| ntroduction to Algorithms
6.046J/18.401J

ALGORITHMS

LectureS
Prof. Piotr Indyk

S8 M enu for Today

e Show that @(nlg n) isthe best possible
running time for a sorting algorithm.

e Design an agorithm that sortsin linear
time.

« Hint: maybe the models are different ?

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.2

ALGORITHMS

=~ Comparison sort

\ ,,,;i‘,,
““ e

All the sorting algorithms we have seen so far
are comparison sorts; only use comparisons to
determine the relative order of elements.

 E.g., Insertion sort, merge sort, quicksort,
heapsort.

The best worst-case running time that we' ve
seen for comparison sorting isO(nlgn).

|s O(nlgn) the best we can do?

Decision trees can help us answer this question.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.3

Each internal nodeislabeledi:j fori, | {1, 2,..., n}.
* The |left subtree shows subsequent comparisonsif a < a;.
* The right subtree shows subsequent comparisonsif a = a.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.4

Sort (a,, a,, ay)

=(9,4,6):

Each internal nodeislabeledi:j fori, | {1, 2,..., n}.
* The |left subtree shows subsequent comparisonsif a < a;.
* The right subtree shows subsequent comparisonsif a = a.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.5

Sort (a,, a,, ay)

=(9,4,6):

Each internal nodeislabeledi:j fori, | {1, 2,..., n}.
* The |left subtree shows subsequent comparisonsif a < a;.
* The right subtree shows subsequent comparisonsif a = a.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.6

Each internal nodeislabeledi:j fori, | {1, 2,..., n}.
* The |left subtree shows subsequent comparisonsif a < a;.
* The right subtree shows subsequent comparisonsif a = a.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.7

Sort (a,, a,, ay)
=(9,4,6):

4<6<9

Each leaf contains a permutation {1(1), 11(2),..., T1(N)) tO
indicate that the ordering a;) < ay, < -+ < @y, has been
established.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.8

ALGORITHMS

Decision-tree model

—
““ \\‘

A decision tree can model the execution of
any comparison sort:
* Onetreefor each input size n.

 View the algorithm as splitting whenever
It compares two elements.

 The tree contains the comparisons along
all possible instruction traces.

* The running time of the algorithm = the
length of the path taken.

» Worst-case running time = height of tree.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.9

@== L ower bound for decision-
w3 freesortin 0

Theorem. Any decision tree that can sort n
elements must have height Q(nlgn).

Proof. Thetree must contain = n! leaves, since
there are n! possible permutations. A height-h
binary tree has< 2" leaves. Thus, n! < 2",

[1 h>Ig(n!) (Ig Ismono. Increasing)
> 1g ((n/e)") (Stirling’ s formula)
=nlgn—-nlge
=Q(nlgn).

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.10

w== L ower bound for comparison

\““ sortin 0

Corollary. Merge sort is an asymptotically
optimal comparison sorting algorithm.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.11

AAAAAAAAAA

H Sorting in linear time

Y ‘

Counting sort: No comparisons between elements.
e Input: A[1..n],where Al j]L{1, 2, ..., Kk} .

e Output: B[1. . n], sorted*

e Auxiliary storage: C[1..kK].

*Actualy, we require the algorithm to construct a permutation of the input
array A that produces the sorted array B. This permutation can be obtained
by making small changesto the last loop of the algorithm.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.12

=5~ Counting sort

forl — 1tok
doCJi] « O
forj — 1ton
do C[A[j]] = C[Alj]]+1 < CJ[i]=[key=1i}]
for1 — 2tok
doC[i] ~ C[i] +C[i-1] < CJi] = {key i}
for | —« ndownto 1
doB[C[AL]]]] < AlI]
ClA[J]] -« CIALJ]] -1

