Quicksort

• Divide-and-conquer algorithm.
• Sorts “in place” (like insertion sort, but not like merge sort).
• Very practical (with tuning).
Divide and conquer

Quicksort an n-element array:

1. **Divide:** Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

 $\leq x \hspace{1cm} x \hspace{1cm} \geq x$

2. **Conquer:** Recursively sort the two subarrays.

3. **Combine:** Trivial.

 Key: *Linear-time partitioning subroutine.*
Partitioning subroutine

\textbf{Partition}(A, p, q)
\begin{align*}
x & \leftarrow A[p] \quad \triangleleft \text{pivot} = A[p] \\
i & \leftarrow p \\
f & {\text{or}}^j \leftarrow p + 1 \text{ to } q \\
& \text{do if } A[j] \leq x \\
& \quad \text{then } i \leftarrow i + 1 \\
& \quad \text{exchange } A[i] \leftrightarrow A[j] \\
& \text{exchange } A[p] \leftrightarrow A[i] \\
& \text{return } i
\end{align*}

\textbf{Invariant: } \begin{array}{cccccc}
& x & \leq x & \geq x & ? \\
\text{p} & \text{i} & \text{j} & \text{q}
\end{array}

Running time
= \(O(n)\) for \(n\) elements.
Example of partitioning

\[6 \quad 10 \quad 13 \quad 5 \quad 8 \quad 3 \quad 2 \quad 11 \]

\[i \quad j \]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array} \]

\[i \rightarrow j \]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\[i \rightarrow j\]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array} \]
Example of partitioning

![Diagram showing partitioning of a list into two parts]
Example of partitioning

6 10 13 5 8 3 2 11

6 5 13 10 8 3 2 11

\[i \rightarrow j \]
Example of partitioning
Example of partitioning
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\end{array}
\]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array} \]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array}
\]
Example of partitioning
Pseudocode for quicksort

\textbf{QUICKSORT}(A, p, r)
\begin{align*}
\text{if } & p < r \\
\text{then } & q \leftarrow \text{PARTITION}(A, p, r) \\
\text{QUICKSORT}(A, p, q-1) & \\
\text{QUICKSORT}(A, q+1, r) & \\
\end{align*}

\textbf{Initial call:} \textbf{QUICKSORT}(A, 1, n)
Analysis of quicksort

• Assume all input elements are distinct.

• In practice, there are better partitioning algorithms for when duplicate input elements may exist.

• Let $T(n) =$ worst-case running time on an array of n elements.
Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

\[
T(n) = T(0) + T(n-1) + \Theta(n)
\]

\[
= \Theta(1) + T(n-1) + \Theta(n)
\]

\[
= T(n-1) + \Theta(n)
\]

\[
= \Theta(n^2) \text{ (arithmetic series)}
\]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta \left(\sum_{k=1}^{n} k \right) = \Theta(n^2) \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta(n) = \Theta(n) + \Theta(n^2) = \Theta(n^2) \]

\[h = n \]

\[\Theta(1) \quad c(n-1) \]

\[\Theta(1) \quad c(n-2) \]

\[\Theta(1) \quad \ldots \]

\[\Theta(1) \]
Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

\[T(n) = 2T(n/2) + \Theta(n) \]
\[= \Theta(n \lg n) \quad \text{(same as merge sort)} \]

What if the split is always \(\frac{1}{10} : \frac{9}{10} \)?

\[T(n) = T\left(\frac{1}{10} n\right) + T\left(\frac{9}{10} n\right) + \Theta(n) \]

What is the solution to this recurrence?
Analysis of “almost-best” case

\[T(n) \]
Analysis of “almost-best” case

$$T\left(\frac{1}{10} n\right) \quad cn \quad T\left(\frac{9}{10} n\right)$$
Analysis of “almost-best” case

\[T\left(\frac{1}{100} n\right) T\left(\frac{9}{100} n\right) \]

\[T\left(\frac{9}{100} n\right) T\left(\frac{81}{100} n\right) \]
Analysis of “almost-best” case

implified analysis:

Θ(1)

O(n) leaves

Θ(1)
Analysis of “almost-best” case

\[cn \log_{10} n \leq T(n) \leq cn \log_{10/9} n + O(n) \]

\((c) \) Charles Leiserson and Piotr Indyk
Randomized quicksort

IDEA: Partition around a *random* element. I.e., around $A[t]$, where t chosen uniformly at random from $\{p \ldots r\}$
Randomized Algorithms

• Algorithms that make decisions based on random coin flips.

