Computational Geometry ctd.

- Segment intersection problem:
 - Given: a set of n distinct segments $s_1 \ldots s_n$, represented by coordinates of endpoints
 - Goal (I): detect if there is any pair $s_i \neq s_j$ that intersects
 - Goal (II): report all pairs of intersecting segments
Segment intersection

• Easy to solve in $O(n^2)$ time
• …which is optimal for the reporting problem:
• However:
 – We will see we can do better for the detection problem
 – Moreover, the number of intersections P is usually small.

Then, we would like an output sensitive algorithm, whose running time is low if P is small.
Result

• We will show:
 – $O(n \log n)$ time for detection
 – $O((n + P) \log n)$ time for reporting

• We will use …
 … (no, not divide and conquer)
 … Binary Search Trees

• Specifically: *Line sweep approach*
Orthogonal segments

• All segments are either horizontal or vertical
• Assumption: all coordinates are distinct
• Therefore, only vertical-horizontal intersections exist
Orthogonal segments

• Sweep line:
 – A vertical line sweeps the plane from left to right
 – It “stops” at all “important” x-coordinates, i.e., when it hits a V-segment or endpoints of an H-segment
 – Invariant: all intersections on the left side of the sweep line have been already reported
Orthogonal segments ctd.

- We maintain sorted y-coordinates of H-segments currently intersected by the sweep line (using a balanced BST T)
- When we hit the left point of an H-segment, we add its y-coordinate to T
- When we hit the right point of an H-segment, we delete its y-coordinate from T
Orthogonal segments ctd.

- Whenever we hit a V-segment (with coordinates $y_{\text{top}}, y_{\text{bottom}}$), we report all H-segments in T with y-coordinates in $[y_{\text{top}}, y_{\text{bottom}}]$.
Algorithm

- Sort all V-segments and endpoints of H-segments by their x-coordinates – this gives the “trajectory” of the sweep line.
- Scan the elements in the sorted list:
 - Left endpoint: add segment to T
 - Right endpoint: remove segment from T
 - V-segment: report intersections with the H-segments stored in T
Analysis

- Sorting: $O(n \log n)$
- Add to/delete from T:
 - $O(\log n)$ per operation
 - $O(n \log n)$ total
- Processing V-segments:
 - $O(\log n)$ per intersection
 - $O(P \log n)$ total
 - Can be improved to $O(P + n \log n)$
- Overall: $O(P + n \log n)$ time
The general case

• Assumption: all coordinates of endpoints and intersections distinct

• In particular:
 – No vertical segments
 – No three segments intersect at one point
Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all “important” x-coordinates, i.e., when it hits endpoints or intersections
- **Do not know the intersections in advance!**
- The list of important x-coordinates is constructed and maintained *dynamically*
Sweep line

• Also need to maintain the information about the segments intersecting the sweep line
• Cannot keep the values of y-coordinates of the segments!
• Instead, we will maintain their order. I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections.
Algorithm

- Initialize the “vertical” BST V (to “empty”)
- Initialize the “horizontal” priority queue H (to contain the segments’ endpoints sorted by x-coordinates)
- Repeat
 - Take the next “event” p from H:
 // Update V
 - If p is the left endpoint of a segment, add the segment to V
 - If p is the right endpoint of a segment, remove the segment from V
 - If p is the intersection point of s and s', swap the order of s and s' in V, report p
Algorithm ctd.

// Update H
– For each new pair of neighbors s and s’ in V:
 • Check if s and s’ intersect on the right side of the sweep line
 • If so, add their intersection point to H
 • Remove the possible duplicates in H
• Until H is empty
Analysis

• Initializing H: $O(n \log n)$
• Updating V:
 – $O(\log n)$ per operation
 – $O((P+n) \log n)$ total
• Updating H:
 – $O(\log n)$ per intersection
 – $O(P \log n)$ total
• Overall: $O((P+n) \log n)$ time
Correctness

• All reported intersections are correct
• Assume there is an intersection not reported. Let \(p=(x,y) \) be the first such unreported intersection (of \(s \) and \(s' \))
• Let \(x' \) be the last event before \(p \). Observe that:
 – At time \(x' \) segments \(s \) and \(s' \) are neighbors on the sweep line
 – Since no intersections were missed till then, \(V \) maintained the right order of intersecting segments
 – Thus, \(s \) and \(s' \) were neighbors in \(V \) at time \(x' \). Thus, their intersection should have been detected