| ntroduction to Algorithms
6.046J/18.401J

ALGORITHMS

Lecture 4
Prof. Piotr Indyk

ALGORITHMS

= o~ Quicksort

 Proposed by C.A.R. Hoare in 1962.
 Divide-and-conquer algorithm.

 Sorts “in place’ (like insertion sort, but not
like merge sort).

* Very practical (with tuning).

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.2

~~ Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

< X X > X
2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.3

AAAAAAAAAA

=~ Partitioning subroutine
PARﬂTlON(A, P, 0) <A[p..(q]

X « ALp] < pivot = Al p] fRunning time
l P = O(n) forn
for J — p +1to q elements

doif A[j] £x
then | <1 +1
exchange All] « Al]]
exchange Al p] - A[l]
return |

| nvariant: | X <X > X ? |

P ' J g

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.4

_— Example of partitioning

6 10‘13 5| 8 3‘2 11'

S

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.5

_— Example of partitioning

6 10‘13 5| 8 3‘2 11'

]

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.6

_— Example of partitioning

6 10‘13 5| 8 3‘2 11'

|]

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.7

e Example of partitioning

10

13

11

February 13, 2003

5

13

(c) Charles Leiserson and Piotr Indyk

10

11

L4.8

e Example of partitioning

10

13

11

February 13, 2003

13

(c) Charles Leiserson and Piotr Indyk

10

11

L4.9

e Example of partitioning

February 13, 2003

(c) Charles Leiserson and Piotr Indyk

6 1013 5| 8| 3 11
6|5 (13|10 8 | 3 11
i — |

L4.10

February 13, 2003

(c) Charles Leiserson and Piotr Indyk

6 |1013| 5 3 11
6| 5|13 |10 3 11
6| 5|3 10 13 11

L4.11

February 13, 2003

(c) Charles Leiserson and Piotr Indyk

6 | 10|13 | 5 3|2 |11
6| 5|13 |10 3|2 |11
6| 5|3 10 13| 2 |11

L4.12

S Example of partitioning

10| 1 11

@)
o
w
O1
w
N

13| 1 11

o

o1

w

)
Co| §OO| §j OO

w

N

10 13 11

13|10 |11

@) @)
o1 o1
w w
AN
o0
' N

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.13

S Example of partitioning

10| 1 11

@)
o
w
O1
w
N

13| 1 11

o

o1

w

)
Co| §OO| §j OO

w

N

10 13 11

13|10 |11

@) @)
o1 o1
w w
AN
o0
N

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.14

S Example of partitioning

10| 1 11

@)
o
w
O1
w
N

13| 1 11

o

o1

w

)
Co| §OO| §j OO

w

N

10 13 11

13|10 |11

@) @)
o1 o1
w w
AN
o0
N

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.15

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.16

ey Pseudocode for quicksort

QUICKSORT(A, p, I)
ifp<r
then g —« PARTITION(A, P, I')
QUICKSORT(A, p, 0—1)
QUICKSORT(A, g+1, 1)

Initial call: QuicksorT(A, 1, n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk

L4.17

"= Analysisof quicksort

e Assume all input elements are distinct.

e |n practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

e Let T(n) = worst-case running time on
an array of n elements.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.18

AAAAAAAAAA

M\, Wor st-case of quicksort

A
\

* |nput sorted or reverse sorted.
e Partition around min or max element.
* One side of partition always has no e ements.

T(N)=TO)+T(n-1)+0O(Nn)
=) +T(n-1) +0O(n)
=T(n-1) +0O(n)
= 0O(n?) (arithmetic series)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.19

=5+ Worst-caserecursion tree
T =T +T(n-1) +cn

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.20

e W or st-case recur sion tree
© T()=T(0) + T(n-1) +cn
T(n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.21

=5+ Worst-caserecursion tree
C T(n)=T(0) + (1) + on

chn
/ \
T(0) T(n-1)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.22

=5+ Worst-caserecursion tree
C T(n)=T(0) + (1) + on

cn
A
T(0) c(n-1)

7 O
T(0) T(n-2)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.23

o Wor st-caserecursion tree
C T(n)=T(0)+ T(n-1) + cn
CNn
TN
T(0) c(n-1)
TN
T(0) c(n—2)

N
T0) -

| ~
o(1)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.24

=5+ Worst-caserecursion tree
 T(n)=T(0) + T(n-1) +cn

T(0) Cnc(n—l) S @[Z k] o(n?)

