
Introduction to Algorithms
6.046J/18.401

Lecture 19
Prof. Piotr Indyk

Introduction to Algorithms April 29, 2003 L19.2© 2003 by Piotr Indyk

Computational Geometry

• Algorithms for geometric problems

• Applications: CAD, GIS, computer vision,…….

• E.g., the closest pair problem:

– Given: a set of points P={ p1…pn} in the plane,
such that pi=(xi,yi)

– Goal: find a pair pi pj that minimizes ||pi – pj||

• We will see more examples in the next lecture

Introduction to Algorithms April 29, 2003 L19.3© 2003 by Piotr Indyk

Computational Model

• In the next two lectures, we will assume that
– The input (e.g., point coordinates) are real numbers
– We can perform (natural) operations on them in

constant time, with perfect precision
• Advantage: simplicity
• Drawbacks: highly non-trivial issues:

– Theoretical: if we allow arbitrary operations on reals,
we can compress n numbers into a one number

– Practical: algorithm designed for infinite precision
sometimes fail on real computers

Introduction to Algorithms April 29, 2003 L19.4© 2003 by Piotr Indyk

Closest Pair

• Find a closest pair among p1…pn

• Easy to do in O(n2) time

– For all pi pj, compute ||pi – pj|| and
choose the minimum

• We will aim for O(n log n) time

Introduction to Algorithms April 29, 2003 L19.5© 2003 by Piotr Indyk

Divide and conquer

• Divide:

– Compute the median of
x-coordinates

– Split the points into PL
and PR, each of size n/2

• Conquer: compute the
closest pairs for PL and PR

• Combine the results (the
hard part)

Introduction to Algorithms April 29, 2003 L19.6© 2003 by Piotr Indyk

Combine

• Let d=min(d1,d2)
• Observe:

– Need to check only pairs
which cross the dividing
line

– Only interested in pairs
within distance < d

• Suffices to look at points in the
2d-width strip around the
median line

d1

d2

2d

Introduction to Algorithms April 29, 2003 L19.7© 2003 by Piotr Indyk

Scanning the strip

• Sort all points in the strip
by their y-coordinates,
forming q1…qk, k n.

• Let yi be the y-coordinate of
qi

• For i=1 to k
– j=i-1
– While yi-yj < d

• Check the pair qi,qj

• j:=j-1

d

Introduction to Algorithms April 29, 2003 L19.8© 2003 by Piotr Indyk

Analysis

• Correctness: easy
• Running time is more

involved
• Can we have many qj’s

that are within distance
d from qi ?

• No
• Proof by packing

argument

d

Introduction to Algorithms April 29, 2003 L19.9© 2003 by Piotr Indyk

Analysis, ctd.

Theorem: there are at most 7
qj’s such that yi-yj d.

Proof:
• Each such qj must lie either in

the left or in the right d × d
square

• Within each square, all points
have distance distance d
from others

• We can pack at most 4 such
points into one square, so we
have 8 points total (incl. qi)

qi

Introduction to Algorithms April 29, 2003 L19.10© 2003 by Piotr Indyk

Packing bound

• Proving “4” is not trivial
• Will prove “5”

– Draw a disk of radius d/2
around each point

– Disks are disjoint
– The disk-square intersection

has area (d/2)2/4 = /16
d2

– The square has area d2

– Can pack at most 16/ 5.1
points

Introduction to Algorithms April 29, 2003 L19.11© 2003 by Piotr Indyk

Running time

• Divide: O(n)
• Combine: O(n log n) because we sort by y
• However, we can:

– Sort all points by y at the beginning
– Divide preserves the y-order of points
Then combine takes only O(n)

• We get T(n)=2T(n/2)+O(n), so
T(n)=O(n log n)

Introduction to Algorithms April 29, 2003 L19.12© 2003 by Piotr Indyk

Close pair

• Given: P={ p1…pn}

• Goal: check if there is any pair pi pj within
distance 1 from each other

• Will give an O(n) time randomized
algorithm, using…

… hashing!

Introduction to Algorithms April 29, 2003 L19.13© 2003 by Piotr Indyk

Algorithm

1. Impose a square grid onto the
plane, where each cell is a 1
× 1 square

2. Put each point into a bucket
corresponding to the cell it
belongs to (see last slide)

3. If there is a bucket with > 4
points in it, answer YES (by
the packing theorem)

4. Otherwise, for each p∈P,
check all points in the cell
containing p, as well as the
cells adjacent to it

Introduction to Algorithms April 29, 2003 L19.14© 2003 by Piotr Indyk

Analysis

• Running time:

– Putting points into the buckets: O(n) time
using hashing

– Checking if there is a heavy bucket: O(n)

– Checking the cells: 9 × 4 × n = O(n)

• Overall: linear time

Introduction to Algorithms April 29, 2003 L19.15© 2003 by Piotr Indyk

To hash or not to hash

• In step 2 of the algorithm, we need to partition the points into
“buckets” , i.e., sets B1…Bk, k n. Each bucket contains all points that
belong to some non-empty cell.

• This can be solved using any data structure for the “symbol table”
problem, as in Lecture 7. The key of a point p=(x,y) is the identifier of
the cell that p belongs to. Note that now the keys are not unique, i.e.,
many points can have the same key.

• We could solve the symbol table problem using direct access table.
However, the space used by the algorithm would be proportional to the
total number of cells in the grid, which could be much larger than n. In
particular, we would not be able to initialize that much space in O(n)
time.

• Hashing allows us to reduce the space (and initialization time) to O(n),
since the space depends only on the number of nonempty cells. Since
hashing uses randomness, the resulting algorithm is randomized.