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.13

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.14

fori « 1tok
doCJi] « O

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.15

for] —« 1ton
do C[A[|]] « CIA[j]l+1 < C[i]=Kkey=i}]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.16

for] —« 1ton
do C[A[|]] « CIA[j]l+1 < C[i]=Kkey=i}]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.17

for] —« 1ton
do C[A[|]] « CIA[j]l+1 < C[i]=Kkey=i}]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.18

for] —« 1ton
do C[A[|]] « CIA[j]l+1 < C[i]=Kkey=i}]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.19

for] —« 1ton
do C[A[|]] « CIA[j]l+1 < C[i]=Kkey=i}]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.20

fori « 2tok
do C[i] « Cli] + C[1-1]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms

< Cli] = [tkey <1}

February 20,2003 L5.21

fori « 2tok
do C[i] « Cli] + C[1-1]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms

< Cli] = [tkey <1}

February 20, 2003 L5.22

fori « 2tok
do C[i] « Cli] + C[1-1]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms

< Cli] = [tkey <1}

February 20, 2003 L5.23

for] « ndownto1
doB[C[A[]]]] « AL
CIALIl < ClAL]] =1

© Charles E. Leiserson and Piotr Indyk

Introduction to Algorithms

February 20, 2003 L5.24

for] « ndownto1
doB[C[A[]]]] « AL
CIALIl < ClAL]] =1

© Charles E. Leiserson and Piotr Indyk

Introduction to Algorithms

February 20,2003 L5.25

for] « ndownto1
doB[C[A[]]]] « AL
CIALIl < ClAL]] =1

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.26

B:)1|3]|3 4 C'10114I

for] « ndownto1
doB[C[A[]]]] « AL
CIALIl < ClAL]] =1

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.27

B:13344I C':OllBI

for] « ndownto1
doB[C[A[]]]] « AL
CIALIl < ClAL]] =1

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.28

oK) - for
o) - for |
oK) - for
" for
O(n) <

O(n + K)

© Charles E. Leiserson and Piotr Indyk

| « 1tok
doCJi] « O
~ 1ton
do C[A[J]] < C[A[]]] +1

| — 2toK

do C[i] « CJi] + C[i-1]

] « ndownto 1

do B[C[A[]]]] — Al
CIALIl < ClALJ]] -1

Introduction to Algorithms February 20, 2003 L5.29

=54 Ru nning time

If k = O(n), then counting sort takes ©(n) time.
 But, sorting takes Q(nlgn) timel
* Where' sthe fallacy?

Answer :
e Comparison sorting takes Q(nlgn) time.
« Counting sort IS not a comparison sort.

* |n fact, not a single comparison between
elements occurs!

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.30

. Stable sorting

Counting sort is a stable sort: it preserves
the Iinput order among equal elements.

A4 13|43

B:13344|

Exercise: What other sorts have this property?

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.31

ALGORITHMS

- Radix sort

 Origin: Herman Hollerith’ s card-sorting
machine for the 1890 U.S. Census. (See
Appendix [@].)

e Digit-by-digit sort.

e Hollerith’s original (bad) idea: sort on
most-significant digit first.

e Good idea: Sort on |east-significant digit
first with auxiliary stable sort.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.32

329
457
657
839
436
7120
355

7120
355
436
457
657
329
839

(20
329
436
839
355
45/
657/

_— Operation of radix sort

329
355
436
45 7
657/
(20
839

N G

© Charles E. Leiserson and Piotr Indyk

Introduction to Algorithms

February 20, 2003 L5.33

ALGORITHMS

=3~ Correctnessof radix sort

Induction on digit position

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms

720 329
* Assume that the numbers 3909 acc
are sorted by their low-order

t — 1 digits. ggg 236
. 57

e SOrtondigitt 355 65 7
457 (20

657 839

N

February 20, 2003 L5.34

ALGORITHMS

o~ Correctness of radix sort

p—
WY e

Induction on digit position

(20 329

* Assume that the numbers 3909 acc
are sorted by their low-order

t — 1 digits. 436 | 436

e SOrtondigitt 222 gg;

§ Two numbers that differ in
digit t are correctly sorted. 457 (20
657 839

N

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.35

ALGORITHMS

g
AR

Induction on digit position

e Assume that the numbers
are sorted by their low-order
t—1diqits.

e SOrtondigitt

§ Two numbers that differ in
digit t are correctly sorted.

