
Introduction to Algorithms
6.046J/18.401J

Lecture 4
Prof. Piotr Indyk

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.2

Quicksor t

• Proposed by C.A.R. Hoare in 1962.

• Divide-and-conquer algorithm.

• Sorts “ in place” (like insertion sort, but not
like merge sort).

• Very practical (with tuning).

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.3

Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray ≤ x ≤ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.

3. Combine: Trivial.

≤ x≤ x xx ≥ x≥ x

Key: Linear-time partitioning subroutine.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.4

xx

Running time
= O(n) for n
elements.

Running time
= O(n) for n
elements.

Partitioning subroutine
PARTITION(A, p, q) A[p . . q]

x ← A[p] pivot = A[p]
i ← p
for j ← p + 1 to q

do if A[j] ≤ x
then i ← i + 1

exchangeA[i] ↔ A[j]
exchangeA[p] ↔ A[i]
return i

≤ x≤ x ≥ x≥ x ??
p i qj

Invariant:

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.5

Example of par titioning

i j
66 1010 1313 55 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.6

Example of par titioning

i j
66 1010 1313 55 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.7

Example of par titioning

i j
66 1010 1313 55 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.8

Example of par titioning

66 1010 1313 55 88 33 22 1111

i j
66 55 1313 1010 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.9

Example of par titioning

66 1010 1313 55 88 33 22 1111

i j
66 55 1313 1010 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.10

Example of par titioning

66 1010 1313 55 88 33 22 1111

i j
66 55 1313 1010 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.11

Example of par titioning

66 1010 1313 55 88 33 22 1111

i j
66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.12

Example of par titioning

66 1010 1313 55 88 33 22 1111

i j
66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.13

Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

i j
66 55 33 22 88 1313 1010 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.14

Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

i j
66 55 33 22 88 1313 1010 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.15

Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

i j
66 55 33 22 88 1313 1010 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.16

Example of par titioning

66 1010 1313 55 88 33 22 1111

66 55 33 1010 88 1313 22 1111

66 55 1313 1010 88 33 22 1111

66 55 33 22 88 1313 1010 1111

i
22 55 33 66 88 1313 1010 1111

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.17

Pseudocode for quicksor t

QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q–1)
QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.18

Analysis of quicksor t

• Assume all input elements are distinct.

• In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

• Let T(n) = worst-case running time on
an array of n elements.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.19

Worst-case of quicksor t

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has no elements.

)(

)()1(

)()1()1(

)()1()0()(

2n

nnT

nnT

nnTTnT

Θ=
Θ+−=

Θ+−+Θ=
Θ+−+=

(arithmetic series)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.20

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.21

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.22

cn

T(0) T(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.23

cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.24

cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

�

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.25

cn

T(0) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

Θ(1)

�

()2

1

nk
n

k

Θ=��
�

�
�
�
�

�
Θ �

=

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.26

cn

Θ(1) c(n–1)

Worst-case recursion tree
T(n) = T(0) + T(n–1) + cn

Θ(1) c(n–2)

Θ(1)

Θ(1)

�

()2

1

nk
n

k

Θ=��
�

�
�
�
�

�
Θ �

=

T(n) = Θ(n) + Θ(n2)
= Θ(n2)

h = n

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.27

Best-case analysis
(For intuition only!)

If we’ re lucky, PARTITION splits the array evenly:

T(n) = 2T(n/2) + Θ(n)
= Θ(n lg n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

() ())()(
10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence?

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.28

Analysis of “ almost-best” case

)(nT

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.29

Analysis of “ almost-best” case

cn

()nT
10
1 ()nT

10
9

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.30

Analysis of “ almost-best” case

cn

cn
10
1 cn

10
9

()nT
100
1 ()nT

100
9 ()nT

100
9 ()nT

100
81

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.31

Analysis of “ almost-best” case

cn

cn
10
1 cn

10
9

cn
100
1 cn

100
9 cn

100
9 cn

100
81

Θ(1)

Θ(1)

… …
log10/9n

cn

cn

cn

…O(n) leavesO(n) leaves

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.32

log10n

Analysis of “ almost-best” case

cn

cn
10
1 cn

10
9

cn
100
1 cn

100
9 cn

100
9 cn

100
81

Θ(1)

Θ(1)

… …
log10/9n

cn

cn

cn

T(n) ≤ cn log10/9n + Ο(n)

…

cn log10n ≤

O(n) leavesO(n) leaves

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.33

Randomized quicksor t

IDEA: Partition around a random element.
I.e., around A[t] , where t chosen
uniformly at random from {p…r}

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.34

Randomized Algor ithms

• Algorithms that make decisions based on
random coin flips.

• Can “ fool” the adversary.

• The running time (or even correctness) is a
random variable; we measure the expected
running time.

• We assume all random choices are
independent .

• This is not the average case !

