| ntroduction to Algorithms
6.046J/18.401

ALGORITHMS

Lecture 19
Prof. Piotr Indyk

-~~~ Computational Geometry

 Algorithms for geometric problems
o Applications. CAD, GIS, computer vision,.......
 E.g.,theclosest pair problem:

— Glven: aset of points P={p,...p,} Inthe plane,
such that p,=(x;,y;)

— Goal: find apair p; #p; that minimizes |[p, — ||
* We will see more examplesin the next lecture

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.2

ALGORITHMS

~* Computational M odel

 Inthe next two lectures, we will assume that
— Theinput (e.g., point coordinates) are real numbers

— We can perform (natural) operations on them in
constant time, with perfect precision

e Advantage: smplicity
e Drawbacks: highly non-trivial issues.

— Theoretical: iIf we allow arbitrary operations on reals,
we can compress n numbers into a one number

— Practical: algorithm designed for infinite precision
sometimes fail on real computers

© 2003 by Piotr Indyk Introduction to Algorithms April 29, 2003

L19.3

= Closest Pair

* Findaclosest pair among p;...p,
e Easy todoin O(n?) time

—For al p, #p;, compute ||p, — p,|| and
choose the minimum

 Wewill am for O(n log n) time

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.4

R Divide and conquer

. Divide: -

— Compute the median of "0
X-coordinates S e

— Split the points into P, o
and Py, each of size n/2 ° '

e Conguer: compute the
closest pairsfor P, and Py

e Combine the results (the
hard part)

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.5

e Combine

e Let d=min(d,,d,)
e Observe:

— Need to check only pairs
which cross the dividing
line

— Only interested in pairs
within distance< d

o Sufficesto look at pointsinthe

2d-width strip around the
median line

© 2003 by Piotr Indyk Introduction to Algorithms

2d

d}/q: o

¢ o
1

April 29,2003 L19.6

= Scanning the strip

o Sort all pointsin the strip
by their y-coordinates,
formingq,...q,, kK <n.

* Lety, bethey-coordinate of

e Fori=1tok
—J=1-1
— Whiley;-y; <d
* Check the pair ;,q,
° j::j-]_

© 2003 by Piotr Indyk Introduction to Algorithms

April 29,2003 L19.7

e Correctness. easy

* Running time is more
involved

« Canwehavemany g;'s
that are W|th|n distance
dfromqg ?

 NO

* Proof by packing
argument

| NONCHON®)
O

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.8

ALGORITHMS

P Analysis, ctd.

Theorem: there are at most 7 0 §
g’ ssuch that y;-y; < d.

Pr oof: |

* Each such g must lie either in
the left or in the right d x d
square

* Within each square, al points
have distance distance > d
from others

e We can pack at most 4 such
points into one square, so we
have 8 points total (incl. q;)

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.9

ALGORITHMS

~ " Packing bound

\ ,,Li{
AR ‘i‘

e Proving “4” isnot trivial
* Will prove“5”

— Draw adisk of radius d/2
around each point

— Disks are digoint

— The disk-sgquare intersection
Qgs area> 7 (d/2)4/4 = n/16

— The sguare has area d?

— Can pack at most 16/t =~ 5.1
points

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.10

ALGORITHMS

| Running time

\

e Divide: O(n)
e Combine: O(nlog n) because we sort by y
* However, we can:

—Sort all points by y at the beginning

— Divide preserves the y-order of points

Then combine takes only O(n)

« Weget T(n)=2T(n/2)+0O(n), so

T(nN)=0O(n log n)

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.11

ALGORITHMS

Close pair

——

o Given: P={p,...p.}

» Goal: check If thereisany pair p, =
distance 1 from each other

o Will give an O(n) time randomized
algorithm, using...

... hashing!

© 2003 by Piotr Indyk Introduction to Algorithms

p, within

April 29,2003 L19.12

ALGORITHMS

ROy Algorithm

1. Impose asquare grid onto the -
pIaFr)1e, whgrqeeac celisal /o/\\

x 1 sguare
2. Put each point into a bucket °
corresponding to the cell it °

belongsto (seelast dide)

3. If thereisabucket with > 4 o
P0| ntsinit, answer YES (by O
he packing theorem)

4. Otherwise, for each pLIP
check all pointsin the cell
containing p, as well asthe

cells adjacent to it

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.13

ALGORITHMS

| Analysis

i \
A\ *7

* Running time;

— Putting points into the buckets. O(n) time
using hashing

— Checking If there is a heavy bucket: O(n)
— Checking the cells: 9 x 4 x n = O(n)
e Overdl: linear time

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.14

ALGORITHMS

To hash or not to hash

In step 2 of the algorithm, we need to partition the points into
“buckets’, i.e., sets B,...B,, k<n. Each bucket contains all points that
belong to some non-empty cell.

* Thiscan be solved using any data structure for the “symbol table”
problem, asin Lecture 7. The key of apoint p=(x,y) isthe identifier of
the cell that p belongs to. Note that now the keys are not unique, i.e.,
many points can have the same key.

* We could solve the symbol table problem using direct access table.
However, the space used by the algorithm would be proportional to the
total number of cellsin the grid, which could be much larger than n. In
particular, we would not be able to initialize that much space in O(n)
time.

e Hashing alows us to reduce the space (and initialization time) to O(n),
since the space depends only on the number of nonempty cells. Since
hashing uses randomness, the resulting algorithm is randomi zed.

© 2003 by Piotr Indyk Introduction to Algorithms April 29,2003 L19.15