8§ Two numbers equal indigit t
are put in the same order as
the input = correct order.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms

Correctness of radix sort

(20 329
329 355
436—>436
839 45 7
355/657
457 (20
657/ 839

N

February 20, 2003 L5.36

ALGORITHMS

Analysis of radix sort

g
AR

e Assume counting sort is the auxiliary stable sort.
e Sort n computer words of b bits each.

 Each word can be viewed as having b/r base-2

digits. s 8 § 8
Example: 32-bit word

r =8 = blr = 4 passes of counting sort on
base-2° digits; or r = 16 = b/r = 2 passes of
counting sort on base-21¢ digits.

How many passes should we make?

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.37

ALGORITHMS

Analysis (continued)

® TN
\ ,,,;;1
wy ‘i)

Recall: Counting sort takes O(n + k) time to
sort n numbersin the range from O to k — 1.

If each b-bit word is broken into r-bit pieces,
each pass of counting sort takes ©(n + 27) time.
Since there are b/r passes, we have

T(n,b) = e(? (h+2r)j |
Choose r to minimize T(n, b):
* I[ncreasing r means fewer passes, but as
r >|g n, the time grows exponentially.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.38

“5~ Choosingr
| T(n,b) = e(? (h+2r))
Minimize T(n, b) by differentiating and setting to O.

Or, just observe that we don’t want 2" > n, and
there’ s no harm asymptotically in choosing r as
large as possible subject to this constraint.

Choosing r = lgn implies T(n, b) = ©(bn/lgn).

 For numbersin therangefromOtond—1, we
have b =dIg n= radix sort runsin ©(dn) time.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.39

ALGORITHMS

|

~* Conclusions

\ Vet
w\

In practice, radix sort isfast for large inputs, as
well as ssimple to code and maintain.

Example (32-bit numbers):

e At most 3 passes when sorting = 2000 numbers.

» Merge sort and quicksort do at least | 1g2000 | =
11 passes.

Downside: Unlike quicksort, radix sort displays
little locality of reference, and thus a well-tuned
guicksort fares better on modern processors,
which feature steep memory hierarchies.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.40

. Appendix: Punched-card

~" technology
e Herman Hollerith (1860-1929)
 Punched cards

e Hollerith’' s tabulating system
e Operation of the sorter

e Origin of radix sort

e “Modern” IBM card

e Web resources on punched- raumtolas F=1
card technology slide viewed. U]

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20,2003 L5.41

@= Herman Hollerith

* The 1880 U.S. Census took almost
10 years to process.

 Whilealecturer at MIT, Hollerith
prototyped punched-card technology.

* His machines, including a“card sorter,” allowed
the 1890 census total to be reported in 6 weeks.

« He founded the Tabulating Machine Company in
1911, which merged with other companiesin 1924
to form International Business Machines.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.42

ALGORITHMS

Punched cards

 Punched card = data record.
* Hole = value.
 Algorithm = machine + human operator.

v 2 3 ¢ wluwlo o siylwlo 6 Rio 6 el wi g ¥R 4B

8 & 7 & @ F w05 @iyl 7 i rrni' 3 U R RRY

&) ‘%ol e . mi |l @& |4i £ & -r.i_:ﬂ E N ¥ B YR

8 o 7 tla®m 08 nglwm o i3 9 FlW OPW AW YW .

|_ £ 3 4! e '8 ummwm "JE Iiim:a » RH.¢ i E K Y 2 % OW Repllca Of punCh
! & T Iim T 8 WS Jﬁ: 3 0o s 0B BW AT RY Card fI’Om the

g : Sem - ey

1 g ‘B aild iimi B e E a in' s li‘ . nJ B Bno W B U =i D 1900 US CenSUS
i__l;" T 8 [0 . W 4| & E 5 E-jr e 4§ ?u:u_ 3 _l o ¥ =& r =8B 9 [e” '|