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.35

“ Paranoid” quicksor t

• Will modify the algorithm to make it easier to
analyze:

• Repeat:
• Choose the pivot at random
• Perform PARTITION

• Until the resulting split is lucky, i.e., not
worse than 1/10: 9/10
• Recurseon both subarrays

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.36

Analysis

• Let T(n) be an upper bound on the expected
running time on any array of n elements

• Consider any input of size n

• The time needed to sort the input is bounded
from the above by a sum of

• The time needed to sort the left subarray

• The time needed to sort the right subarray

• The number of iterations until we get a
lucky split, times cn

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.37

Expectations

cnpartitionsEinTiTnT •+−+≤][#)()(max)(

• By linearity of expectation:

where maximum is taken over i ∈ [n/10,9n/10]

• We will show that E[#partitions] is less than 2

• Therefore:

]10/9,10/[,2)()(max)(nnicninTiTnT ∈+−+≤

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.38

Final bound

• Can use the recursion tree argument:

• Tree depth is Θ(log n)

• Total work at each level is at most 2cn

• The total expected time is Ο(n log n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.39

Lucky par titions

• The probability that a random pivot induces
lucky partition is at least 8/10

(we are not lucky if the pivot happens to be
among the smallest/largest n/10 elements)

• If we flip a coin, with heads prob. p=8/10 ,
the expected waiting time for the first head
is 1/p = 10/8 < 2

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.40

Quicksor t in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with
caching and virtual memory.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.41

More intuition

Suppose we alternate lucky, unlucky,
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Θ(n) lucky
U(n) = L(n – 1) + Θ(n) unlucky

Solving:
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n)

= 2L(n/2 – 1) + Θ(n)
= Θ(n lg n)

How can we make sure we are usually lucky?

Lucky!

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.42

Randomized quicksor t
analysis

Let T(n) = the random variable for the running
time of randomized quicksort on an input of size
n, assuming random numbers are independent.

For k = 0, 1, …, n–1, define the indicator
random variable

Xk =
1 if PARTITION generates a k : n–k–1 split,
0 otherwise.

E[Xk] = Pr{ Xk = 1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.43

Analysis (continued)

T(n) =

T(0) + T(n–1) + Θ(n) if 0 : n–1 split,
T(1) + T(n–2) + Θ(n) if 1 : n–2 split,

�

T(n–1) + T(0) + Θ(n) if n–1 : 0 split,

()�
−

=
Θ+−−+=

1

0

)()1()(
n

k
k nknTkTX .

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.44

Calculating expectation

()�
	

�
�

Θ+−−+= �

−

=

1

0

)()1()()]([
n

k
k nknTkTXEnTE

Take expectations of both sides.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.45

Calculating expectation

()

()[]�

�

−

=

−

=

Θ+−−+=

�
	

�
�

Θ+−−+=

1

0

1

0

)()1()(

)()1()()]([

n

k
k

n

k
k

nknTkTXE

nknTkTXEnTE

Linearity of expectation.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.46

Calculating expectation

()

()[]

[] []�

�

�

−

=

−

=

−

=

Θ+−−+⋅=

Θ+−−+=

�
	

�
�

Θ+−−+=

1

0

1

0

1

0

)()1()(

)()1()(

)()1()()]([

n

k
k

n

k
k

n

k
k

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Independence of Xk from other random
choices.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.47

Calculating expectation

()

()[]

[] []

[] [] ���

�

�

�

−

=

−

=

−

=

−

=

−

=

−

=

Θ+−−+=

Θ+−−+⋅=

Θ+−−+=

�
	

�
�

Θ+−−+=

1

0

1

0

1

0

1

0

1

0

1

0

)(1)1(1)(1

)()1()(

)()1()(

)()1()()]([

n

k

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.48

Calculating expectation

()

()[]

[] []

[] []

[])()(2

)(1)1(1)(1

)()1()(

)()1()(

)()1()()]([

1

1

1

0

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

n

k

n

k

n

k

n

k

n

k
k

n

k
k

n

k
k

Θ+=

Θ+−−+=

Θ+−−+⋅=

Θ+−−+=

�
	

�
�

Θ+−−+=

�

���

�

�

�

−

=

−

=

−

=

−

=

−

=

−

=

−

=

Summations have
identical terms.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.49

Hairy recurrence

[])()(2)]([
1

2

nkTE
n

nTE
n

k

Θ+= �
−

=

(The k = 0, 1 terms can be absorbed in the Θ(n).)

Prove: E[T(n)] ≤ an lgn for constant a > 0.

Use fact: 2
1

2
8
12

2
1 lglg nnnkk

n

k
�

−

=
−≤ (exercise).

• Choose a large enough so that an lgn
dominates E[T(n)] for sufficiently small n ≥ 2.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.50

Substitution method

[])(lg2)(
1

2

nkak
n

nTE
n

k

Θ+≤ �
−

=

Substitute inductive hypothesis.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.51

Substitution method

[]

)(
8
1lg

2
12

)(lg2)(

22

1

2

nnnn
n
a

nkak
n

nTE
n

k

Θ+�
�
��

�
� −≤

Θ+≤ �
−

=

Use fact.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.52

Substitution method

[]

�
�
��

�
� Θ−−=

Θ+�
�
��

�
� −≤

Θ+≤ �
−

=

)(
4

lg

)(
8
1lg

2
12

)(lg2)(

22

1

2

nannan

nnnn
n
a

nkak
n

nTE
n

k

Express as desired – residual.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.53

Substitution method

[]

nan

nannan

nnnn
n
a

nkak
n

nTE
n

k

lg

)(
4

lg

)(
8
1lg

2
12

)(lg2)(

22

1

2

≤

�
�
��

�
� Θ−−=

Θ+�
�
��

�
� −=

Θ+≤ �
−

=

if a is chosen large enough so that
an/4 dominates the Θ(n).

,

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.54

• Assume