T(O) c(n—2)
7~
T(0) :

| ~
o(1)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.25

=5+ Worst-caserecursion tree
C T(n)=T(0) + T(n1) + on

Ccn ;
o) 1) @[k_ kj =0(n?)
o~ =]

O(1) c(n—2)

h=n 2L T =6 +em)
o) - = O(n?)

~
o(1)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.26

AAAAAAAAAA

ﬁ Best-case analysis

(For intuition only!)

If we're lucky, PARTITION splitsthe array evenly:

T(n) = 2T(n/2) + O(n)
=0O(nlgn) (same as merge sort)

9
10 10

T(n) =T(4n)+T(2n)+0O(n)
What 1s the solution to this recurrence?

What if the split is always

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.27

“o* Analysisof “almost-best” case

T(n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.28

s Analysis of “almost-best” case

cN
T~
T(En)

T(%n)

10

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.29

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.30

/cn--- ---------------- ch
lcn \9cn N e ch
10 10
PR J/ \Ioglo,gn
1g()/(:n 10 CN nCN 2N -X-------- ch

7\ 7\ \

@(’i) O(n) leaves l

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.31

loglOn /O \ 10g;0/gN

+cn 9 ch oen o BN -X-------- ch

100 100 100 100

K /N T/ N\ \
(1) O(n) leaves | "‘\
O(1)

cnlog,,n < T(n) < cnlog,y0n + AN)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.32

=+ Randomized quicksort

| DEA: Partition around a random element.
|.e., around Al t], wheret chosen
uniformly at random from {p...r}

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.33

ALGORITHMS

~ 5+ Randomized Algorithms

\ e ;f,‘,,
WY e

 Algorithms that make decisions based on
random coin flips.

e Can “fool” the adversary.

 The running time (or even correctness) isa
random variable; we measure the expected
running time.

* \We assume all random choices are
Independent .

* Thisis not the average case !

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.34

ALGORITHMS

“Y “Paranoid” quicksort

* Will modify the algorithm to make it easier to
analyze:
* Repeat:
e Choose the pivot at random
e Perform PARTITION
 Until the resulting split islucky, I.e., not
worse than 1/10: 9/10
* Recurse on both subarrays

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.35

ALGORITHMS

"Analysis

N
1\“ e

 Let T(n) be an upper bound on the expected
running time on any array of n elements

e Consider any input of sizen

* The time needed to sort the input is bounded
from the above by a sum of

* The time needed to sort the left subarray
* The time needed to sort the right subarray

* The number of iterations until we get a
lucky split, times cn

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.36

ALGORITHMS

—
e

Expectations

By linearity of expectation:

T(nN)<maxT(1)+T(n—1)+ E[# partitions] e cn

where maximum is taken over | //[n/10,9n/10]
 We will show that E[#partitions] Islessthan 2
* Therefore:

T(N)<maxT()+T(n-1)+2cn,i[n/10,9n/10]

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.37

 Can use the recursion tree argument:
* Tree depth is ©fdog n)
 Total work at each level isat most 2cn
* The total expected timeis On log n)

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.38

ALGORITHMS

“¥ Lucky partitions

 The probability that a random pivot induces
lucky partition is at least 8/10

(we are not lucky if the pivot happens to be
among the smallest/largest n/10 elements)

e |f weflip acoin, with heads prob. p=8/10,
the expected waiting time for the first head
ISl/p=10/8< 2

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.39

ALGORITHMS

S Quicksort In practice

LSRR

 Quicksort is agreat general-purpose
sorting algorithm.

* Quicksort istypically over twice as fast
as merge sort.

e Quicksort can benefit substantially from
code tuning.

 Quicksort behaves well even with
caching and virtual memory.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.40

o M ore intuition

Suppose we alternate lucky, unlucky,
lucky, unlucky, lucky,

L(n) =2U(n/2) + ©(n) lucky
Un)=L(n-1) + ©(n) unlucky
Solving:
L(n) =2(L(n/2—-1) + O(n/2)) + O(Nn)
=2L(n/2-1) + Ofn)
=0O(nlgn) Lucky!