• Can “fool” the adversary.

• The running time (or even correctness) is a random variable; we measure the expected running time.

• We assume all random choices are independent.

• This is not the average case!
“Paranoid” quicksort

- Will modify the algorithm to make it easier to analyze:
 - Repeat:
 - Choose the pivot at random
 - Perform PARTITION
 - Until the resulting split is lucky, i.e., not worse than 1/10: 9/10
 - Recurse on both subarrays
Analysis

Let $T(n)$ be an upper bound on the expected running time on any array of n elements.

Consider any input of size n.

The time needed to sort the input is bounded from the above by a sum of:

- The time needed to sort the left subarray.
- The time needed to sort the right subarray.
- The number of iterations until we get a lucky split, times cn.

February 13, 2003

(c) Charles Leiserson and Piotr Indyk

L4.36
Expectations

• By linearity of expectation:

\[T(n) \leq \max_i T(i) + T(n - i) + E[\# \text{partitions}] \cdot cn \]

where maximum is taken over \(i \in [n/10, 9n/10] \)

• We will show that \(E[\#\text{partitions}] \) is less than 2

• Therefore:

\[T(n) \leq \max_i T(i) + T(n - i) + 2cn, i \in [n/10, 9n/10] \]
Final bound

- Can use the recursion tree argument:
 - Tree depth is $\Theta(\log n)$
 - Total work at each level is at most $2cn$
 - The total expected time is $\mathcal{O}(n \log n)$
Lucky partitions

• The probability that a random pivot induces lucky partition is at least $8/10$
 (we are *not* lucky if the pivot happens to be among the smallest/largest $n/10$ elements)

• If we flip a coin, with heads prob. $p=8/10$, the expected waiting time for the first head
 is $1/p = 10/8 < 2$
Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm.

• Quicksort is typically over twice as fast as merge sort.

• Quicksort can benefit substantially from code tuning.

• Quicksort behaves well even with caching and virtual memory.
More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky, ….

\[L(n) = 2U(n/2) + \Theta(n) \quad \text{lucky} \]
\[U(n) = L(n - 1) + \Theta(n) \quad \text{unlucky} \]

Solving:

\[L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n) \]
\[= 2L(n/2 - 1) + \Theta(n) \]
\[= \Theta(n \log n) \quad \text{Lucky!} \]

How can we make sure we are usually lucky?
Randomized quicksort analysis

Let $T(n)$ = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the indicator random variable

$$X_k = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

$E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.
Analysis (continued)

\[T(n) = \begin{cases}
T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\
T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\
\vdots \\
T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \\
\end{cases} \]

\[= \sum_{k=0}^{n-1} X_k \left(T(k) + T(n - k - 1) + \Theta(n) \right). \]
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(k) + T(n-k-1) + \Theta(n) \right) \right]
\]

Take expectations of both sides.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]
\]

Linearity of expectation.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)] \]

Independence of \(X_k \) from other random choices.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n - k - 1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n\).
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)] \]

\[= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \]

\[= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n) \quad \text{Summations have identical terms.} \]
Hairy recurrence

\[E[T(n)] = 2 \sum_{k=2}^{n-1} E[T(k)] + \Theta(n) \]

(The \(k = 0, 1 \) terms can be absorbed in the \(\Theta(n) \).)

Prove: \(E[T(n)] \leq an \lg n \) for constant \(a > 0 \).

- Choose \(a \) large enough so that \(an \lg n \) dominates \(E[T(n)] \) for sufficiently small \(n \geq 2 \).

Use fact: \(\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \) (exercise).
Substitution method

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} ak \log k + \Theta(n) \]

Substitute inductive hypothesis.
Substitution method

\[E[T(n)] \leq \sum_{k=2}^{n-1} a_k \log k + \Theta(n) \]

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n) \]

Use fact.
Substitution method

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} ak \lg k + \Theta(n) \]

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \lg n - \left(\frac{an}{4} - \Theta(n) \right) \]

Express as \textit{desired} – \textit{residual}.
Substitution method

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} a k \lg k + \Theta(n) \]

\[= \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \lg n - \left(\frac{an}{4} - \Theta(n) \right) \]

\[\leq an \lg n, \]

if \(a \) is chosen large enough so that \(an/4 \) dominates the \(\Theta(n) \).
• Assume