\
 (\frac{3}{2})^n & (\frac{1}{2})^n & n^{\log_2 n} & (\lg n)! & 100^{100} & (1/n)^{1/\lg n} \\
 \ln \ln n & 2^{\lg^* n} & n \cdot 2^n & 3(n!) & \ln n & 1 \\
 2^{\lg n} & (\lg n)^{\lg n} & e^n & \sum_{k=1}^{n} k \cdot (n + 1)! & \sqrt{\lg n} & 2^{2n+1} \\
 \lg(\lg^* n) & \lg^*(\lg n) & n & n^{\lg n} & 2^n & n \lg n
\end{array}
\]

The function \(\log^* n \) is discussed on pages 55-56 of CLRS.

Problem 1-2. Recurrences

Give asymptotic upper and lower bounds for \(T(n) \) which are as tight as possible. Assume that \(T(n) \) is constant for \(n \leq n_0 \), where \(n_0 \) is a constant. Justify your bounds.

(a) \(T(n) = 6T(\frac{n}{3}) + n^3 \)
(b) \(T(n) = 6T(\frac{n}{4}) + n \)
(c) \(T(n) = 9T(\frac{n}{3}) + n^2 \)
(d) \(T(n) = 8T(\frac{n}{2}) + n^3 \log^2 n \)
(e) \(T(n) = 10T(\frac{n}{5}) + n^2 \sqrt{n} \)
(f) \(T(n) = T(\frac{n}{3}) + 2T(\frac{n}{4}) + n \)
(g) \(T(n) = T(n^{1/3}) + \lg n \)
(h) \(T(n) = 3T(n - 1) + n^3 \)
(i) \(T(n) = T(\lg n) + 1 \)
(j) \(T(n) = T(\frac{n}{4}) + \sqrt{n} \)
(k) \(T(n) = T\left(\frac{n}{2} + \sqrt{n}\right) + 1 \)

Problem 1-3. Product Finder

Design an algorithm, which, given an input array \(A[1], \ldots A[n] \) of different integers, and a target integer value \(x \), prints ALL pairs \((p_i, p_j)\) such that \(A[p_i] \cdot A[p_j] = x\). Your algorithm should have a running time of \(O(n \log n) \).

Gentle Reminder: Recall that for all algorithm solutions, we expect more than just the algorithm. We want you to prove that the algorithm is correct, and provide runtime analysis.

Problem 1-4. Coinage

Long John Platinum has a treasure trove of \(n \) gold coins. BUT sneaky Jim Larkins has taken one of the gold coins and replaced it with a similar looking but slightly lighter coin. Poor John only has a balance, which can tell him which of two piles of coins \(a \) or \(b \) is heavier.

Design an algorithm that will help John figure out which is the fake coin. Your algorithm should have a running time of \(\Theta(\log n) \) (where each use of the balance is an “instruction”).

Extra Credit: Will be given to valid solutions that have the best actual (non-asymptotic) running time (the fewest actual uses of the balance).