How can we make sure we are usually lucky?

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.41

s Randomized quicksort
~3 analysis

Let T(n) =the random variable for the running
time of randomized quicksort on an input of size
n, assuming random numbers are independent.

Fork=0, 1, ..., n—1, define the indicator
random variable

" = {1 if PARTITION generates a k : n—k—1 split,
=

0 otherwise.

E[X] =Pr{X =1} = 1/n, sinceal splitsare
equally likely, assuming elements are distinct.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.42

. Analysis (continued)

r--(O) + T(n-1) + ©(n) If 0: n—1 split,
T(2) + T(n=2) + ©(n) if 1:n-2 split,

\T(n—1.) + T(0) + O(n) If n—=1: 0 split,

n—1

= X (T(k)+T(n-k-1) +O(n)).
k=0

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.43

~o* Calculating expectation

E[T(n)]= E{ r]ilxk(T(k) +T(n-k-1)+ G>(n))}

k=0

Take expectations of both sides.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.44

~<¥ Calculating expectation

E[T(n)] = E{ rilxk(T(k) +T(n-k-1)+ G>(n))}

k=0

= S E[X (T + T(n—k-1) + O(m)]
k=0

Linearity of expectation.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk

L4.45

~<¥ Calculating expectation

n-1

E[T(n)] = E{ > X (T(k) +T(n—k-1) +O(n))
k=0

= nilE[xk(T(k) +T(n-k-1) +0O(n))]
k=0

= S E[X, | E[T(K) + T(n—k -1) + O(n)
k=0

Independence of X, from other random
choices.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.46

ALGORITHMS

=&~ Calculating expectation

E[T(n)] = E{ nka(T(k) +T(n-k-1)+0(n))
k=0

= nZ_llE[Xk(T(k) +T(n—-k-1)+ G)(n))]
k=0

= nz_llE[xk] [E[T (k) +T(n-k-1) + ©(n)]

k=
1 r?—l 1 n-1 1 n-1
=1 ZE[T(k)]+E ZE[T(n—k—l)]+ﬁ 2.0(n)
k=0 k=0 k=0

Linearity of expectation; E[X,] = 1/n.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.47

N Calculating expectation

n-1

E[T(n)] = E{ > X (T(k)+T(n—-k-1) +O(n))

k=0

= SE[X (T + (N -k =1 + ©()]
k=0

= ST E[X, | E[T(K) + T(n -k -1) + O(n)]
k=0

- LS Efr ()] + 12E[T(n Kk - 1>]+1Ze<n)

”ko

-2y E[T]+or) Summations have
k= identical terms.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.48

AAAAAAAAAA

ﬁ, Hairy recurrence

A
\

n-1
E[T ()] = 2 3 E[T()] +(n)
k=2

(Thek =0, 1 terms can be absorbed in the ©(n).)

Prove: E[T(n)] < anlgn for constant a > 0.

* Choose a large enough so that anlign
dominates E[T(n)] for sufficiently small n=> 2.

1
Usefact:) klgk<2in2lgn—1In2 (exercise).
k=2

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.49

v Substitution method

E[T(n)] < 2 nz_:lak Igk +O(n)
Ny=>

Substitute inductive hypothesis.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.50

e Substitution method

E[T(n)]< 2 Zaklgk +0(n)
Ni=2

nZlgn—-=n2 |+ O(n
n(2 J 8 (n)

Use fact.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.51

e Substitution method

E[T(n)]< 2 Zaklgk +O(n)

Ny=>

n2lgn—-=n? |+ O(n

n(2 J o (n)
:anlgn—(ag‘—@(n))

Express as desired — residual.

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.52

v Substitution method

E[T(n)] < 2 Zaklgk +0(n)

Ny=>
~2a(121gn-1 2)
= n<lgn—-=n< |+ O(n
n(z 7 38 ("
:anlgn—(fi[‘—@(n))
< anlgn

If aIs chosen large enough so that
an/4 dominates the ©(n).

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.53

ALGORITHMS

e Assume

February 13, 2003 (c) Charles Leiserson and Piotr Indyk L4.54

