String Matching

• **Input:** Two strings $T[1\ldots n]$ and $P[1\ldots m]$, containing symbols from alphabet Σ

• **Goal:** find all “shifts” $1 \leq s \leq n-m$ such that $T[s+1\ldots s+m]=P$

• **Example:**
 - $\Sigma=\{ ,a,b,\ldots,z \}$
 - $T[1\ldots 18]=\text{“to be or not to be”}$
 - $P[1..2]=\text{“be”}$
 - Shifts: 3, 16
Simple Algorithm

\[
\begin{align*}
\text{for } & s \leftarrow 0 \text{ to } n-m \\
& Match \leftarrow 1 \\
\text{for } & j \leftarrow 1 \text{ to } m \\
& \quad \text{if } T[s+j] \neq P[j] \text{ then} \\
& \quad \quad \text{Match} \leftarrow 0 \\
& \text{exit loop} \\
& \quad \text{if } Match=1 \text{ then output } s
\end{align*}
\]
Results

• Running time of the simple algorithm:
 – Worst-case: $O(nm)$
 – Average-case (random text): $O(n)$
• Is it possible to achieve $O(n)$ for any input?
 – Knuth-Morris-Pratt’77: deterministic
 – Karp-Rabin’81: randomized
Karp-Rabin Algorithm

• A very elegant use of an idea that we have encountered before, namely…

HASHING!

• Idea:
 – Hash all substrings $T[1…m], T[2…m+1], T[3…m+2]$, etc.
 – Hash the pattern $P[1…m]$
 – Report the substrings that hash to the same value as P

• Problem: how to hash $n-m$ substrings, each of length m, in $O(n)$ time?
Implementation

• Attempt I:
 – Assume \(\Sigma = \{0,1\} \)
 – Think about each \(T^s = T[s+1 \ldots s+m] \) as a number in binary representation, i.e.,
 \[
 t_s = T[s+1]2^0 + T[s+2]2^1 + \ldots + T[s+m]2^{m-1}
 \]
 – Find a fast way of computing \(t_{s+1} \) given \(t_s \)
 – Output all \(s \) such that \(t_s \) is equal to the number \(p \) represented by \(P \)
The great formula

- How to transform
 \[t_s = T[s+1]2^0 + T[s+2]2^1 + \ldots + T[s+m]2^{m-1} \]
 into
 \[t_{s+1} = T[s+2]2^0 + T[s+3]2^1 + \ldots + T[s+m+1]2^{m-1} \]?

- Three steps:
 - Subtract \(T[s+1]2^0 \)
 - Divide by 2 (i.e., shift the bits by one position)
 - Add \(T[s+m+1]2^{m-1} \)

- Therefore:
 \[t_{s+1} = (t_s - T[s+1]2^0)/2 + T[s+m+1]2^{m-1} \]
Algorithm

• Can compute t_{s+1} from t_s using 3 arithmetic operations

• Therefore, we can compute all $t_0, t_1, \ldots, t_{n-m}$ using $O(n)$ arithmetic operations

• We can compute a number corresponding to P using $O(m)$ arithmetic operations

• Are we done?
Problem

- To get $O(n)$ time, we would need to perform each arithmetic operation in $O(1)$ time
- However, the arguments are m-bit long!
- It is unreasonable to assume that operations on such big numbers can be done in $O(1)$ time
- We need to reduce the number range to something more manageable
Hashing

- We will instead compute
 \[t'_s = T[s+1]2^0 + T[s+2]2^1 + \ldots + T[s+m]2^{m-1} \mod q \]
 where \(q \) is an “appropriate” prime number
- One can still compute \(t'_{s+1} \) from \(t'_s \):
 \[t'_{s+1} = (t'_s - T[s+1]2^0) \cdot 2^{-1} + T[s+m+1]2^{m-1} \mod q \]
- If \(q \) is not large, i.e., has \(O(\log n) \) bits, we can compute all \(t'_s \) (and \(p' \)) in \(O(n) \) time
Problem

- Unfortunately, we can have false positives, i.e., $T_s \neq P$ but $t'_s = p'$
- Need to use a random q
- We will show that the probability of a false positive is small → randomized algorithm
False positives

- Consider any $t_s \neq p$. We know that both numbers are in the range \{0…2^m-1\}
- How many primes q are there such that $t_s \mod q = p \mod q \equiv (t_s-p) = 0 \mod q$?
- Such prime has to divide $x = (t_s-p) \leq 2^m$
- Represent $x = p_1^{e_1}p_2^{e_2}…p_k^{e_k}$, p_i prime, $e_i \geq 1$
- Since $2 \leq p_i$, we have $2^k \leq x \leq 2^m \rightarrow k \leq m$
- There are $\leq m$ primes dividing x
Algorithm

- Let \(\Pi \) be a set of 2nm primes, each having \(O(\log n) \) bits
- Choose \(q \) uniformly at random from \(\Pi \)
- Compute \(t'_0, t'_1, \ldots, \) and \(p' \)
- For each \(s \), the probability that \(t'_s = p' \) while \(T^s \neq P \) is at most \(m/2nm = 1/2n \)
- The probability of any false positive is at most \((n-m)/2n \leq 1/2 \)
“Details”

• How do we know that such Π exists?
• How do we choose a random prime from Π in $O(n)$ time?
Prime density

- Primes are “dense”. I.e., if $\text{PRIMES}(N)$ is the set of primes smaller than N, then asymptotically
 $$\frac{|\text{PRIMES}(N)|}{N} \sim \frac{1}{\log N}$$
- If N large enough, then
 $$|\text{PRIMES}(N)| \geq \frac{N}{2\log N}$$
Prime density continued

• If we set $N = 9mn \log n$, and N large enough, then

$$|\text{PRIMES}(N)| \geq \frac{N}{(2 \log N)} \geq 2mn$$

• All elements of $\text{PRIMES}(N)$ are $\log N = O(\log n)$ bits long
Prime selection

- Still need to find a random element of \(\text{PRIMES}(N) \)
- Solution:
 - Choose a random element from \(\{1 \ldots N\} \)
 - Check if it is prime
 - If not, repeat
Prime selection analysis

- A random element q from $\{1\ldots N\}$ is prime with probability $\sim 1/\log N$
- We can check if q is prime in time polynomial in $\log N$ (trust me)
- Therefore, we can generate random prime q in $o(n)$ time
- The rest of the algorithm takes $O(n)$ time