I B Al Nield b7 |!~u 4 lou 5w & w & £ wa W W HOW SZOOO
8 & v sla4 o'pla:yr 4 R OB ElMosly ow Foeow oW W

I B ¥ 'Sl &l'E N}i "-:! E«B % J3|AN w]lm B W K| Fr -.h_su '

il |
$ & T |l im g 1,9 38 W 4 [Q|0 M P % P NS
B WG . .

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.43

THE FIRET

ALGORITHMS "HOLLERITH
M CENELS l.t:T.kTE\:'Il'l[‘r:llh MACHINE
kc ‘T\?‘ 1890
AR T

Figure from

tabulatlng

[Howells 2000].

system

 Pantograph card
ounch

e Hand-press reader
*Dial counters
 Sorting box

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.44

ALGORITHMS

Operation of the sorter

e An operator inserts a card into \sBestessss

the por I:IHI::::: |

Press. 20CDOOOOCD

 Pins on the press reach through S
the punched holes to make i : 4
electrical contact with mercury- y —/
filled cups beneath the card. | m

« Whenever aparticular digit p o
value is punched, the lid of the 7]
corresponding sorting bin lifts. '

 The operator deposits the card

)] . Hollerith Tabulator, Pantograph, Press, and Sorter
into the bin and closes the lid. e p: I

* When all cards have been processed, the front panel is opened, and
the cards are collected in order, yielding one pass of a stable sort.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.45

~ Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

* The most complicated combinations can readily be
counted with comparatively few counters or relays by first
assorting the cards according to the first items entering
INto the combinations, then reassorting each group
according to the second item entering into the combination,
and so on, and finally counting on a few counters the |ast
Item of the combination for each group of cards.”

L east-significant-digit-first radix sort seemsto be
afolk invention originated by machine operators.

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.46

ALGORITHMS

“Modern” IBM card

* One character per column.

B123456TE89ABCDEFGHI JKLMHOPQRSTUVHEYZ IHTRODUCTON TO ALGORITHHE @%9-24- 2881
INERERNNR | (1 | i1 1l
innnnnnna [| | im 1 in |

| [elelelalelelelalelefelelelale Tl felefaletetellelee] | | | | [| | [sfefel (fefel fe] fefels] [elelelefelfelelel fefe] fe] [s] feTe} [=} | [lefciclelefele]
i FERREEREY IRRRERERY IEREREEERERERERERREREERRERERERRRE] IRRREREEREEEY FRY INE] IBREERS!
220z22222222022222222022222220222222222222222222222222222222220222202202222222222
3330233333320 3333333023333320223333a220232200 2220220222202 23333333353333333333
444404444444404444944440444444404444444444400444444444444444404444440444444444444
55555055555555055555555055555550555555055555555055555555555555555555555555555555
AN (AN [T (AT [[T [(AT [AT A A A A A AT
iyl Frkraarkl rEaEEEEyl il FE R aEl R &)
ggggogasssessceclceeeas0el8c88608062806868088088808086808808880068880888088888088888
999999999099999999099999999099999991909509999999999999990999995099999999999999%

Produced by
the WWW
Virtual Punch-
Card Server.

So, that’ s why text windows have 80 columns!

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.47

= \Web resources on punched-

~2" card technology

» Doug Jones' s punched card index

 Biography of Herman Hollerith

e The 1890 U.S. Census

 Early history of IBM

* Pictures of Hollerith’s inventions

 Hollerith’s patent application (borrowed
from Gordon Bell’s CyberMuseum)

 [mpact of punched cards on U.S. history

© Charles E. Leiserson and Piotr Indyk Introduction to Algorithms February 20, 2003 L5.48

